
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
https://www.merl.com

Protograph-Based Design for QC Polar Codes
Koike-Akino, Toshiaki; Wang, Ye

TR2021-080 July 12, 2021

Abstract
We propose a new family of polar codes to realize high coding gain, low complexity, and
high throughput by introducing a protograph-based design. Our proposed technique, called
quasi-cyclic (QC) polar codes, can be highly parallelized without sacrificing decoding com-
plexity. We analyze short cycles in the protograph polar codes and develop a design method
to increase the girth. Our approach can resolve the long-standing unsolved problem that
belief propagation (BP) decoding does not work well for polar codes due to the inherently
short cycles. We demonstrate that a high lifting factor of QC polar codes can improve the
performance and that QC polar codes with BP decoding can outperform conventional polar
codes with state-ofthe-art list decoding. Moreover, we show that a greedy pruning method
can improve the performance-complexity trade-off.
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Abstract—We propose a new family of polar codes to realize
high coding gain, low complexity, and high throughput by
introducing a protograph-based design. Our proposed technique,
called quasi-cyclic (QC) polar codes, can be highly parallelized
without sacrificing decoding complexity. We analyze short cycles
in the protograph polar codes and develop a design method to
increase the girth. Our approach can resolve the long-standing
unsolved problem that belief propagation (BP) decoding does
not work well for polar codes due to the inherently short cycles.
We demonstrate that a high lifting factor of QC polar codes
can improve the performance and that QC polar codes with BP
decoding can outperform conventional polar codes with state-of-
the-art list decoding. Moreover, we show that a greedy pruning
method can improve the performance-complexity trade-off.

I. INTRODUCTION

Capacity-approaching forward error correction (FEC) codes
based on low-density parity-check (LDPC) codes [1]–[16]
have made great contributions in increasing data rates for wire-
less and optical communication systems. However, the pursuit
of high performance has led to a significant increase in power
consumption and circuit size. Hence, attaining a good trade-
off between performance and computational complexity is of
great importance. In addition, recent high-performance LDPC
codes usually require very large codeword lengths, whereas
shorter FEC codes are preferred [17] for latency-constrained
systems, such as Internet-of-Things (IoT) applications.

Polar codes [18]–[44] have drawn much attention as alter-
native capacity-approaching codes in place of LDPC codes
for short block lengths, in particular for the fifth-generation
(5G) networks. Besides encoder design methods [25]–[30], a
number of decoder algorithms [31]–[33] were developed in the
past years. With successive cancellation list (SCL) decoding
[21], polar codes can be highly competitive with state-of-the-
art LDPC codes. To date, various extensions of polar coding
have also been proposed in the literature; e.g., nonbinary
[34], mixed-kernel [35], [36], irregular [37], [38], concatenated
[39]–[42], convolutional [43], and turbo product coding [44].

In this paper, we introduce a novel family of protograph-
based polar codes, which we call quasi-cyclic (QC) polar
codes, with circulant permutations at the proto-polarization
units as illustrated in Fig. 1. With a proper circulant shift value,
we show that the QC polar codes can eliminate short cycles
in the code graph, which achieves a remarkable breakthrough
toward resolving the long-standing issue that the belief-
propagation (BP) decoding does not perform well for polar
codes. In the QC polar codes, highly parallel short polar codes
are coupled to achieve performance comparable to longer polar
codes, while maintaining the computational complexity as low
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Fig. 1: Four-stage polarization: QC polar codes (24, 23, 28)
having circulant shift values for 32 proto-polarization units.

as that of short polar codes. The contributions of this paper
are summarized as follows:
• Protograph-based polar codes: We propose a new fam-

ily of protograph polar codes. To the best of the authors’
knowledge, the concept of protograph codes has never
been applied to such non-parity-check codes.

• QC polar codes: We introduce highly parallelizable QC
polar codes, a special case of protograph codes, with
circulant permutations at the proto-polarization units.

• Complexity analysis: We show that the computational
complexity of the proposed QC polar codes can be
significantly decreased with a protograph lifting factor.

• Girth analysis: We analyze short cycles of the protograph
polar codes, and develop a design method to increase the
girth. Eliminating short cycles enables BP decoding to
properly work for QC polar codes.

