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Abstract
In this book chapter, we present how graphs and graph signal processing contribute from
low-level to high-level point cloud processing and understanding. The processing of point
clouds addresses denoising and enhancement, as well as resampling techniques. The analysis
of point clouds considers segmentation, classification, and recognition (e.g., skeleton-based
action recognition). These are just some of the main areas of work related to GSP-based
point cloud processing, which are unique relative to the use of GSP techniques for other
data in terms of the signal model and processing methods. In practice, GSP has already
demonstrated great benefits for processing point clouds and the main purpose of this chapter
is to bring the underlying concepts together within a common framework.
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Chapter 8

Graph Spectral Point Cloud
Processing

Wei HU, Siheng CHEN, Dong TIAN•
Peking University, Mitsubishi Electric Research Labs, InterDigital

8.1. Introduction

Geometric aspects of the physical world are captured, digitized, and then
reorganized as different forms of geometric data, among which a representative form
is 3D point cloud Rusu and Cousins (2011). A point cloud is a set of 3D points
sampled from the surfaces of objects or scenes. Each point usually contains geometry
information (i.e., 3D coordinates) and other attribute information, such as RGB
colors and reflection intensity. The maturity of depth sensing and laser scanning
techniques1 makes the acquisition of 3D point clouds much convenient. Point clouds
are gradually becoming a standardized solution for 3D representation and playing a
critical role in a wide range of applications, including immersive tele-presence
Mekuria et al. (2016), autonomous driving Chen et al. (2020), and heritage
reconstruction Gomes et al. (2014).

Different from many other representation formats, point clouds record the precise
geometry of objects or scenes. Conventional images could have geometric
information embedded implicitly (e.g., stereo images). On the contrary, point clouds,
as a collection of 3D sampling points, form a more explicit representation of
geometric information on the 3D world. The collected 3D points are irregularly

1. Commercial products include Microsoft Kinect, Velodyne LiDAR, Intel RealSense, etc.
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scattered in the 3D space. Therefore, many traditional lattice-based methods cannot
be directly applied to 3D points, while graphs provide a natural representation of
point clouds: we can define each 3D point as a node, represent the signal (e.g.,
coordinates, attributes) of each point as graph signal, and capture the relationship
between a pair of 3D points by graph edges2. Hence, compared to the popularity of
GSP in image applications, graph and GSP provide a more unique and prevailing
contributor for point cloud processing tasks.

(a) The "Stanford Bunny" . (b) LiDAR sweep.

Figure 8.1. Examples of 3D point clouds. The 3D point cloud in Plot
(a) shows a 3D bunny model obtained by range scanners with some

postprocessing. The 3D point cloud in Plot (b) shows one LiDAR sweep
directly collected by Velodyne HDL-64E for autonomous driving.

In this chapter, we present how graphs and GSP contribute from low-level to
high-level point cloud processing and understanding. The processing of point clouds
addresses denoising and enhancement, as well as resampling techniques. The analysis
of point clouds considers segmentation, classification, and recognition (e.g., skeleton-
based action recognition). These are just some of the main areas of work related
to GSP-based point cloud processing, which are unique relative to the use of GSP
techniques for other data in terms of the signal model and processing methods. In
practice, GSP has already demonstrated great benefits for processing point clouds and
the main purpose of this chapter is to bring the underlying concepts together within a
common framework.

The outline of this chapter is as follows. We start from the definition of graphs
and graph-signals in point cloud applications. Then we introduce methodologies for
point cloud processing, which include model-based GSP methods and data-driven
geometric deep learning methods. Both families of approaches can be classified into
spectral-domain methods and nodal-domain methods, depending on the domain

2. For example, we can connect two 3D points when their Euclidean distance is smaller than
some threshold.
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where the processing tools are designed. Finally, we discuss various applications of
point cloud processing, including point cloud restoration, resampling, segmentation,
classification and generation.

8.2. Graph and graph-signals in point cloud processing

Point clouds describe the geometry of objects or scenes with a set of irregularly
sampled 3D points. To denote a 3D point cloud, we consider a set, which ignores any
order of 3D points. Let § = {(pi,ai)}N

i=1
be a set of N 3D points, whose ith element

pi = [xi, yi, zi] 2 R3 represents the 3D coordinate of the ith point and ai represents
other attributes of the ith point, such as RGB colors, reflection intensity and surface
normals. To ease mathematical computation, we could also represent a 3D point cloud
in a matrix,

X =

2

6664

xT

1

xT

2

...
xT

N

3

7775
2 RN⇥d, [8.1]

whose ith row vector xT

i
= [pT

i
aT

i
] 2 R1⇥d records the information about the ith

point.

To capture the relationships among 3D points, one can introduce a graph
topology, where each node is a 3D point and each edge reflects the pairwise
relationship of 3D points. This graph topology can be viewed as discrete
approximations of Riemannian manifolds that describe the continuous surface of an
original object or a scene. One mathematical representation of a graph topology with
N nodes is via an adjacency matrix A 2 RN⇥N , whose (i, j)th element indicates the
pairwise relationship between the ith and the jth 3D points. As a 3D point, each node
is associated with several values, such as the 3D coordinates or attributes. The
collection of those values form signals supported on this graph topology
A—called graph signals. In other words, each column vector in X can be considered
as a graph signal; see Figure 8.2.

There are two typical methods to construct a graph topology: 1) model-based
graph construction, which builds graphs with models from domain knowledge; 2)
learning-based graph construction, which infers/learns the underlying graph from
geometric data. Model-based graph construction for point clouds often assumes edge
weights are inversely proportional to the affinities in coordinates, such as a
K-nearest-neighbor graph and an ✏-graph. A K-nearest-neighbor graph is a graph in
which two nodes are connected by an edge, when their Euclidean distance is among
the K-th smallest Euclidean distances from one 3D point to all the other 3D points.
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(a) The "x-coordinate" graph signal . (b) The "y-coordinate" graph signal.

(c) The "z-coordinate" graph signal . (d) Zoom-in plot of the ear.

Figure 8.2. Graph and graph signals for 3D point clouds. A
K-nearest-neighbor graph is constructed to capture the pairwise spatial

relationships among 3D points. The values of graph signals are
reflected via color.

