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Abstract
Quantum metrology comprises a set of techniques and protocols that utilize quantum features
for parameter estimation which can in principle outperform any procedure based on classical
physics. We formulate the quantum metrology in terms of an optimal control problem and
apply Pontryagin’s Maximum Principle to determine the optimal protocol that maximizes the
quantum Fisher information for a given evolution time. As the quantum Fisher information
involves a derivatve with respect to the parameter which one wants to estimate, we devise
an augmented dynamical system that explicitly includes gradients of the quantum Fisher
information. The necessary conditions derived from Pontryagin’s Maximum Principle are
used to quantify the quality of the numerical solution. The proposed formalism is generalized
to problems with control constraints, and can also be used to maximize the classical Fisher
information for a chosen measurement.
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Quantum metrology comprises a set of techniques and protocols that utilize quantum features for
parameter estimation which can in principle outperform any procedure based on classical physics.
We formulate the quantum metrology in terms of an optimal control problem and apply Pontrya-
gin’s Maximum Principle to determine the optimal protocol that maximizes the quantum Fisher
information for a given evolution time. As the quantum Fisher information involves a derivative
with respect to the parameter which one wants to estimate, we devise an augmented dynamical sys-
tem that explicitly includes gradients of the quantum Fisher information. The necessary conditions
derived from Pontryagin’s Maximum Principle are used to quantify the quality of the numerical
solution. The proposed formalism is generalized to problems with control constraints, and can also
be used to maximize the classical Fisher information for a chosen measurement.

PACS numbers:

I. INTRODUCTION

Modern quantum technology [1–6] requires manipulating the wave function to achieve performance beyond the
scope of classical physics. A typical quantum task starts from an easily prepared initial state, undergoes a designed
control protocol, and hopefully ends up with a state sufficiently close to the target state. When the closeness to the
target state can be quantified by a scalar metric (a terminal cost function), the quantum task can be formulated as
an optimal control problem – one tries to find the best control protocol that maximizes the performance metric for
given resources. Many quantum applications (or at least an intermediate step of the application) fit this description.
Important examples include quantum state preparation [7–13] where the cost function is the overlap to the known
target state, the “continuous-time” variation-principle based quantum computation [14–18] where the cost function is
the ground state energy, and quantum parameter estimation (quantum metrology) [19–33] where the cost function is
the Fisher information. Maximal Fisher information has been used for optimal estimation of Hamiltonian parameters
[34–37]. Numerically, the Fisher information can be optimized by e.g. GRAPE (GRadient Ascent Pulse Engineering
[38]) both for single and multiple parameter estimations in the presence of noise [39–42]. The Fisher information has
also been used to quantify the precision to which certain parameters of external signals (external to the sensing qubit)
can be measured [43–45]. For quantum metrology application, optimal control has been applied to the preparation
of entangled superposition states that are required for optimal measurement, e.g., squeezed spin states [13, 46] or
Ramsey interferometry with BEC on atom-chips [47, 48].

Pontryagin’s Maximum Principle (PMP) [49–52] is a powerful tool in classical control theory, and it has been
applied to quantum state preparation [7, 53] and non-adiabatic quantum computation [54, 55]. In essence, PMP
adopts the variational principle to derive a set of necessary conditions for the optimal control. In particular, it
provides an efficient way to compute the gradient of the cost function with respect to the control field as well as the
evolution time by introducing an auxiliary system (described by costate variables) that follows the dynamics similar
to the original problem. When the system degrees of freedom are small (such as a single qubit), these necessary
conditions are very restrictive and analytical solutions can sometimes be constructed [7, 53, 55]. For systems of higher
dimensions, these necessary conditions become less informative but the efficient procedure of computing gradient is
still useful for numerical solutions. Moreover, PMP optimality conditions are valuable in quantifying the quality of a
numerical solution and can be done with almost no extra computational overhead. In this work, we extend PMP to
quantum metrology applications where the natural choice of the terminal cost function is the quantum/classical Fisher
information (QFI/CFI). The fact that QFI/CFI involves a derivative with respect to the external parameter causes
some non-trivial complications. To properly use PMP, we devise an augmented dynamical system that involves the
variables appearing in QFI, based on which the switching functions can be stably and efficiently obtained. With the
provided formalism, we are able to numerically demonstrate that the optimal control indeed satisfies all the necessary
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conditions of PMP.
The rest of the paper is organized as follows. First we describe the concrete problem and review the necessary

background of PMP. We then introduce the augmented dynamics that is designed for QFI and CFI. The formalism
will be applied to a few problems, including maximizing QFI within a given control constraint and maximizing CFI
for a given measurement basis. A short conclusion is provided in the end.

