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Abstract
We present an extremum seeking-based robust observer design for thermal-fluid systems,
pursuing an application to efficient energy management in buildings. The model is origi-
nally described by Boussinesq equations which is given by a system of two coupled partial
differential equations (PDEs) for the velocity field and temperature profile constrained to
incompressible flow. Using proper orthogonal decomposition (POD), the PDEs are reduced
to a set of nonlinear ordinary differential equations (ODEs). Given a set of temperature and
velocity point measurements, a nonlinear state observer is designed to reconstruct the entire
state under the error of initial states, and model parametric uncertainties. We prove that the
closed loop system for the observer error state satisfies an estimate of L2 norm in a sense of
locally input-tostate stability (LISS) with respect to parameter uncertainties. Moreover, the
uncertain parameters estimate used in the designed observer are optimized through iterations
of a data-driven extremum seeking (ES) algorithm. Numerical simulation of a 2D Boussinesq
PDE illustrates the performance of the proposed adaptive estimation method.
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SUMMARY

We present an extremum seeking-based robust observer design for thermal-fluid systems, pursuing an

application to efficient energy management in buildings. The model is originally described by Boussinesq

equations which is given by a system of two coupled partial differential equations (PDEs) for the velocity

field and temperature profile constrained to incompressible flow. Using proper orthogonal decomposition

(POD), the PDEs are reduced to a set of nonlinear ordinary differential equations (ODEs). Given a set

of temperature and velocity point measurements, a nonlinear state observer is designed to reconstruct the

entire state under the error of initial states, and model parametric uncertainties. We prove that the closed

loop system for the observer error state satisfies an estimate of L2 norm in a sense of locally input-to-

state stability (LISS) with respect to parameter uncertainties. Moreover, the uncertain parameters estimate

used in the designed observer are optimized through iterations of a data-driven extremum seeking (ES)

algorithm. Numerical simulation of a 2D Boussinesq PDE illustrates the performance of the proposed

adaptive estimation method. Copyright c© 2019 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: Extremum seeking, iterative feedback tuning, thermo-fluid models, observer design,

input-state stability, Boussinesq equation.

1. INTRODUCTION

Thermal and fluid systems have been intensively studied for numerous applications in science and

engineering processes. For instance, an efficient energy management for heating, ventilation, and

∗Corresponding author:m benosman@ieee.org

Copyright c© 2019 John Wiley & Sons, Ltd.

Prepared using acsauth.cls [Version: 2010/03/27 v2.00]



2 S. KOGA ET AL.

air conditioning (HVAC) systems has been a priority research topic for many countries due to its

huge energy consumption impact [6].

One of the important problems in HVAC management is to estimate the entire spatial profile

of the airflow and temperature under a limited number of sensors placed at some locations in

buildings. Such a state estimation for Navier Stokes (NS) equations has been investigated in a

number of literatures in the recent decade. In [8], an infinite dimensional Kalman filter is designed

for a linearized NS equation around the velocity field of interest. Their approach showed good

performance as a first contribution to fluid estimation, however, there are two issues from the

perspective of real implementation. One is the linearization assumption of NS equations, can

produce a low fidelity fluid model. A second drawback is the high computational cost for the

discretization of the infinite dimensional filter. To improve these issues, in [11], the authors

developed a POD-based model reduction for NS equations, and designed extended Kalman filter

for the state estimation, which illustrated the effective results on estimated velocity profile. The

later work on state estimation for POD-ROM of NS equations can be found in [12, 15].

For higher fidelity models of the NS equation which include the effect of buoyancy forces driven

by the density change via temperature dependence. The dynamics of the temperature profile is also

described from the conservation of energy, which formulates the Boussinesq equations as a coupled

thermal and fluid systems. Due to the coupled nonlinearity of two PDEs, the design and analysis of

Boussinesq equations is highly challenging problem especially for 2D and 3D domains. Moreover,

as presented in [13], POD-based model reduction might lose the stability property of the state

variables, which is caused by the truncation of higher order modes serving as a stabilizing factor.

While there are several methods for model reduction, the modal analysis has been successfully

employed for PDEs with state constraints in [10, 23].

The stable model reduction for Boussinesq equations is developed in [4] by introducing a new

closure model, which robustly stabilizes the reduced order model. The authors prove the robust

stability of the closure model with respect to the parameters uncertainty using Lyapunov analysis.