An ✏-nearest-neighbor graph is a graph in which two nodes are connected by an edge,
when their Euclidean distance is smaller than a given threshold ✏. Both
K-nearest-neighbor graphs and ✏-graphs can be efficiently implemented by using
efficient data structures, such as Octree Peng and Kuo (2005), Kammerl (n.d.),
Hornung et al. (2013). In learning-based graph construction, the underlying graph
topology is inferred or optimized from point clouds in terms of certain optimization
criterion. For example, edge weights could be trainable in an end-to-end learning
architecture Wang, Sun, Liu, Sarma, Bronstein and Solomon (2019b).
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8.3. Graph Spectral Methodologies for Point Cloud Processing

In this section, we elaborate on graph spectral methods for point cloud processing.
Based on how we infer graph filter parameters, we classify graph spectral methods into
two classes: model-based graph spectral methods and learning-based graph spectral
methods. Model-based methods are built upon a deep understanding and assumptions
of the characteristics of point clouds, such as sparsity models in the spectral domain or
smoothness models in the nodal domain. The learning-based paradigm (i.e., geometric
deep learning Bronstein et al. (2017)) learns filter parameters end-to-end in a data-
driven fashion, such as the recently developed Graph Neural Networks (GNNs) that
extend classical neural networks to graph data via graph convolution in the spectral
domain or nodal domain.

8.3.1. Model-based Graph Spectral Methods for Point Clouds

Detailed description of graph signal processing has been introduced in Part 1. Here
we revisit them in the context of point clouds and stress how we deploy model-based
graph spectral methods to process point clouds.

Spectral-domain Graph Filtering for Point Clouds. As introduced in Chapter 1
and Chapter 2, graph spectral filtering is defined in the graph frequency domain such
as the Graph Fourier Transform (GFT) domain. Given a point cloud X, suppose we
have constructed a graph over X, whose connectivity is encoded in a graph Laplacian
L computed from A. Let us denote U as the eigenvector matrix of L and {�0 = 0 
�1  ...  �N�1} as the set of eigenvectors of L. Assuming the graph frequency
response of the graph spectral filtering is ĥ(�k) (k = 0, . . . , N �1), then this filtering
can be written as

Y = U

2

64
ĥ(�0)

. . .
ĥ(�N�1)

3

75U>X. [8.2]

This graph spectral filtering essentially first converts the point cloud data into the
GFT domain, performs filtering on each eigenvalue (i.e., spectrum of the graph),
and finally projects back to the spatial domain via the inverse GFT. The key is to
specify N graph frequency responses in ĥ(�k) tailored for each point cloud processing
task. Next, we discuss low-pass graph spectral filtering and high-pass graph spectral
filtering separately.

As in image processing, we can use a low-pass graph filter to capture rough shape
of a point cloud and attenuate noise/outliers under the assumption that signals on point
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clouds are smooth. In practice, a point cloud signal (e.g., coordinates, normals, RGB
colors) is naturally smooth with respect to the graph we construct from the signal.
Thus, we can perform point cloud smoothing by a low-pass graph filter, where high-
frequency components are likely to be generated by noise, as the energy of a smooth
point cloud concentrates on low-frequency components.

One intuitive realization is an ideal low-pass graph filter, which completely
eliminates all graph frequencies above a given bandwidth while keeping those below
unchanged. The graph frequency response of an ideal low-pass graph filter with
bandwidth b is

ĥ(�k) =

⇢
1, k  b,
0, k > b,

[8.3]

which projects the input point cloud onto a bandlimited subspace by removing
eigenfunction components corresponding to large eigenvalues (i.e., high-frequency
components). The smoothed result provides a bandlimited approximation of the
original point cloud. Fig. 8.3 demonstrates an example of the bandlimited
approximation of the 3D coordinates of a sampled point cloud of Bunny with 10, 100
and 1000 graph frequencies respectively. We see that the first 10 low frequency
components are able to represent the rough shape of Bunny, while the shape gets
finer with more graph frequencies. See Rosman et al. (2013) and Chen et al. (2017)
for more examples.

(a) Original. (b) 10 frequencies. (c) 100 frequencies. (d) 1000 frequencies.

Figure 8.3. Low-pass approximation of the point cloud Bunny. Plot (a) is
the original sampled point cloud with 1797 points. Plot (b), (c) and (d)

show the low-pass approximations with 10, 100 and 1000 graph
frequencies.

Another simple choice is Haar-like low-pass graph filter as discussed in Chen et al.
(2017), where the graph frequency response is

ĥ(�k) = 1 � �k

�max

, [8.4]

where �max = �N�1 is the maximum eigenvalue for normalization. As �k�1  �k,
we have ĥ(�k�1) � ĥ(�k). As such, low-frequency components are preserved while
high-frequency ones are attenuated.
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In contrary to the low-pass filtering, high-pass filtering eliminates low-frequency
components, which enables the detection of large variations in a point cloud, such
as geometric contours or texture variations. A simple design is a Haar-like high-pass
graph filter with the following graph frequency response

ĥ(�k) =
�k

�max

. [8.5]

As �k�1  �k, we have ĥ(�k�1)  ĥ(�k). This indicates that lower frequency
responses are attenuated while high frequency reponse is preserved. An application
example is contour detection as discussed in Chen et al. (2017).

In addition, we can design a desired spectral distribution and then use graph filter
coefficients to fit this distribution. For example, an K-length graph filter is

ĥ(⇤) =

2

64

P
K�1

k=0
ĥk�k

1
· · · 0

. . .
0 · · ·

P
K�1

k=0
ĥk�k

N

3

75 ,

where ⇤ is the eigenvalue matrix of the graph Laplacian L, and ĥk is the filter
coefficients. If a desirable response of the ith graph frequency is ci, we set

ĥ(�i) =
K�1X

k=0

ĥk�k

i
= ci,

and solve a set of linear equations to obtain the graph filter coefficients ĥk. It is also
possible to use the Chebyshev polynomial to construct graph filter
coefficients Hammond et al. (2011c).

However, since spectral-domain graph filtering entails high computational
complexity due to the full eigen-decomposition of the graph Laplacian, this class of
methods are either dedicated to small-scale point clouds or applied to point clouds in
a divide-and-conquer manner. For instance, one may divide a point cloud into regular
cubes, and perform graph spectral filtering for each cube separately. Also, one may
deploy a fast algorithm of GFT implementation (e.g., fast GFT in Le Magoarou et al.
(2017)) to accelerate the spectral filtering process.