II. PROBLEM AND AUGMENTED DYNAMICS FOR PMP

The concrete problem we consider is the “twist and turn” Hamiltonian [27, 36, 56]

H(t) = χĴ2
z + ωĴz + Ω(t)Ĵx, (1)

with [Ĵi, Ĵj ] = i εijkĴk (i = x, y, z) and the initial state the non-entangled maximum-eigenvalue state of Ĵx, denoted as
|Ψcoh-x〉. The potential physical realizations include interacting (generalized) spins [28, 35], the two-arm interferometer
[57, 58], and superradiance [59, 60]. The goal of the control is to efficiently estimate the parameter ω (around zero)
in Eq. (1), i.e., to produce a final state |ψ(T )〉 over the total evolution time T that is as sensitive as possible to the
change of the parameter ω around zero. The quantitative metric is QFI:

FQ(|ψ(T )〉) = 4
[
〈∂ωψ(T )|∂ωψ(T )〉 − |〈ψ(T )|∂ωψ(T )〉|2

]
. (2)

In Eq. (1), Ĵ2
z is the source of entanglement and referred to as a “twist” term; Ĵx is the external control and referred

to as a “turn” term. For eigenstates of Ĵz, denoted as |m〉z, Ĵ2
z determines their relative phases but not amplitudes

whereas Ĵx determines their relative amplitudes but not phases. The optimal control problem is to find an Ω(t) that
steers |ψ(0)〉 = |Ψcoh-x〉 to a final state |ψ(T )〉 that maximizes QFI at a given terminal time T . Using the terminology
of control theory, Eq. (1) is control-affine as it depends linearly on the control Ω(t), and is time-invariant as the time
dependence of H(t) is exclusively through the control Ω(t).

Hamiltonian (1) represents a set of N all-to-all interacting spins where Ĵi =
∑N
n=1

σi

2 (i = x, y, z and σ’s are Pauli

matrices). For a system composed of N spins, QFI(t) = Nt2 is referred to as the “shot-noise” limit (SNL) which
can be achieved without any quantum entanglement; QFI(t) = N2t2 as the Heisenberg’s limit (HL) which is the

upper bound of QFI and is achieved by preparing the initial state as |ΨHL〉 = (|M〉z + | −M〉z)/
√

2 with | ±M〉z the

largest/smallest-eigenvalue eigenstate of Ĵz (the maximum eigenvalue M = N/2) [21]. A system displays quantum
enhancement when QFI is larger than SNL. One of the key insights from Haine and Hope in Ref.[36] is that for a
limited evolution time T , the process of state preparation (i.e., to produce an entangled state) should also be regarded
as a degree of freedom to maximize QFI. This becomes essential when T is too short (small NχT ) to produce a highly
entangled state.

To compute QFI we need |∂ωψ(T )〉 which can be obtained by evolving |∂ωψ(t)〉 via the differential equation

∂t|∂ωψ(t)〉 = −iĴz|ψ(t)〉 − iH(ω, t)|∂ωψ(t)〉 and the initial condition |∂ωψ(t = 0)〉 = 0. To apply PMP, we re-
gard |ψ〉 and |∂ωψ〉 as independent dynamical variables. Denoting |ψ〉 as |ψ0〉, |∂ωψ〉 as |ψ1〉, the augmented dynamics
satisfies

∂t

[
|ψ0〉
|ψ1〉

]
=

[
−iH(ω) 0

−iĴz −iH(ω)

] [
|ψ0〉
|ψ1〉

]
. (3)

The initial augmented state is (|ψ0〉, |ψ1〉) = (|Ψcoh-x〉, 0). The terminal cost function (to minimize) is