Furthermore, the gains in the closure terms are auto-tuned by learning-based extremum seeking

(ES) algorithm to minimize the errors between the true model solution and the ROM solution. The

convergence analysis of ES is established in [14] by means of singular perturbation and averaging

theorem, and an approach to apply ES for parameter auto-tuning in POD-ROM is originated in

[5]. The results in [4] illustrate a good performance in improving solution prediction for laminar

flows, however, the method relies on the accurate knowledge of the initial velocity and temperature

profiles, which can be relaxed by state estimation technique utilizing sparse measurements obtained

through a few sensors.

There are two contributions in this paper. First, we have investigated the robustness of the

designed observer for POD-ROM of Boussinesq equation with respect to the uncertainty of viscosity

Copyright c© 2019 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2019)
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by proving input-to-state stability (ISS) in a local sense using Lyapunov method. The observer

gain is designed via LMI approach to satisfy a condition for ISS proof. Second, as in [4], the

online estimation of the uncertain viscosity parameter is implemented using a data-driven extremum

seeking.

This paper is structured as follows. In Section 3, the physical model of thermal and fluid systems

is introduced by means of Boussinesq equations, and its POD-ROM is derived. Section 4 is devoted

to the observer design for POD-ROM, where we provide the robustness analysis with respect to

parameter uncertainty. In Section 5, the online estimation of the uncertain parameter in the designed

observer is performed by ES as an iterative learning estimation, and Section 6 presents the numerical

verification of the proposed method for 2-D Boussinesq equations. The paper ends with a conclusion

and future works, as stated in Section 7.

2. PRELIMINARY DEFINITIONS

Throughout the paper, we use ‖ · ‖ to denote the Euclidean norm; i.e., for a vector x ∈ Rn, we have

‖x‖ , ‖x‖2 =
√
xTx, where xT denotes the transpose of the vector x. The Frobenius norm of a

matrix A ∈ Rm×n, with elements aij , is defined as ‖A‖F ,
√∑n

i=1

∑n
j=1 |aij |2. Given x ∈ Rm.

We use ḟ to denote the time derivative of f and f (r)(t) for the r-th derivative of f(t), i.e.,

f (r) , drf
dtr . We denote by Ck, functions that are k times differentiable and by C∞, a smooth

function. A continuous function α : [0, a)→ [0,∞) is said to belong to class K if it is strictly

increasing and α(0) = 0. It is said to belong to class K∞ if a =∞ and α(r)→∞ as r →∞ [1].

A continuous function β : [0, a)× [0,∞)→ [0,∞) is said to belong to class KL if, for a fixed s,

the mapping β(r, s) belongs to class K with respect to r and, for each fixed r, the mapping β(r, s)

is decreasing with respect to s and β(r, s)→ 0 as s→∞ [1]. Finally, for a Hilbert space H, we

define the inner product 〈·, ·〉H and the associated norm ‖ · ‖H on H as 〈f, g〉H =
∫

Ω
f(x)g(x)dx,

for f, g ∈ H, and ‖f‖2H =
∫

Ω
|f(x)|2dx

Next, we introduce some definitions that will be used in the sequel, e.g. [1]: consider the system

ẋ = f(t, x, u), (1)

where f : [0,∞)×Rn ×Rm → Rn is piecewise continuous in t and locally Lipschitz in x and u,

uniformly in t. The input u(t) is piecewise continuous, bounded function of t for all t ≥ 0.

Definition 1 ([1, 2])

The system (1) is said to be input-to-sate stable (ISS) if there exist a class KL function β and a class

K function γ such that for any initial state x(t0) and any bounded input u(t), the solution x(t) exists

Copyright c© 2019 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2019)
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4 S. KOGA ET AL.

for all t ≥ t0 and satisfies

‖x(t)‖ ≤ β(‖x(t0)‖, t− t0) + γ( sup
t0≤τ≤t

‖u(τ)‖).

Theorem 1 ([1, 2])

Let V : [0,∞)×Rn → R be a continuously differentiable function such that

α1(‖x‖) ≤V (t, x) ≤ α2(‖x‖),
∂V

∂t
+
∂V

∂x
f(t, x, u) ≤ −W (x), ∀‖x‖ ≥ ρ(‖u‖) > 0, (2)

for all (t, x, u) ∈ [0,∞)×Rn ×Rm, where α1, α2 are class K∞ functions, ρ is a class K function,

and W (x) is a continuous positive definite function on Rn. Then, the system (1) is input-to-state

stable (ISS).

3. MODELLING OF THERMAL AND FLUID SYSTEMS

3.1. Boussinesq equations and normalization

We focus on the dynamics of the velocity field v(x, t) : Ω×R+ → R3 and the temperature profile

T (x, t) : Ω×R+ → R, where x denotes the spatial coordinate x ∈ Ω, and t ≥ 0 denotes the time.