Nodal-domain Graph Filtering for Point Clouds. This class of methods perform
filtering on point clouds in the nodal domain, which is often computationally efficient
and thus amenable to large-scale data. Intuitively, the functionality of nodal-domain
graph filtering is to replace the feature value (attributes) at each 3D point with a
weighted linear combination of feature values at its neighboring 3D points in the graph
vertex domain.
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The most elementary nontrivial graph filter is called a graph shift operator. A
common option for a graph shift operator is the graph Laplacian matrix L. Every
linear, shift-invariant graph filter is a polynomial in the graph shift,

h(L) =
K�1X

k=0

hkL
k = h0I + h1L + . . . + hK�1L

K�1, [8.6]

where hk, k = 0, 1, . . . , K � 1 are filter coefficients and K is the graph filter length.
A higher order corresponds to a larger receptive field on the graph vertex domain.
The output of graph filtering is given by the matrix-vector product. For example, let
Xin 2 RN⇥3 be the RGB values of a 3D point cloud, the filtering response Xout =
h(L)Xin 2 RN⇥3 is the weighted averaged RGB values. The output of the ith point,P

K�1

k=0
hk

�
LkX

�
i

is a weighted average of the attributes of points that are within
K hops away from the ith point. The kth graph filter coefficient, hk, quantifies the
contribution from the kth-hop neighbors. We design the filter coefficients to change
the weights in local averaging.

Similarly to spectral-domain graph filtering, we now consider two typical types of
nodal-domain graph filters.

– Low-pass graph filtering. Similarly to classical signal processing, we can use a
low-pass graph filter to smooth feature values over a 3D point cloud. Figure 8.4 shows
the effect of low-pass graph filtering, where Plot (a) shows a graph signal activating
the right ear of the bunny and Plot (b) shows that the boundary gets blurred after low-
pass graph filtering. This indicates the functionality of low-pass graph filtering is to
reduce transient change and capture the main shape.

– High-pass graph filtering. In image processing, a high-pass filter is used to
extract edges and contours; similarly, we can use a high-pass graph filter to extract
contours in a point cloud. Figure 8.4 (c) shows that the boundary gets highlighted after
high-pass graph filtering. This indicates the functionality of high-pass graph filtering
is to detect transient changes of feature values over a 3D point cloud.

Graph filtering can be used in various processing tasks. For example, Chen, Tian,
Feng, Vetro and Kovavcević (2018a) designs a high-pass graph filter to extract
contour-related features from a 3D point cloud with applications to 3D point cloud
downsampling; Zeng, Cheung, Ng and J. Pang (2018) designs a graph filter to solve
the graph-Laplacian-regularized optimization problem with applications to 3D point
cloud denoising. Graph filtering also lays the mathematical foundation for graph
convolutional neural networks, whose key operation is nothing but a graph filter.

8.3.2. Learning-based Graph Spectral Methods for Point Clouds

Learning-based graph spectral methods infer filter parameters end-to-end, such
as the recently developed geometric deep learning (see Bronstein et al. (2017) and
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(a) Original graph signal. (b) Low-pass graph filtering. (c) High-pass graph filtering.

Figure 8.4. Graph filtering for 3D point clouds. Low-pass graph filtering
smooths the sharp transition in a graph signal, while high-pass graph

filtering highlights the sharp transition.

references therein). While some previous works represent irregular point clouds with
regular 3D voxel grids or collections of 2D images before feeding them to a neural
network or impose certain symmetrizations in the net computation (e.g., PointNet
Qi, Su, Mo and Guibas (2017)), many recent efforts naturally represent point clouds
on graphs and develop Graph Neural Networks (GNNs) that are generalizations of
classical neural networks to graph data.

As the first such work on point clouds, Wang, Sun, Liu, Sarma, Bronstein and
Solomon (2019b) introduces two useful techniques: the edge convolution operation
and learnable graphs. The edge convolution is a convolution-like operation to extract
geometric features on a graph. The edge convolution exploits local neighborhood
information and can be stacked to learn global geometric properties. Let H 2 RN⇥d

be a local-feature matrix, where the ith row Hi represents the features for the ith point.
A basic computational block works as:

Hi = k(i,j)2Eg(Xi,Xj) 2 Rd, [8.7]
where E is the edge set and g(·, ·) is a generic mapping, implemented by some neural
networks, and k is a generic aggregation function, which could be the summation
or maximum operation. The edge convolution is also similar to nodal-domain graph
filtering: both aggregate neighboring information; however, the edge convolution
specifically models each pairwise relationship by a nonparametric function. Wang,
Sun, Liu, Sarma, Bronstein and Solomon (2019b) also suggests to dynamically learn
a kNN graph at each layer of the network. The distance metric of the learnable kNN
graph is the Euclidean distance in the high-dimensional feature space, not the original
3D space.

Subsequent research has proposed novel graph neural networks for point cloud
understanding, such as recognition, segmentation and classification. For
example, Wang, Samari and Siddiqi (2018a) proposes local spectral graph
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[a] [b] [c] [d]

Figure 8.5. A synthetic noisy point cloud with Gaussian noise � = 0.04
for Quasimoto and denoised results: (a) The ground truth; (b) The noisy
point cloud; (c) The denoised result by GLR Zeng, Cheung, Ng, Pang

and Cheng (2019); (d) The denoised result by Hu et al. (2020).

convolution, where filter coefficients represented in the graph spectral domain are
learnable; Wang, Huang, Hou, Zhang and Shan (2019) proposes graph attention
convolution, which selects the most relevant points from all the neighbors by
trainable attentional weights. It also uses graph coarsening to promote multiscale
analysis on graphs. As one of the most recent works in this area, Li, Müller, Thabet
and Ghanem (2019) constructs the deepest yet graph convolution network (GCN)
architecture, which has 56 layers. It transplants a series of techniques from CNNs,
such as residual and dense connections, as well as dilated graph convolutions, to the
graph domain. Some other works do not rely on graphs, but have based their
computations on local neighbors defined by either kNN graphs Zhao et al. (2019),
Liu et al. (2019a), Pan et al. (2019) or ✏-graphs Thomas et al. (2019).

8.4. Low-level Point Cloud Processing

In this section, we discuss the applications of graph spectral methods in low-level
point cloud processing, including restoration and resampling.