CQ = −(〈ψ1(T )|ψ1(T )〉 − |〈ψ1(T )|ψ0(T )〉|2〉), (4)

which, up to a positive factor, is the negative QFI. The subscript ’Q’ indicates the quantum case.
Given a dynamical system Eq. (3), PMP introduces a set of auxiliary costate variables based on which the switching

function and control Hamiltonian (c-Hamiltonian) are defined. Following the standard procedure [7, 51, 53, 55], we
denote |π0〉 and |π1〉 as the costate variables (in the form of wave function) of |ψ0〉 and |ψ1〉, and derive their dynamics
as

∂t

[
|π0〉
|π1〉

]
=

[
−iH(ω) −iĴz

0 −iH(ω)

] [
|π0〉
|π1〉

]
, (5)

with the costate boundary conditions

|π0(T )〉 =
∂CQ

∂〈ψ0(T )|
= +|ψ1(T )〉〈ψ1(T )|ψ0(T )〉,

|π1(T )〉 =
∂CQ

∂〈ψ1(T )|
= −|ψ1(T )〉+ |ψ0(T )〉〈ψ0(T )|ψ1(T )〉.

(6)
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Note that 〈ψ0(t)|ψ1(t)〉 = 0 when ω = 0. The switching function Φ(t) and c-Hamiltonian Hc(t) are

Φ(t) = Im

{[
〈π0| 〈π1|

] [Ĵx 0

0 Ĵx

] [
|ψ0〉
|ψ1〉

]}
,

Hc(t) = Im

{[
〈π0| 〈π1|

] [H(ω) 0

Ĵz H(ω)

] [
|ψ0〉
|ψ1〉

]}
.

(7)

According to PMP, Φ(t) ∼ δC
δΩ(t) and Hc ∼ ∂C

∂T . The necessary conditions for an optimal control Ω(t) are (i) Φ(t) = 0

and (ii) Hc(t) is a constant over the entire evolution time T [51, 52]. Condition (i) is general (optimal solution
requires a zero gradient with respect to the cost function) whereas condition (ii) is specific to time-invariant control
problems; both can be served to quantify the control quality. Practically, Φ(t) can be used in the gradient-based
optimization algorithm (i.e., Ω(t) → Ω(t) − γΦ(t) with a learning rate γ) for numerical solutions. The sign of Hc(t)
tells if increasing the evolution time T reduces (Hc(t) < 0) or increases (Hc(t) > 0) the terminal cost function [53]. In
all our simulations, Hc(t) < 0 meaning increasing the evolution time increases QFI. This holds for unitary dynamics
but is not expected to be the case in the presence of quantum decoherence.

Three general remarks are pointed out. First, as the dynamics based on Schrödinger equation [Eq. (1)] is typically
control-affine, the optimal control is expected to contain some “bang” sector(s) [7, 53–55]. Based on the control
theory, this expectation requires a terminal cost function that is also linear in |ψ(T )〉, which is true when using the
fidelity as the terminal cost for a known target state [7, 53, 55]. As QFI is quadratic in the final state, the optimal
control is not expected to be bang-bang in general. Second, the augmented dynamics (3) is non-unitary. This is not
essential for the formalism but imposes demands on the numerical ODE (ordinary differential equation) solver. In
the implementation we express the dynamics using real-valued variables and use the explicit Runge-Kutta method of
order 5 as the ODE solver. Finally, the proposed formalism regards |ψ〉, |∂ωψ〉 as independent dynamical variables and
introduces |λ0〉, |λ1〉 as their corresponding costate variables. Compared to the GRAPE algorithm where computing
the gradient δC

δΩ(t) at each t requires an integration over time (Appendix of Ref. [39]), in the proposed formalism the

gradient δC
δΩ(t) ∼ Φ(t) is local in time [Eq. (7)], greatly reducing the computation complexity. We notice that the

forward augmented dynamics alone [Eq. (3)] can be used to compute the gradients with respect to multiple control
parameters [61] and has been applied to construct the optimal gate operations [61, 62]. Before moving to concrete
examples we point out that the model considered here [Eq. (1)] contains three parameters: the number of spins N ,
the twist strength χ, and the total evolution time T . In the following discussions T = 1 unless assigned specifically.
We now apply the formalism to analyze a few interesting cases.