• State-of-the-art performance: We demonstrate that QC
polar codes with shallow polarization can achieve the
competitive performance of deep polarization codes.

• Irregular pruning: Further complexity reduction and
performance improvement are shown with irregular prun-
ing of polarizations to remove loops in the protograph.

II. BASICS OF POLAR CODES

A. Polar Encoding

An n-stage polar code with K information bits and N =
2n encoded bits uses an N × N generator matrix G⊗n for



encoding, where [·]⊗n denotes the n-fold Kronecker power
and G is a binary kernel matrix defined as

G =

[
1 1
0 1

]
. (1)

Let u = [u1, . . . , uN ]T and x = [x1, . . . , xN ]T respectively
denote the column vectors of input bits and encoded bits.
The codeword (for non-systematic codes) is given by x =
G⊗nBu, where the matrix multiplications are carried out over
the binary field (i.e., modulo-2 arithmetic), and B denotes an
N×N bit-reversal permutation matrix [18]. Due to the nature
of the Kronecker product, polar encoding and decoding can
be performed at a complexity on the order of O(N log2 N).
The multi-stage application of the kernel produces the so-
called polarization phenomenon that yields capacity-achieving
performance for arbitrary memoryless channels [18].

Polar codes map the information bits to the K most reliable
locations in u. The remaining N − K input bits are frozen
bits, known to both encoder and decoder. We use K and K̄ to
denote the subsets of {1, . . . , N} that respectively correspond
to the information and frozen bit locations. Bit reliability can
be estimated by various methods involving, e.g., Bhattacharyya
parameter [18], density evolution [25]–[27], beta expansion
[28], genetic algorithm [29], and deep learning [30].

B. Polar Decoding

The successive cancellation (SC) decoder [18] proceeds
sequentially over the bits, from u1 to uN . For each index
i ∈ {1, . . . , N}, an estimate ûi for bit ui is made as follows. If
i /∈ K, then ûi is set to the known value of ui, unless otherwise
ûi is set to the most likely value for ui given the channel
outputs, assuming that the previous estimates [û1, . . . , ûi−1]
are correct. The SC decoding was improved by the SCL
decoder [21], which proceeds similarly to the SC decoder,
except that for each data bit index i ∈ K, the decoder retains
both possible estimates, ûi = 0 and ûi = 1, in subsequent
decoding paths. The list-decoding approach limits the number
of paths to a fixed-size list of the L most likely partial
paths. The combination of SCL decoding with an embedded
cyclic redundancy check (CRC) to reject invalid paths yields
significant gain [21], [39]. Various other decoding algorithms
were proposed in the literature, e.g., simplified SC decoding
[31], neural SC decoding [32], and BP list decoding [33].

C. Computational Complexity

It is known that short LDPC codes do not perform well
as shown in [17], where nonbinary (NB) coding can im-
prove LDPC codes in the short-length regimes. However, the
computational complexity of NB-LDPC decoding is generally
higher than binary counterparts, in particular for large Galois
field sizes. It is thus of great importance to realize low
computational complexity in addition to high coding gain. We
evaluate the computational complexity of polar decoding and
show that it is competitive with LDPC decoding.

The polar SCL decoding has a log-linear complexity;
specifically, O[LN log2(N)/2]) for a list size of L. This
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Fig. 2: Computational complexity per coded bit as a function
of block length N for standard polar SCL decoding (per list),
QC polar BP decoding and LDPC BP decoding (per iteration).

nonlinearity is a major drawback in comparison to the linear
complexity of LDPC BP decoding, i.e., O[2IdvN ] where dv
and I denote the average degree of variable nodes (VNs)
and the number of BP iterations, respectively. Note that the
factor of 2Idv comes from the bidirectional message passing,
whereas SCL decoding uses unidirectional message passing
over N log2(N)/2 VNs. Due to the nonlinear complexity,
polar codes can eventually be less effective than LDPC codes
as we increase the block lengths N . However, it turns out to be
an advantage when we aim to reduce the block sizes in order to
decrease decoding latency. This is illustrated in Fig. 2, where
complexity per coded bit (i.e., divided by N ) is plotted as a
function of block length N for polar and LDPC decoding.
For LDPC codes, the per-bit complexity depends on the
average degree dv, while remaining constant for varying block
length. In contrast, polar decoding becomes less complex for
reduced block sizes. Remarkably, polar decoding will be more
efficient than typical LDPC decoding at short block lengths of
N < 104. This promotes polar codes as a strong candidate for
latency-critical systems.