Similar to image restoration introduced in Chapter 7, point cloud restoration is an
inverse problem to reconstruct point clouds from degraded versions. Due to various
causes such as the inherent limitations of acquisition sensors and capturing
viewpoints, point clouds often suffer from noise, holes, compression artifacts, etc.
Consequently, many attempts have been made to point cloud restoration, with
representative problems as point cloud denoising and point cloud inpainting.
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8.4.1. Application in point cloud denoising

Point clouds are often perturbed by noise, which comes from hardware, software or
environmental causes. Hardware wise, noise occurs due to the inherent limitations of
the acquisition equipment. Software wise, in the case of generating point clouds with
existing algorithms, points may locate somewhere completely wrong due to imprecise
triangulation (e.g., a false epipolar matching). Environmentally, outliers may appear
due to the surrounding contamination, such as dust in the air. Noise corruption directly
affects the subsequent applications of point clouds. We show a point cloud corrupted
by Gaussian noise and its denoised results from two recent graph spectral methods in
Fig. 8.5.

Assuming an additive noise model for a point cloud, namely
P = Y + E, [8.8]

where P 2 RN⇥3 denotes the observed noise-corrupted 3D coordinates of the target
point cloud with N points, Y 2 RN⇥3 is the ground truth 3D coordinates of the point
cloud, and E 2 RN⇥3 is an additive noise. Then the problem of point cloud denoising
is to reconstruct Y from P.

Modeling of E depends on the actual point cloud acquisition mechanism. There
exist a wide range of point cloud acquisition systems at different price points—from
consumer-level depth sensors like Intel RealSense3 costing 150 USD to high-end
outdoor scanners like Teledyne Optech4 that cost up to 250,000 USD—and defining
accurate noise models for all of them is difficult. One may select the most common
Gaussian noise model, which has been shown to be reasonably accurate for popular
depth cameras like Microsoft Kinect Nguyen et al. (2012), Sun et al. (2008). Hence,
E in [8.8] represents zero-mean additive white Gaussian noise (AWGN) with standard
deviation �, i.e.,

E ⇠ N (0, �2I), [8.9]
where I is an identity matrix.

Standard experimental setup. There is no standard benchmark for point cloud
denoising. Commonly adopted datasets include

– Synthetic noisy point cloud datasets created by adding Gaussian noise to public
benchmark, such as five models from the surface reconstruction benchmark Berger
et al. (2013), 100 models from the ShapeNetCore dataset Chang, Funkhouser, Guibas,
Hanrahan, Huang, Li, Savarese, Savva, Song, Su et al. (2015), etc.

– Real-world noisy point cloud datasets, such as Face model Huang et al. (2009)
and Iron Vise model Huang et al. (2013b), which are raw scans from laser scanners.

3. https://www.intelrealsense.com/
4. https://www.teledyneoptech.com/en/products/static-3d-survey/
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Popular evaluation metrics include mean squared error (MSE) and signal-to-noise
ratio (SNR). Th MSE between the ground truth point cloud § and the denoised one
b§ is defined as:

MSE(§,b§) =
1

N

X

xi2§,bxi2
bS

kxi � bxik2

2
. [8.10]

The SNR between § and b§ follows as

SNR(§,b§) = 20 log(

P
bxi2

bS kbxik2

2P
xi2§,bxi2

bS kxi � bxik2

2

). [8.11]

Standard methods. Existing point cloud denoising methods can be categorized
into five main families: moving least squares (MLS)-based methods, locally optimal
projection (LOP)-based methods, sparsity-based methods, non-local similarity-based
methods, and graph-based methods. Please refer to Zeng, Cheung, Ng, Pang and
Cheng (2019) for a thorough description of previous point cloud denoising
approaches. Here we focus on the graph spectral methods to address the point cloud
denoising problem.

Graph-based methods interpret a point cloud as a graph signal, and perform
denoising via chosen spectral/spatial graph filters. Hard thresholding of GFT
coefficients was proposed in Rosman et al. (2013) to remove spectrum components
with small energy assuming they were introduced by noise. In Schoenenberger et al.
(2015), the input point cloud was represented as a signal on a k-nearest-neighbor
graph and then denoised via a convex optimization problem regularized by the
gradient of the point cloud on the graph. In Dinesh et al. (2018), a reweighted graph
Laplacian regularizer for surface normals was designed, with a general lp-norm
fidelity term that modeled two types of additive noise. Moreover, they established a
linear relationship between normals and 3D point coordinates via bipartite graph
approximation for ease of optimization.

Zeng, Cheung, Ng, Pang and Cheng (2019) proposed graph Laplacian
regularization (GLR) of a low dimensional manifold model (LDMM), and sought
self-similar patches to denoise them simultaneously. Instead of directly smoothing
the coordinates or normals of 3D points, Duan et al. (2018) estimated a local tangent
plane at each 3D point based on a graph and then reconstructed each 3D point by
weighted averaging of its projections on multiple tangent planes. Instead of
constructing the underlying graph with pre-defined edge weights from hand-crafted
parameters, Hu et al. (2020) proposed feature graph learning by minimizing GLR
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using the Mahalanobis distance metric matrix as variable, assuming feature vector
per node is available. A fast algorithm was presented and applied to point cloud
denoising, where the graph for each set of self-similar patches is computed from 3D
coordinates and surface normals as features.

8.4.2. Application in point cloud inpainting

(a) Original point cloud. (b) Inpainted result by Hu et al. (2019).

Figure 8.6. The point cloud Phili with real holes due to scanning and its
inpainted result by Hu et al. (2019).

Point clouds often exhibit several holes of missing data inevitably. Fig. 8.6 shows
an example of real holes in the point cloud Phili and its inpainted result by Hu et al.
(2019). This is mainly due to incomplete scanning views and inherent limitations of
the acquisition equipments5. Besides, there may lack some regions in the data itself
(e.g., dilapidated heritage).

Let § = {xi 2 Rd}N

i=1
be a 3D point cloud with N 3D points and h be an

inpainting operator that restores § to a complete point cloud b§ with M 3D points,
where M > N . The inpaiting process works as

b§ = h(§),

where § ⇢ b§. One often need to detect holes in § prior to inpainting the missing
regions.

5. For example, 3D laser scanning is less sensitive to the objects in dark colors. This is because
the darker it is, the more wavelengths of light the surface absorbs and the less light it reflects.
Thus the laser scanning devices are unable to receive enough reflected light for dark objects to
recognize.
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Standard experimental setup. Similar to point cloud denoising, there is no
standard benchmark for point cloud inpainting. Commonly adopted datasets include
four MPEG models (Longdress, Loot, Redandblack and Soldier) from Eugene dâEon
and Chou (2017), five MSR models (Andrew9, David9, Phil9, Ricardo9 and Sarah9)
from Loop et al. (2016), and the Stanford 3D Scanning Repository M. Levoy and
Pull (https://graphics.stanford.edu/data/3Dscanrep/). There exist real holes in some
of the datasets, such as the MPEG models and MSR models that are acquired from
3D sensors. One can further generate synthetic holes on point clouds for quantitative
comparison with the ground truth. The evaluation metrics are the same as those for
point cloud denoising.