III. APPLICATIONS

A. Convergence of optimal control

The control function Ω(t) is typically approximated by a piece-wise constant function, i.e., Ω(t) = Ωi for t ∈ [ti, ti+1),
with the evolution time T divided into Nt equal time intervals [38]. As the first application, we investigate how the
optimal QFI converges upon increasing Nt to approximate Ω(t). The motivation is to quantify the solution quality
from the smallness of the switching function, which can be characterized by a mean and a standard deviation:

Φm ≡
1

T

∫ T

0

dtΦ(t),

Φsd ≡
1√
T

[∫ T

0

dtΦ2(t)

]1/2

.

(8)

The normalizations are chosen such that Φm and Φsd have no dependence on T . For an optimal control, Φ(t) = 0 so
both Φm and Φsd vanish. When the piece-wise constant function is approaching to the optimal solution, Φm is also
close to zero and the value of Φsd(> 0) can be used to characterize how good a solution is.

Table I summarizes the optimal QFI’s for (N,χ)=(10,4), (20,1), (20,2), (20,4), (30,1) using different number of
controls and their corresponding Φsd’s. As expected, the control that results in a smaller Φsd gives a larger QFI.
Fig. 1 plots the optimal Ω(t) and the corresponding Φ(t) and Hc(t) for (N,χ)=(20,4) using 8, 16, 32, 64 controls. The
optimal control using more time intervals gives a smaller switching function and a flatter (negative) c-Hamiltonian.
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(c) (d)  

(a) 

FIG. 1: The optimal controls using 8 (a), 16 (b), 32 (c), and 64 (d) controls (time intervals) with (N,χ) = (20, 4). Increasing
the number of controls reduces the magnitudes of the switching function and results in a flatter negative c-Hamiltonian.

(N,χ) QFI8/Φsd QFI16/Φsd QFI32/Φsd QFI64/Φsd

(10,4) 80.16/8.96×10−1 87.96/4.72×10−2 88.15/3.00×10−3 88.15/2.10×10−3

(20,1) 270.13/6.62×10−1 273.19/4.34×10−2 273.28/6.10×10−3 273.28/5.55×10−3

(20,2) 320.38/1.72 330.26/3.00×10−1 331.86/1.81×10−2 331.88/1.00×10−2

(20,4) 223.31/7.95 341.35/1.11 356.37/3.2×10−1 364.60/1.08×10−2

(30,1) 648.24/4.12 659.27/4.14×10−1 661.74/4.04×10−2 661.78/2.86×10−2

TABLE I: Optimal (maximum) QFI for different number of controls. The subscript denotes the number of controls Nt; Φsd

is defined in Eq. (8). (N,χ)=(10,4), (20,1), (20,2), (20,4), (30,1) are considered. For a given (N,χ), a control resulting in a
smaller standard deviation Φsd has a larger QFI.

B. Strong twist limit

When Nχ is large, the optimal control appears to be strong during early evolution and vanish after a certain
amount of time (the same observation is also pointed out in Ref. [36]). This behavior can be understood by invoking
the state that achieves HL. If preparing |ψHL〉 takes only a small fraction of the total evolution time T , one way to
maximize QFI is to first produce |ΨHL〉 and then let system interact freely with the environment. The resulting QFI
is roughly N2(T − tprep)2 which approaches the HL N2T 2 when T � tprep (tprep is time to produce |ψHL〉). To see
what the optimal control does, Fig. 2(a) and (b) contrast the optimal controls for χ = 0.1 and 4 using N = 20. For
χ = 0.1, Ω(t) is non-zero over the entire T ; for χ = 4, Ω(t) vanishes around t = 0.18. The overlap |〈ψHL|ψ(t)〉| and the

normalized QFI/(Nt)2 are also provided. As Ĵx is the only term in Eq. (1) capable of changing the |m〉z population,
Ω(t) has to be non-zero to change the overlap; once Ω(t) is zero the value of |〈ψHL|ψ(t)〉| is fixed. For χ = 0.1 where
the entanglement source is too weak to bring the state close to |ψHL〉, the control is always non-zero and |〈ψHL|ψ(t)〉|
gradually increases to . 0.1. For χ = 4 where the entanglement source is strong, the control steers the state close to
|ψHL〉 during t ≤ 0.18 and then is turned off; QFI is maximized via steering the state to |ψHL〉 fast. This behavior
appears to be general once Nχ is sufficiently large [Fig. 2(c)].
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(b) (a) 