Although the actual computational complexity may vary de-
pending on hardware implementation, most prototyping stud-
ies [20] have revealed that polar codes can compete favorably
with LDPC codes in terms of complexity. Note that the LDPC
decoding is more complicated for higher rates because the
average check-node (CN) degree is larger, whereas polar codes
have at most three degrees at the CNs. Nevertheless, polar SCL
decoding is not amenable to parallel implementation. In this
paper, we propose a highly parallelizable polar code family
whose complexity is O[LN log2(N/Q)/2] for a parallelism
factor of Q. From Fig. 2, we can observe the significant
advantage in its decoding complexity. Note that the complexity
will be doubled when polar BP decoding is used due to
bidirectional message passing. The details of our proposed QC
polar codes will be described in the next section.
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III. PROTOGRAPAH-BASED QC POLAR CODES

A. Protograph Codes

Thorpe [6] introduced the concept of protograph codes, a
class of LDPC codes constructed from a protograph in such
a way that the 1’s in the parity-check matrix are replaced by
(Q × Q)-permutation matrices and the 0’s by (Q × Q)-zero
matrices. The permutation size Q is also called a lifting size.
If the permutation matrices are circulant, the protograph code
reduces to a well-known QC LDPC code [7]. To the best of
our knowledge, no earlier studies have reported the design of
protographs for polar codes.

Analogous to the lifting operations of the parity-check
matrix for LDPC codes, we amend the generator matrix of
polar codes. For example, the following generator matrix for 2-
stage polar codes is modified with permutation matrices Pi,j :

G⊗2 =


1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

 =⇒
Lifting


P1,1 P1,2 P1,3 P1,4

0 P2,2 0 P2,4

0 0 P3,3 P3,4

0 0 0 P4,4

 ,

where 0 is an all-zero matrix of size Q × Q. The simplest
choice of permutation matrices is a weight-1 circulant matrix:
Pi,j = I(s′i,j), where I(s) denotes the sth circulant permu-
tation matrix obtained by cyclically right-shifting a Q × Q
identity matrix by s positions, and s′i,j is a shift value to
design. For this special case, we may call the protograph polar
codes as QC polar codes. It can be regarded as a generalized
low-density generator matrix (LDGM) based on polar codes.

We consider a hardware-friendly lifting operation at each
polarization stage with identity diagonal matrices Pi,i = I(0).
Our lifting operation is illustrated in Fig. 3, where we replicate
Q-parallel polar encoders and permute exclusive-or (XOR)
incident bits among the parallel encoders at every stage. Fig. 1
shows an example of QC polar codes with a shift base matrix
of size n× 2n−1 as follows:

S =


139 252 234 156 157 142 50 68
134 25 178 20 254 101 146 212
79 192 144 129 204 71 237 252
37 235 140 72 255 137 203 133

 , (2)
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Fig. 4: Short cycle examples in QC polar codes: (a) cycle-4
message passing loop; (b) cycle-6 message passing loop. Girth
can be increased by designing proper shift values.

whose (i, j)th shift value is assigned for the jth proto-
polarization unit at the ith stage. Note that the QC polar codes
retain most of the benefits of the original polar codes, such as
structured encoding and decoding. As we will discuss below,
the QC polar codes have a number of remarkable features.

B. High-Girth Design

In order to achieve good performance, we shall design the
shift values of QC polar codes. One obviously poor choice is
the case when we use all zeros for shifting, leading to mutually
independent Q-parallel short polar codes without any coupling
gain. The protograph codes are often designed to achieve a
high girth — the “girth” of a code is the length of the shortest
cycle in the code graph. It is known [11] that the girth of any
conventional QC LDPC code is upper bounded by 12. Tanner
[12] proposed a systematic way to achieve girth-12. It was
further shown in [13] that an irregular QC LDPC code can
achieve a girth larger than 12. Many other literature on girth
optimization can be found for LDPC codes, e.g., [14]–[16].