Standard methods. Point clouds inpainting methods can be classified into two
main categories according to the cause of holes: (1) restore holes in the object itself
such as heritage and sculptures, and (2) inpaint holes caused by the limitation of
scanning devices. For the first class of methods, the main hole-filling data source is
online database, as the holes are often large. The other class of methods focus on holes
generated due to the limitations of scanning devices. This kind of holes is smaller than
the aforementioned ones in general, thus the information of the data itself is often
enough for inpainting. Please refer to Hu et al. (2019) for detailed description, while
we focus on graph spectral methods as follows.

Lozes et al. (2014) proposed Partial Differential Equation (PDE) based graph
signal processing to solve an optimization equation for point cloud inpainting, which
refers to the neighborhood of the hole to compute the geometric structure. A
k-nearest-neighbor graph is constructed from the union of the input point cloud and
generated points. Then a graph-based PDE solver is employed to deform the
generated points to fit into the hole. This method is suitable for small holes or smooth
surfaces, but it faces problems if the hole boundary contains folds or twist. In
Chinthaka Dinesh (2018), hole filling was performed iteratively using templates near
the hole boundary to find the best matching regions elsewhere in the cloud, from
where existing points are transferred to the hole. An undirected k-nearest-neighbor
graph was constructed on the input point cloud to define a smoothness term. Hu et al.
(2019) proposed to exploit both the local smoothness and the non-local
self-similarity in point clouds for inpainting. They first presented the smoothing and
denoising properties of a graph-signal smoothness prior in order to describe the local
smoothness of point clouds. Secondly, the characteristics of non-local self-similarity
were explored, by globally searching for the most similar area to the missing region.
The similarity metric between two areas was defined based on the direct component
and the anisotropic graph total variation of normals in each area. Finally, the
hole-filling step was formulated as an optimization problem based on the selected
most similar area and regularized by the graph-signal smoothness prior. Besides, an
efficient automatic hole detection approach was proposed for the point cloud prior to
inpainting.
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8.4.3. Application in point cloud resampling

The resampling task considers changing the point density of a 3D point cloud,
which includes downsampling and upsampling.

Figure 8.7. Dual problems of 3D point cloud downsampling and
upsampling.

8.4.3.1. Downsampling

The goal of downsampling is to select a subset of 3D points in an original 3D
point cloud while peserving representative information; see Figure 8.7. Handling a
large number of 3D points is challenging and expensive. Therefore, a 3D point cloud
is often sampled to a size that can be processed more easily. As a typical task of
3D point cloud processing, downsampling is potentially useful to data storage. To
represent a 3D scene, one can select representative 3D points from an HD map through
downsampling, leading to faster and better localization performances Chen, Tian,
Feng, Vetro and Kovavcević (2018a).

Let § = {xi 2 Rd}N

i=1
be a 3D point cloud with N 3D points and h be a

downsampling operator that selects M 3D points from §, where M < N . The
downsampling process works as

§M = h(§),

where §M = {xMi 2 Rd}M

i=1
is a downsampled 3D point cloud, where the

downsampled set M = (M1, . . . ,MM ) denotes the sequence of downsampled
indices, Mi 2 {1, . . . , N} with |M| = M .

Standard experimental setup. As a processing task, it is difficult to directly
evaluate the performance of downsampling. Researchers usually input downsampled
3D point clouds to some subsequent tasks and test their performance. Chen, Tian,
Feng, Vetro and Kovavcević (2018a) evaluates downsampling on 3D point cloud
registration. The evaluation metric is the localization error, such as the mean square
error; and Dovrat et al. (2018) suggests evaluating downsampling on the tasks of
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classification and reconstruction. For classification, the dataset is ModelNet40 Wu,
Song, Khosla, Yu, Zhang, Tang and Xiao (2015a) and the evaluation metric is
classification accuracy. For reconstruction, the dataset is ShapeNet Chang,
Funkhouser, Guibas, Hanrahan, Huang, Li, Savarese, Savva, Song, Su, Xiao, Yi and
Yu (2015) and the evaluation metric is the reconstruction error. To evaluate the
quality of reconstruction, two distance metrics are usually considered. The Earth
mover’s distance is the objective function of a transportation problem, which moves
one point set to the other with the lowest cost; that is,

dEMD(§,b§) = min
�:§!b§

X

x2§

kx � �(x)k
2
, [8.12]

where � is a bijection. The Chamfer distance measures the total distance between each
point in one set to its nearest neighbor in the other set; that is,

dCH(§,b§) =
1

N

X

x2§

min
bx2bS

kx � bxk
2

+
1

M

X

bx2bS

min
x2§

kbx � xk
2
.

Both the Earth mover’s distance and the Chamfer distance enforce the underlying
manifold of the reconstruction to stay close to that of the original point cloud.
Reconstruction with the Earth mover’s distance usually outperforms that with the
Chamfer distance; however, it is more efficient to compute the Chamfer distance.

Standard methods. There are three common approaches: farthest point
sampling, learning-based sampling and nonuniformly random sampling. A simple
and popular downsampling technique is the farthest point sampling (FPS) Qi, Yi, Su
and Guibas (2017a). It randomly chooses the first 3D point and then iteratively
chooses the next 3D point that has the largest distance to all the points in the
downsampled set. It is nothing but the deterministic version of K-means++ Arthur
and Vassilvitskii (2007). Compared with uniformly random sampling, it has better
coverage of the entire 3D point point given the same number of samples; however,
FPS is agnostic to a subsequent application, such as localization and recognition.

S-NET Dovrat et al. (2018) is a deep-neural-network-based downsampling
system. It takes a 3D point cloud and produces a downsampled 3D point cloud that is
optimized for a subsequent task. The architecture is similar to latentGAN used for 3D
point cloud reconstruction Achlioptas et al. (2018). The difference is that S-NET
does not reconstruct all the 3D points, but only reconstruct a fixed number of 3D
points. The loss function include a reconstruction loss, such as the Earth mover’s
distance [8.12] and Chamfer distance [8.13], and a task-specific loss, such as
classification loss. Since the reconstructed 3D point cloud is not a subset of the
original 3D point cloud any more, S-NET matches each reconstructed 3D point to its
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nearest neighbor in the original 3D point cloud; however, it is not trivial to apply
S-NET to train and operate on large-scale 3D point clouds, which makes it less
practical in autonomous driving.