(d) (c) 

FIG. 2: The optimal controls (blue, left axis), the overlap |〈ψHL|ψ(t)〉| (red dashed, right axis), and QFI/(Nt)2 (red solid,
right axis) for (N , χ) = (20, 0.1) (a) and (20,4) (b). In (a), Ω(t) is non zero during the whole evolution, and the overlap to
|ψHL〉 increases to . 0.1 around t = 0.96. In contrast in (b), the optimal control Ω(t) vanishes after t & 0.18 around which
|〈ΨHL|ψ(t)〉| is approaching one. 64 controls are used in these simulations. (c) The dimensionless controls [Eq. (10)] for (N,χ) =
(20,2), (20,4), (30,1), (30,2), (40,1) and (50,1): they almost collapse to a single curve. (d) The dimensionless controls using
|ΨHL〉 as the target state for (N,χ, T ) = (20,2,1/4), (20,4,1/8), (30,1,1/3), (30,2,1/6), (40,1,0.26) and (50,1,0.21). All overlaps
|〈ΨHL|ψ(T )〉| are larger than 0.985.

One can further analyze the the optimal control by expressing Eq. (1) at ω = 0 as

i∂t|ψ〉 = Nχ

[
Ĵ2
z

N
+

Ω(t)

Nχ
Ĵx

]
|ψ〉

⇒i ∂|ψ〉
∂(Nχt)

=

[
Ĵ2
z

N
+

(
Ω(t)

Nχ

)
Ĵx

]
|ψ〉.

(9)

with the given initial state |Ψcoh-x〉. The additional information in the strong Nχ limit is that target state is also
known, at least approximately, to be |ΨHL〉. The second expression of Eq. (9) is scaled such that the spectral ranges of

Ĵ2
z /N and Ĵx are comparable for all N and therefore Ω(t)/(Nχ) represents the N -independent strength ratio between

the “twist” and “turn”. Eq. (9) also introduces a dimensionless time Nχt. Denoting ΩNχ(t) to be the optimal control
for a given (N,χ, T = 1), we define the corresponding dimensionless control as

Ω̄Nχ(t) ≡ ΩNχ(Nχt)

Nχ
. (10)

Because of similar structures of the initial and target states for all N (i.e., |Ψcoh-x〉 is peaked at |m = 0〉z and is
monotonously decreased as |m| increases; |ΨHL〉 is only non-zero at |m = ±N/2〉z), the dimensionless control Ω̄Nχ(t)
is expected to be only weakly dependent on Nχ. Fig. 2(c) gives Ω̄Nχ(t) for (N,χ) = (20,2), (20,4), (30,1), (30,2),
(40,1) and (50,1): their optimal dimensionless controls [Eq. (10)] to a good approximation collapse to a single curve.

A direct consequence is that the total input energy to maximize QFI, defined by
∫ T

0
dtΩ(t), is roughly a constant.
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To examine this picture more carefully, Fig. 2(d) shows the dimensionless controls that maximize |〈ΨHL|ψ(T )〉|2
[53, 55] for (N,χ, T ) = (20,2,1/4), (20,4,1/8), (30,1,1/3), (30,2,1/6), (40,1,0.26) and (50,1,0.21). The evolution time
T is chosen to be close to and smaller than the optimal time (i.e. a T such that Hc being small and negative) and all
overlaps |〈ΨHL|ψ(T )〉| are larger than 0.985; note the product NχT ∼ 10. The optimal controls based on maximizing
|〈ΨHL|ψ(T )〉|2 [Fig. 2(d)] share the following features: (i) Ω(t) has a peak around Nχ at t ∼ T/3; (ii) Ω(t) increases
drastically from Ω ∼ 0 around t . T . Feature (i) is captured by the optimal controls that maximize QFI [Fig. 2(c)] but
(ii) is not because maximizing QFI requires turning off Ω once the state reaches |ΨHL〉. Feature (ii) thus highlights the
difference between maximizing |〈ΨHL|ψ(T )〉|2 (the traditional sensing intuition that separates the state preparation
and the state evolution [36]) and maximizing QFI in the strong Nχ limit.