For QC polar codes (2n,K,Q) of code length N = 2nQ,
there are n2n−1 shift values to design as in (2). Unfortunately,
the factor graphs of polar codes are inherently loopy and there
exist a large number of short cycles as illustrated in Fig. 4.
Nonetheless, by optimizing shift values, we can increase the
girth for QC polar codes with Q > 1. For example, the cycle-4
loop in Fig. 4(a) can be eliminated if the shift values satisfy
the condition [16]:

− s1,1 − s2,2 + s1,2 + s2,1 6= 0 (mod Q), (3)

where we accumulate shift values of all proto-CNs along the
loop. Note that the shift values are negated if the path goes
downward. This explains the long-lasting problem that the
BP decoding performs very poorly for the conventional polar
codes (Q = 1), i.e., the accumulated shifts will be always zero,
resulting in a small girth of 4. Our QC polar codes resolve this
issue by maximizing the girth in the protograph. Similarly, the
cycle-6 loop in Fig. 4(b) can be removed if we can satisfy

− s1,3 − s3,4 + s2,4 + s1,2 + s3,1 − s2,1 6= 0 (mod Q).
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Note that irregular polar coding [38] is an alternative that could
remove some, but not all, short-cycle loops. We extended the
greedy design method used for irregular polar coding to jointly
optimize frozen bit locations and circulant shift values by
means of protograph extrinsic information transfer (P-EXIT)
analysis [8], [9] and hill-climbing girth maximization [16].

C. Error-Rate Performance

Fig. 5 shows bit-error rate (BER) performance as a func-
tion of signal-to-noise ratio (SNR) for short polar codes
(2n, 2n−1, 2q) with n = 2 polarization stages in additive white
Gaussian noise channels. We here use 4-iteration BP decoding
with two-way round-robin scheduling from the first to the last
stages and its reversed direction alternatingly (parallel flooding
updates per stage). The first two bits [u1, u2] are frozen. The
following shift base matrices are considered:[

0 0
0 0

]
,

[
0 1
1 0

]
,

[
0 0
0 1

]
,

[
0 0
−1 1

]
(4)

for standard polar codes (Q = 2q = 1), un-optimized QC
polar codes, optimized QC polar codes, and irregular QC
polar codes, respectively. We denote a pruned polarization by
a negative shift value. As the first two cases do not satisfy the
condition in (3) to eliminate girth-4, the BER performance
is worse than the other two cases. By eliminating the cycle-4
loop, the QC polar codes can achieve a gain of 0.9 dB without
increasing computational complexity. We found that frozen bit
locations are also important; specifically, no gain was achieved
with [u1, u3] being frozen.

The performance improvement can be more significant for a
deeper stage n and larger lifting size Q. Fig. 6 plots the BER
performance for half-rate 4-stage QC polar codes (24, 23, 2q).
We can see that the increase of the lifting size Q = 2q

can significantly improve performance by up to a 2.4 dB
gain over the standard polar codes. It should be noted that
the per-bit complexity is identical for all of these QC polar
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codes regardless of the lifting size Q; specifically, Q parallel
decoding of short polar codes requires a total complexity on
the order of Q × O[n2n−1] for a total codeword length of
Q × 2n bits. For Q = 256, our girth design method could
remove all short cycles up to 6. The designed shift base matrix
is written in (2), and also depicted in Fig. 1.

We next demonstrate that our QC polar codes using shallow
polarization stages can compete against long standard polar
codes with deeper polarization stages. Fig. 7 shows the BER
performance of 16-stage standard polar codes and 6-/8-stage
QC polar codes for a total block length of N = 216 bits.
We also present the shallow 6-/8-stage polar codes without
protograph lifting. Noticeably, shallow 6-stage QC polar codes
with Q = 1024 parallel BP decoding can outperform SC
decoding of 16-stage polar codes. Furthermore, our 8-stage
QC polar codes with Q = 256 can achieve performance
competitive with state-of-the-art SCL decoding (with a list size
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of L = 32) for the long 16-stage polar codes. In addition, it
was verified that the QC polar codes can resolve the issues
of BP decoding to offer comparable performance to SCL
decoding with large list sizes. These results are practically
impactful because the encoding, decoding, and code design of
shallower polar codes are much simpler and more efficient.