To make the downsampling process more efficient and adaptive to subsequent
tasks, Chen, Tian, Feng, Vetro and Kovavcević (2018a) considers a randomized
downsampling strategy by choosing downsampled indices from a nonuniform
distribution. Let ⇡ 2 RN be a downsampling distribution, where ⇡i denotes the
probability of selecting the ith sample in each random trial. Chen, Tian, Feng, Vetro
and Kovavcević (2018a) designs an optimal downsampling distribution by solving a
reconstruction-based optimization problem. It turns out that the optimal
downsampling distribution is ⇡⇤

i
/ kHik2

, where Hi 2 RD is task-specific
features of the ith point, which could be obtained by graph filtering.

8.4.3.2. Upsampling

The goal of upsampling is to generate a dense (high-resolution) 3D point cloud
from a sparse (low-resolution) 3D point cloud to describe the underlying geometry
of an object or a scene; see Figure 8.7. 3D point cloud upsampling is similar in
nature to the super resolution of 2D images and is essentially an inverse procedure
of downsampling.

Let § = {xi 2 Rd}N

i=1
be a 3D point cloud with N 3D points and h be a

upsampling operator that generate N 0 3D points from §, where N 0 > N . The
upsampling process works as

b§ = h(§),

where § ⇢ b§. Intuitively, a 3D point cloud § is sampled from some surface and we aim
to use the high-resolution 3D point cloud b§ to capture the same surface, but provide a
higher density.

Standard experimental setup. There is no standard benchmark for 3D point
cloud upsampling. Researchers create their own training and testing datasets based on
the VisionAir repository Visionair (n.d.), ModelNet40 Wu, Song, Khosla, Yu, Zhang,
Tang and Xiao (2015a), ShapeNet Chang, Funkhouser, Guibas, Hanrahan, Huang, Li,
Savarese, Savva, Song, Su, Xiao, Yi and Yu (2015), or SHREC15 Lian et al. (2015).
Some common evaluation metrics are the Earth mover’s distance [8.12] and Chamfer
distance [8.13].

Standard methods. Classical 3D point cloud upsampling algorithms are based
on image super resolution algorithms. For example, Alexa et al. (2003) constructs
surfaces with the moving least squares algorithm and generates new points at the
vertices of the Voronoi diagram to upsample a 3D point cloud; to avoid
over-smoothing, Huang et al. (2013a) applies an anisotropic locally optimal
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projection operator to preserve sharp edges by pushing 3D points away from the
edges, and achieves the edge-aware 3D point cloud upsampling; Wu, Huang, Gong,
Zwicker and Cohen-Or (2015) combines the smoothness of surfaces and the
sharpness of edges through an extracted meso-skeleton. The meso-skeleton consists
of a mixture of skeletal curves and sheets to parameterize the underlying surfaces. It
then generates new 3D points by jointly optimizing both the surface and 3D points
residing on the meso-skeleton; however, these classical upsampling algorithms
usually depend heavily on local geometry priors, such as the normal vectors and the
curvatures. Some algorithms also suffer from multiscale structure preservation due to
the assumption of global smoothness Wang, Wu, Huang, Cohen-Or and
Sorkine-Hornung (2018).

With the development of deep neural networks, more upsampling algorithms
adopt the learning-based approach. PU-Net Yu et al. (2018b) is the first end-to-end
3D point cloud upsampling network, which extracts multi-scale features based on
PointNet++. The architecture is similar to latentGAN for 3D point cloud
reconstruction, but reconstructs many more 3D points than the original 3D point
cloud. The loss function includes a reconstruction loss and a repulsion loss, pushing a
more uniform distribution for the generated points. Inspired by the recent success of
neural-network-based image super-resolution, patch-based progressive Wang, Wu,
Huang, Cohen-Or and Sorkine-Hornung (2018) proposes a patch-based progressive
upsampling architecture for 3D point clouds. The multi-step upsampling strategy
breaks an upsampling network into several subnetworks, where each subnetwork
focuses on a specific level of details. To emphasize edge preservation, EC-Net
designs a novel edge-aware loss function Yu et al. (2018a). During the
reconstruction, EC-Net is able to attend to the sharp edges and provide more precise
3D reconstructions. Note that all those deep-neural-network-based methods are
trained based on well-selected patches, which cover a rich variety of shapes.

8.5. High-level Point Cloud Understanding

In this section, we discuss the applications of graph spectral methods in high-level
point cloud understanding, including segmentation, classification and generation.

8.5.1. Application in point cloud segmentation

The goal is to group points into subsets (referred as segments) with one or more
characteristics in common (geometry, semantic, etc.), which exploits in-depth the
informative value of point clouds. Depending on whether semantic labels are required
as the output, point cloud segmentation includes part segmentation and semantic
segmentation. Fig. 8.8 demonstrates part segmentation of point clouds by Gao et al.
(2020). Due to the irregular structure and varying density of point clouds, point cloud
segmentation is quite challenging and has attracted much attention recently.
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Figure 8.8. Demonstration of part segmentation for point clouds by
Gao et al. (2020).

Let h be an operator that maps each point §i in a point cloud § to a confidence
vector yi indicating the segment, that is,

yi = h(§i) 2 [0, 1]C , [8.13]
where C is the number of segments. The cth element of yi, yc

i
, indicates the likelihood

of the ith point belonging to the cth segment of the 3D point cloud.

Standard experimental setup. Commonly employed benchmarks include
ShapeNet part dataset Yi et al. (2016), Stanford Large-Scale 3D Indoor Spaces
Dataset (S3DIS) , and ScanNet Dai, Chang, Savva, Halber, Funkhouser and Nießner
(2017). ShapeNet part dataset contains 16881 shapes from 16 categories, annotated
with 50 labels in total. Each 3D point cloud contains 2, 048 points, most of which are
labeled with fewer than six parts. S3DIS dataset includes 3D scan point clouds for 6
indoor areas including 272 rooms in total. Each point belongs to one of 13 semantic
categories, e.g., board, bookcase, chair, ceiling, and beamâplus clutter. ScanNet is an
instance-level indoor RGB-D dataset that includes both 2D and 3D data. Point cloud
segmentation is usually evaluated by mean Intersection of Union (mIoU). IoU is
widely used in semantic segmentation to measure the ratio of the ground truth and
prediction, and mean IoU is the average of IoU for each label appearing in the model
categories.