C. System with constrained control amplitude

  

(b) 

(c) (d) 

(a) 

FIG. 3: Optimal control of N = 100, χ = 0.1 using 100 time intervals. (a) No constraint on the control. (b)-(d) Optimal
controls with Ω(t) < umax: (b) umax = 6; (c) umax = 4; (d) umax = 2. When the optimal control takes one of the extreme
values, Φ(t) has an opposite sign.

As a second application, we consider N = 100, χ = 0.1. These parameters are used as an example in Ref. [36].
With the ability to compute the gradient efficiently, we use 100 time intervals to approximate Ω(t) and the obtained
optimal control is given in Fig. 3(a). We see that the necessary conditions are to a good approximation satisfied;
specifically |Φm| . 10−3 and Φsd ≈ 0.006.

In practice the control amplitude is bounded, i.e., |Ω(t)| ≤ umax and to obtain the optimal control with amplitude
constraint requires an additional step during the iteration: Ω(t) is taken to be the closest extreme (bang) value when
|Ω(t)| > umax. The necessary condition is modified: when Ω(t) takes the extreme value, the sign of the switching
function Φ(t) is opposite to that of Ω(t); otherwise Φ(t) = 0. Fig. 3(b)-(d) show the results of umax = 6, 4, 2. We see
that the necessary conditions are well satisfied. Imposing the maximum |Ω(t)| reduces the optimal QFI from 2895.0
(no constraint), 2869.9 (umax = 6), 2431.1 (umax = 4), to 1347.5 (umax = 2). Consistent with the intuition, the bang
control appears when |Ω∗(t)| > umax with Ω∗(t) the optimal control without constraints.



7

D. Classical Fisher Information

As a final application, we use PMP to maximize CFI defined as

FC =
∑
m

(∂ωPm)2

Pm
. (11)

Pm = |x〈m|eiφĴz |ψ(T )〉|2 is the probability distribution of Ĵx measurement (|m〉x,z’s are eigenstates of Ĵx,z). Following
Ref. [36, 63] an additional phase offset φ is introduced. The terminal cost function (to minimize) is chosen to be
CC = −FC (the subscript ’C’ indicates “classical”), and the most crucial step is to compute ∂CC

∂〈ψ0,1(T )| to get the

boundary condition for the costates |π0,1(T )〉.
Denoting the solution of Eq. (3) at t = T to be |ψ0(T )〉 =

∑
m ᾱm|m〉z and |ψ1(T )〉 =

∑
m β̄m|m〉z, and applying

eiĴzφ to the terminal state leads to

eiĴzφ|ψ0(T )〉 =
∑
m

eiφmᾱm|m〉z =
∑
m

αm|m〉x =
∑
m

[∑
n

Umnᾱne
inφ

]
|m〉x,

eiĴzφ|ψ1(T )〉 =
∑
m

eiφmβ̄m|m〉z =
∑
m

βm|m〉x =
∑
m

[∑
n

Umnβ̄ne
inφ

]
|m〉x.

(12)

What we have directly from Eq. (3) are ᾱn, β̄n, and Umn (where each row vector of U is an eigenvector of Ĵx and U

is real-valued in z-basis), based on which we get αm =
∑
n′ Umn′ ᾱn′e

+in′φ, βm =
∑
n′ Umn′ β̄n′e

+in′φ, Pm = α∗mαm,
∂ωPm = β∗mαm + α∗mβm and

FC =
∑
m

(β∗mαm + α∗mβm)2

α∗mαm
. (13)

Straightforward derivatives give

∂FC
∂ᾱ∗n

=
∑
m

−(∂ωPm)2

P 2
m

∂Pm
∂ᾱ∗n

+
∑
m

2(∂ωPm)

Pm

∂(∂ωPm)

∂ᾱ∗n
,

∂FC
∂β̄∗n

=
∑
m

2(∂ωPm)

Pm

∂(∂ωPm)