D. Irregular Pruning

We finally investigate the irregular QC polar codes which
deactivate proto-polarization units. As discussed, pruning
proto-polarization units may also assist in removing short cy-
cles. It was shown in [38] that the conventional irregular polar
codes are often capable of reducing the encoding/decoding
complexity, decoding latency, and even BER (due to improved
Hamming weight distributions). Fig. 8 shows the performance
of QC polar codes (2n, 2n−1, 2q) when proto-polarization
units are gradually pruned by a greedy algorithm [38]. For
4-stage polar codes, the performance degrades as the number
of inactive polarizations increases. Nevertheless, the QC polar
codes with Q = 256 are still better than the standard polar
codes (Q = 1) until 64% of the polar units are removed.
For 6-stage polar codes with Q = 1024 lifting, it was
observed that pruning up to 7% of the proto-polarization units
improves the BER performance over the regular counterpart.
In consequence, the irregular QC polar codes can further
reduce the decoding complexity with potential performance
improvement.

E. Discussion

Some major advantages of the proposed protograph polar
codes are listed below:
• The girth of polar codes can be increased significantly.
• The BP decoding can compete with SCL decoding.
• Multiple short polar encoders and decoders are imple-

mented in a fully parallel fashion with no additional
complexity besides circulant message exchanges.

• It realizes a low computational complexity equivalent to
Q-fold shorter polar codes.

• Shallow polarization offers comparable performance to
deeper polarization.

• Code design is simpler using shallower polarization.
• There is a higher flexibility in codeword lengths of non

powers-of-two, i.e., N = 2nQ.
• Irregular polarization is straightforward to apply with the

shift value matrix design.
• Well-established techniques such as girth design and P-

EXIT from LDPC codes are applicable.
We however found that the recent BP list decoding [33] was

not compatible with the QC polar codes as it is. As we focused
on the proof-of-principle study in this paper, there remain
many research directions, including extensions to BP list
decoding, systematic encoding, nonbinary codes, systematic
circulant shift design, BP scheduling optimization, and multi-
weight permutation. In particular, it is interesting to consider
inhomogeneous polar codes, e.g., non-identical frozen bit
locations across Q polar codes, and circulant permutations
among different polarization stages. We also note that our QC
polar codes are similar to polar product codes [44] in the sense
that parallel short polar codes are coupled, but the fundamental
difference lies in its mechanism of coupling (QC polar codes
do not need additional row/column polar codes, but only
computation-free circulant permutation). Also, mixed-kernel
and nonbinary polar codes are analogous to the QC polar codes
in the sense that a single polarization unit processes multiple
bits at once in parallel. However, nonbinary polar codes require
additional complexity and there is limited flexibility to choose
the Galois field size Q. More importantly, Q-ary polar codes
have only log2(Q) bits of parallelism, whereas fully Q-parallel
encoding is possible in the QC polar codes. We envision that
the protograph design for generalized LDGM (including QC
polar codes) will stimulate the research community.

IV. CONCLUSIONS

We proposed a novel class of polar codes called QC
polar codes, which replicate parallel short polar encoders and
decoders with circulant permutations to exchange intermediate
messages among them. We developed a protograph-based de-
sign method to optimize the girth to achieve high coding gain.
By removing short cycles, the proposed QC polar codes can
outperform the standard polar codes. We believe that the QC
polar coding offers a breakthrough to resolve the long-standing
issue that BP decoding performs poorly for conventional polar
codes due to the inherent girth-4. We demonstrated that QC
polar codes with shallow polarization can achieve the state-
of-the-art performance of deeper polar codes at a considerably
reduced complexity. The QC polar codes are hardware friendly
as highly parallel encoding/decoding is feasible with reduced
polarization stages. We also evaluated the impact of irregular
QC polar codes, which can further decrease the computational
complexity and BER for some cases. For the proposed proto-
graph codes, we addressed a number of fascinating extensions
for future research directions.
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