Standard methods. Previous point cloud segmentation works can be classified
into model-driven segmentation and data-driven segmentation. Model-driven
methods include edge-based Rabbani et al. (2006), region-growing Rusu et al. (2008)
and model-fitting Tarsha-Kurdi et al. (2007), which are based on the prior knowledge
of the geometry but sensitive to noise, uneven density and complicated structure.
Data-driven segmentation, on the other hand, learns the semantics from data, such as
deep learning methods. Qi, Su, Mo and Guibas (2017) came up with PointNet, a
neural network which consumes point clouds directly. The key breakthrough is the
proposed symmetric function that is invariant to the order of points. However,
PointNet processes each point identically and independently. Hence, Qi, Yi, Su and
Guibas (2017b) proposed PointNet++ to introduce hierarchical grouping, which
achieves better performance. Please refer to Te et al. (2018) for detailed discussion.
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Te et al. (2018) proposed a Regularized Graph Convolutional Neural Network
(RGCNN), which is the first to design graph neural networks for point cloud
segmentation. They regularize each layer of RGCNN by adding graph-signal
smoothness prior in the loss function, and prove the spectral smoothing property of
this prior. The graph Laplacian matrix is updated in each layer of RGCNN in order to
adaptively capture the structure of dynamic graphs. Experiments show that RGCNN
significantly reduces the computation complexity while achieving competitive results
with the state of the art. It is also much more robust to both low density and noise in
comparison with other methods. Wang, Sun, Liu, Sarma, Bronstein and Solomon
(2019c) proposed a new neural network module dubbed EdgeConv suitable for
CNN-based high-level tasks on point clouds including classification and
segmentation. EdgeConv acts on graphs dynamically computed in each layer of the
network. It is differentiable and can be plugged into existing architectures. Compared
to existing modules operating in extrinsic space or treating each point independently,
EdgeConv has several appealing properties: It incorporates local neighborhood
information; it can be stacked applied to learn global shape properties; and in
multi-layer systems affinity in feature space captures semantic characteristics over
potentially long distances in the original embedding. Gao et al. (2020) proposed a
novel unsupervised learning of Graph Transformation Equivariant Representations
(GraphTER), aiming to capture intrinsic patterns of graph structure under both global
and local transformations. The learned GraphTER is then applied to graphs of 3D
point cloud data for segmentation.

8.5.2. Application in point cloud classification

We consider the classification task for two types of point clouds: static point clouds
and dynamic point clouds.

8.5.2.1. Static point cloud classification

The goal is to classify a static 3D point cloud to a predefined category.

Let h be a classifier that maps a static point cloud § to a confidence vector y
indicating the category belongings, that is,

y = h(§) 2 [0, 1]C , [8.14]
where C is the number of classes. The cth element of y, yc, indicates the likelihood
of the static 3D point cloud belonging to the cth class.

Standard experimental setup. A widely employed benchmark is ModelNet40
Wu, Song, Khosla, Yu, Zhang, Tang and Xiao (2015b). This dataset contains 12, 311
meshed CAD models from 40 categories, where 9, 843 models are used for training
and 2, 468 models are for testing. For each model, 1, 024 points are sampled from the
original mesh.
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Standard methods. Early attempts of point cloud classification adapted ideas
from deep learning on images, e.g., converting point clouds to regular 3D voxel grids
Maturana and Scherer (2015) or multiple view images Su et al. (2015) before feeding
them into typical convolutional neural networks (CNNs). However, this introduces
quantization error in the conversion process and renders the resulting data
unnecessarily voluminous. As in point cloud segmentation, Qi, Su, Mo and Guibas
(2017) addressed this problem by learning global features of point clouds using a
symmetric function that is order-invariant. Other non-graph-based methods include
PointNet++ Qi, Yi, Su and Guibas (2017b), PointCNN Li, Bu, Sun, Wu, Di and Chen
(2018), SpiderCNN Xu et al. (2018), RS-CNN Liu et al. (2019b), etc.

Along the thread of Graph Neural Networks, Wang, Samari and Siddiqi (2018b)
proposed to carry out graph convolution on a nearest-neighbor graph constructed
from a pointâs local neighborhood, combined with a novel graph pooling strategy. In
FoldingNet Yang, Feng, Shen and Tian (2018), a novel end-to-end deep auto-encoder
is proposed to address unsupervised feature learning for point cloud classification. The
folding-based decoder deforms a canonical 2D grid onto the underlying 3D object
surface of a point cloud, achieving low reconstruction errors even for objects with
delicate structures. By extracting global features via pooling, previous approaches for
point cloud segmentation can be extended to classification, such as DGCNN Wang,
Sun, Liu, Sarma, Bronstein and Solomon (2019c), RGCNN Te et al. (2018) and
GraphTER Gao et al. (2020).

non-graph point cloud classification: PointNet, PointNet++, FoldingNet,
PointCNN, PCNN, VoxNet...

to add: Yue Wang’s paper and Siheng’s TIP paper...

8.5.2.2. Dynamic point cloud classification
to add: 3D object detection in dynamic point clouds? ...

The goal is to classify a dynamic 3D point cloud to a predefined category. A
dynamic point cloud specifically means a temporal sequence of 3D point clouds. Here
we motivate this setting through 3D skeleton-based human action recognition. Given
dynamic 3D positions of human body joints, we aim to recognize the corresponding
action; see Figure 8.9. Note that each 3D point cloud indicates the human pose at a
time stamp, where each 3D point is the position of one body joint. Such a 3D point
cloud is usually obtained through either depth sensors or pose estimation algorithms
based on videos. The overall dynamic point cloud is the sequence of the human pose,
reflecting the human action.

Let h be a classifier that maps a sequence of 3D point cloud {§t}T

t=1
to a confidence

vector y indicating the category belongings, that is,
y = h({§t}T

t=1
) 2 [0, 1]C , [8.15]



174 Graph Spectral Image Processing

Figure 8.9. 3D skeleton-based Human action recognition as dynamic
3D point cloud classification.

where C is the number of classes. The cth element of y, yc, indicates the likelihood
of the dynamic 3D point cloud belonging to the cth class.