∂β̄∗n
,

∂FC
∂φ

=
∑
m

−(∂ωPm)2

P 2
m

∂Pm
∂φ

+
∑
m

2(∂ωPm)

Pm

∂(∂ωPm)

∂φ

(14)

where ∂Pm

∂ᾱ∗n
=
[
Umne

−inφ]αm, ∂(∂ωPm)
∂ᾱ∗n

=
[
Umne

−inφ]βm, ∂(∂ωPm)

∂β̄∗n
=
[
Umne

−inφ]αm, and

∂Pm
∂φ

=

[∑
n

Umn(−i · n)e−inφᾱ∗n

]
αm + c.c.,

∂(∂ωPm)

∂φ
=

[∑
n

Umn(−i · n)e−inφβ̄∗n

]
αm + β∗m

[∑
n

Umn(+i · n)e+inφᾱn

]
+ c.c..

(15)

The negative of Eq. (14) is used as the terminal boundary condition of the costate variables |π0(t)〉, |π1(t)〉, i.e.,

|π0(T )〉 =
∑
n

[
−∂FC
∂ᾱ∗n

]
|n〉z,

|π1(T )〉 =
∑
n

[
−∂FC
∂β̄∗n

]
|n〉z.

(16)

The phase φ is updated by φ→ φ+ γ ∂FC

∂φ .

Results of N = 4, χ = 1 and N = 100, χ = 0.1 are presented in Fig. 4(a) and (b). 64 time intervals are used to
approximate Ω(t). For N = 4, χ = 1 [Fig. 4(a)], both the mean and standard deviation are smaller than 10−3. For
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(b) (a) 

FIG. 4: (a) Optimal control for N = 4, χ = 1 using 64 controls to maximize CFI. The optimal CFI is about 8.19 with φ = π/2.
(b) Optimal control for N = 100, χ = 0.1 using 64 controls to maximize CFI. The optimal CFI is about 2867.5 with φ = 0.

N = 100, χ = 0.1 [Fig. 4(b)], Φ(t) does not converge to zero but its mean is close to zero. The mean and standard
deviation of Φ are respectively ∼ 0.06 and 0.37. Overall, all necessary conditions are approximately satisfied for CFI
optimization. As discussed in Refs. [36, 63], the measurement uncertainty can be taken into account by replacing

Pm by P̃m =
∑
m′ Γm,m′Pm′ in Eq. (11) (with

∑
m Γm,m′ = 1 for all m′). The proposed method can apply to this

problem as well (not shown).

IV. CONCLUSION

To conclude, we apply Pontryagin’s Maximum Principle to the quantum parameter estimation in the context of the
“twist and turn” Hamiltonian. What PMP provides are (i) a formalism to efficiently evaluate the gradient with respect
to a terminal cost function (the switching function); and (ii) a set of necessary conditions that can be used to quantify
the quality of an approximate solution. For the quantum metrology application, the performance is characterized by
a single scalar – the quantum or classical Fisher information, and the optimal control finds the control protocol that
maximizes QFI or CFI for a given evolution time. One non-trivial complication pertaining to quantum metrology is
that the cost function involves derivatives with respect to the external parameter which one wants to estimate, and we
overcome this obstacle by designing an augmented dynamical system where the wave function and its derivative to the
external parameter |ψ〉 and |∂ωψ〉 are regarded as independent dynamical variables. By introducing the corresponding
costate variables, all PMP quantities, particularly the switching function, can be stably obtained. The ability to
efficiently compute the gradient greatly accelerates the optimization process and significantly expands the scope of
problems one can solve. With the developed formalism, we are able to maximize QFI/CFI with more than 100 control
variables. Moreover, the quality of an obtained control can be quantified by how well the PMP necessary conditions
are satisfied (this applies to any approximate optimal controls). As a concrete example, we show how an optimal
solution converges upon increasing the number of controls by correlating the QFI and the smallness of the switching
function. Specific to the “twist and turn” problem, we explicitly confirm the “traditional sensing intuition” in the
strong twist limit: the main function of the optimal control is to steer the state to be close to |ψHL〉 (the state that
maximizes QFI) quickly and then let the system freely interact with the environment. An important and natural
question is the effect of quantum decoherence, and a quantitative answer requires calculations using density matrix
as dynamical variables with dynamics involving dissipation channel(s). We expect the maximum QFI to occur at a
finite evolution time (as a compromise between QFI ∼ t2 and decoherence), but the actual behavior should depend
critically on the dissipation channel, especially when there is decoherence-free subspace [53].
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[9] H. Jirari and W. Pötz, Phys. Rev. A 74, 022306 (2006), URL https://link.aps.org/doi/10.1103/PhysRevA.74.022306.

[10] N. Friis, O. Marty, C. Maier, C. Hempel, M. Holzäpfel, P. Jurcevic, M. B. Plenio, M. Huber, C. Roos, R. Blatt, et al.,
Phys. Rev. X 8, 021012 (2018).

[11] M. W. Doherty, V. V. Struzhkin, D. A. Simpson, L. P. McGuinness, Y. Meng, A. Stacey, T. J. Karle, R. J. Hemley, N. B.
Manson, L. C. L. Hollenberg, et al., Phys. Rev. Lett. 112, 047601 (2014).

[12] L. Van Damme, R. Zeier, S. J. Glaser, and D. Sugny, Phys. Rev. A 90, 013409 (2014), URL https://link.aps.org/doi/

10.1103/PhysRevA.90.013409.
[13] T. Pichler, T. Caneva, S. Montangero, M. D. Lukin, and T. Calarco, Phys. Rev. A 93, 013851 (2016), URL https:

//link.aps.org/doi/10.1103/PhysRevA.93.013851.
[14] E. Farhi, J. Goldstone, S. Gurmann, and M. Sipser, Quantum computation by adiabatic evolution (2000), arXiv:quant-

ph/0001106.
[15] A. T. Rezakhani, W.-J. Kuo, A. Hamma, D. A. Lidar, and P. Zanardi, Phys. Rev. Lett. 103, 080502 (2009), URL

https://link.aps.org/doi/10.1103/PhysRevLett.103.080502.
[16] Q. Zhuang, Phys. Rev. A 90, 052317 (2014), URL https://link.aps.org/doi/10.1103/PhysRevA.90.052317.
[17] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J. Love, A. Aspuru-Guzik, and J. L. O’Brien, Nature

Communications 5, 4213 (2014).
[18] P. J. J. O’Malley, R. Babbush, I. D. Kivlichan, J. Romero, J. R. McClean, R. Barends, J. Kelly, P. Roushan, A. Tranter,

N. Ding, et al., Phys. Rev. X 6, 031007 (2016), URL https://link.aps.org/doi/10.1103/PhysRevX.6.031007.
[19] C. W. Helstrom, Quantum Detection and Estimation Theory, Mathematics in Science and Engineering 123 (Elsevier,

Academic Press, 1976).
[20] A. S. Holevo, Probabilistic and Statistical Aspects of Quantum Theory (Edizioni della Normale, 2011), 1st ed.
[21] V. Giovannetti, S. Lloyd, and L. Maccone, Phys. Rev. Lett. 96, 010401 (2006), URL https://link.aps.org/doi/10.

1103/PhysRevLett.96.010401.
[22] C. Brif, R. Chakrabarti, and H. Rabitz, New Journal of Physics 12, 075008 (2010), URL https://doi.org/10.1088%

2F1367-2630%2F12%2F7%2F075008.
[23] S. J. Glaser, U. Boscain, T. Calarco, C. P. Koch, W. Kockenberger, R. Kosloff, I. Kuprov, B. Luy, S. Schirmer, T. Schulte-

Herbruggen, et al., The European Physical Journal D / Atomic, Molecular, Optical and Plasma Physics 69, 279 (2015).
[24] V. Giovannetti, S. Lloyd, and L. Maccone, Nature Photonics 5, 222 (2011).
[25] M. Tsang, R. Nair, and X.-M. Lu, Phys. Rev. X 6, 031033 (2016), URL https://link.aps.org/doi/10.1103/PhysRevX.

6.031033.
[26] Q. Zhuang, Z. Zhang, and J. H. Shapiro, Phys. Rev. A 96, 040304 (2017), URL https://link.aps.org/doi/10.1103/

PhysRevA.96.040304.
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