Standard experimental setup. There are two standard datasets: NTU-RGB+D
and Kinetics. NTU-RGB+D, containing 56, 880 skeleton action sequences completed
by one or two performers and categorized into 60 classes, is one of the largest data
sets for skeleton-based action recognition Shahroudy et al. (2016). It provides the 3D
spatial coordinates of 25 joints for each human in an action. For evaluating the models,
two protocols are recommended: Cross-Subject and Cross-View. In Cross-Subject,
40, 320 samples performed by 20 subjects are separated into training set, and the rest
belong to test set. Cross-View assigns data according to camera views, where training
and test set have 37, 920 and 18, 960 samples, respectively. Kinetics is another large
data set for human action analysis, containing over 240, 000 video clips ?. There are
400 types of actions. Due to only RGB videos are provided, 3D skeleton data can be
obtained by estimating joint locations on certain pixels with OpenPose toolbox Cao
et al. (2017). The toolbox generates 2D pixel coordinates (x, y) and confidence score
c for totally 18 joints from the resized videos with resolution of 340 ⇥ 256. Each
body joint is represented as a three-element feature vector: [x, y, c]T. For the multiple-
person cases, we can select the body with the highest average joint confidence in each
sequence. Therefore, one clip with T frames is transformed into a skeleton sequence
with dimension of 18 ⇥ 3 ⇥ T ).

Standard methods. Some early attempts of skeleton action recognition often
encode all the body joint positions in each frame to a feature vector for pattern
learning Vemulapalli et al. (2014), Fernando et al. (2015), Du et al. (2015), Liu et al.
(2017). These models rarely explore the internal dependencies between body joints,
resulting to miss abundant actional information. To capture joint dependencies, recent
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methods construct a skeleton graph whose vertices are joints and edges are bones,
and apply graph convolutional networks (GCN) to extract correlated features Kipf
and Welling (2017b). The spatio-temporal GCN (ST-GCN) is further developed to
simultaneously learn spatial and temporal features Yan et al. (2018). ST-GCN though
extracts the features of joints directly connected via bones, structurally distant joints,
which may cover key patterns of actions, are largely ignored. For example, while
walking, hands and feet are strongly correlated. While ST-GCN tries to aggregate
wider-range features with hierarchical GCNs, node features might be weaken during
long diffusion Li, Han and Wu (2018). Instead of fully relying on the body skeleton
structure, some recent works start to learn a data-dependent graph topology to to
capture richer dependencies among body joints Si et al. (2018, 2019), Shi, Zhang,
Cheng and Lu (2019b,a), Li, Chen, Chen, Zhang, Wang and Tian (2019), Li, Li,
Zhang and Wu (2019), Wen et al. (2019). Based on the learnt graph topology, one
can still apply graph convolution. The experimental results show that with a trainable
graph topology, the system achieves significantly better performances.

8.5.3. Application in point cloud generation

The goal is to find a compact representation of a 3D point cloud that preserves
the ability to reconstruct the original 3D point cloud. Here we only consider the 3D
coordinate of each 3D point. Let § = {xi}N

i=1
be a set of N 3D points, whose ith

element xi 2 R3 is the 3D coordinate. We aim to design a pair of an encoder (·) and
a decoder �(·), such that  (·) compresses a 3D point cloud § to a low-dimensional
code c and �(·) that decompress the code back to a reconstruction b§ = {bxi}M

i=1
that

approximates §; that is,

c =  (§) 2 RC [8.16a]

b§ = � (c) , [8.16b]

where the code c with C ⌧ 3N summarizes the original point cloud. We aim to
optimize over  (·) and �(·) to push b§ to be close to §. Note that the number of points
in the reconstruction may be different from the number of points in the original 3D
point cloud. To evaluate the quality of reconstruction, we use either the Earth mover’s
distance or the Chamfer distance.

Standard experimental setup. A standard dataset is ShapeNet Chang,
Funkhouser, Guibas, Hanrahan, Huang, Li, Savarese, Savva, Song, Su, Xiao, Yi and
Yu (2015). It contains more than 3,000,000 3D models, 220,000 models out of which
are classified into 3,135 categories (WordNet synsets). For each 3D model, one can
sample 3D points from the surfaces of these 3D models by using the Poisson-disk
sampling algorithm Bridson (2007) and rescale the points into a unit cube centered at
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the origin. The evaluation metric is either the Earth mover’s distance or the Chamfer
distance.

Standard methods. An encoder should extract global features that preserve as
much information as possible from an original 3D point cloud. To design an encoder,
one can leverage a graph topology to accelerate information diffusion and feature
learning. For example, latentGAN Achlioptas et al. (2018) directly uses the global
feature vector from PointNet to encode the overall geometry information of a 3D point
cloud.

A decoder should translate information from the feature space to the original 3D
space as much as possible. To design a decoder, the simplest approach is to use fully-
connected neural networks, which work well for a small-scale 3D point cloud, but
require a huge number of training parameters Achlioptas et al. (2018).

To improve efficiency, FoldingNet Yang, Feng, Shen and Tian (2018) and
AtlasNet Groueix et al. (2018) consider the decoding as a warping process that folds
a 2D lattice to a 3D surface. Let Z 2 ZM⇥2 be a matrix representation of nodes
sampled uniformly from a fixed regular 2D lattice and the ith row vector zi 2 R2 be
the 2D coordinate of the ith node in the 2D lattice. Note that Z is fixed and is used as
a canonical base for the reconstruction, which does not depend on an original 3D
point cloud. We can then concatenate each 2D coordinate with the code from the
encoder [8.16a] to obtain a local feature; and then, use MLPs to implement the
warping process. Mathematically, the ith point after warping is

bxi = gc(zi) = MLP ([MLP ([zi, c]) , c]) 2 R3,

where the code c is the output of the encoder and [·, ·] denotes the concatenation of
two vectors. The warping function gc(·) consists of two-layer MLPs and the code is
introduced in each layer to guide the warping process. We collect all the 3D points bxi

to form the reconstruction b§ = {bxi 2 R3, i = 1, · · · , M}.

Intuitively, introducing a 2D lattice provides a smoothness prior; in other words,
when two points are close in the 2D lattice, their correspondence after warping are
also close in the 3D space. This design makes the networks easy to train and save a
huge amount of training parameters.

8.6. Summary and further reading

This chapter overviews the recent progress on 3D point cloud processing via graph-
based techniques. 3D points are irregularly scattered in the 3D space, which cannot
be directly handled by traditional lattice-based methods. As a general representation
format, graphs bring spatial relationships for those points and enable the subsequent
processing. In this chapter, we introduce two groups of techniques, including graph
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signal processing and geometric deep learning. We also consider their applications
to restoration, resampling, segmentation, classification and generation of 3D point
clouds.
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