The spatial domain Ω can be two or three dimensional space. The governing equations are described

by Navier-Stokes equation with the condition of incompressible flow and the conservation of the

energy through the heat transfer, which leads to the following coupled system

ρ

(
∂v

∂t
+ v · ∇v

)
=−∇p+∇ · τ(v) + ρg, (3)

∇ · v =0, (4)

ρcp

(
∂T

∂t
+ v · ∇T

)
=∇ (κ∇T ) , (5)

where ρ [kg/m3] is the density profile, p [kg/(ms2)] is the pressure field, τ(v) is the viscous stress,

cp [J/kg◦K] is the constant heat capacity, κ [W/m◦K] is the constant thermal conductivity, and g =

−ge3 [m/s2] is the gravitational force. In Boussinesq approximation, the buoyancy force is driven

by changes in density ρ = ρ0 + ∆ρ from the nominal density ρ0, and the density change is modeled

as perturbations from the nominal temperature T0 using the perfect gas law ∆ρg = −ρ0β(T − T0)g,

β = 1/T0, and the constant term ρ0g is absorbed into the pressure. The viscous stress is governed

by τ(v) = ρν(∇v +∇vT ) with kinematic viscosity ν [m2/s], whereas the velocity v is in [m/s],

and the temperature T is in [K].
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By introducing a characteristic length L, characteristic velocity v0, wall temperature Tw, we

define the following normalized states

x̃ =
x

L
, t̃ =

tv0

L
, ṽ =

v

v0
, (6)

p̃ =
p

ρv2
0

, T̃ =
T − T0

Tw − T0
. (7)

Using these variables, PDEs (3)–(5) can be reduced to the following (we dropped the tilde notation)

∂v

∂t
+ v · ∇v =−∇p+∇ · τ(v) +

Gr

Re2Te3, (8)

∇ · v =0, (9)

∂T

∂t
+ v · ∇T =∇

(
1

RePr
∇T
)
, (10)

where we defined Reynolds number Re= v0L
ν , Grashof number Gr= gβ(Tw−T0)L3

ν2 , and Prandtl

number Pr= nu
k/ρ0cp

.

3.2. POD Model Reduction

Following Galerkin projection onto the subspace spanned by the POD basis functions, we have

vpod(x, t) =v0(x) +

rv∑
i=1

qi(t)φ
v
i (x), (11)

T pod(x, t) =T0(x) +

rv+rT∑
i=rv+1

qi(t)φ
T
i (x), (12)

where v0(x) and T0(x) are the steady-state solution to (3)–(5), φvi (x) and φTi (x) are POD basis

functions given by

φvi (x) =
1

tf

∫ tf

0

(vsim(x, t)− v0(x))wi(t)dt, (13)

for i = 1, · · · , rv, and

φTi (x) =
1

tf

∫ tf

0

(Tsim(x, t)− T0(x))wi(t)dt, (14)

for i = rv + 1, · · · , rv + rT , with the orthogonal wight functions wi(t) satisfying∫ tf
0
wi(t)wj(t)dt = 0 if i 6= j. The coefficients qi(t) in (11) and (12) are the dynamical states

representing the POD-ROM of the Boussinesq equations.

Remark 1

POD-projection error, e.g., [24]: Let T : H → Ĥ be the orthogonal projector from H (infinite

dimension Hilbert space) to the finite dimension space Ĥ (hence, ‖T ‖H = 1 and T † be the injection

from Ĥ into H: T †ẑ = z for all ẑ ∈ Ĥ ⊂ H. Then we define the reduced estimation error as

e(t) = ẑ(t)− T z(t) ∈ Ĥ. (15)

Copyright c© 2019 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2019)
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This can be used as a proxy for the state estimation error

ese ≡ T †ẑ − z ∈ H, (16)

when T produces a small projection error (z − T †T z), since

ese(t) = T †e(t)−
(
z(t)− T †T z(t)

)
. (17)

When Ĥ is the span of r dominant POD basis functions and TPOD is the corresponding projection

for a specific trajectory z, i.e., T ≡ TPOD : H → Ĥr as follows

[TPODz] (·) =

r∑
i=1

φi(·)〈φi, z〉H. (18)

then TPOD minimizes the projection error

P(T , z) =

(∫ tf

0

‖z(t)− T †T z(t)‖2H dt
)1/2

, (19)

over all projections T into subspaces of H with dimension r, and where tf denotes the finite time

support over which the projection error is evaluated, cf. [25].

By defining the state vector q(t) = [q1(t), q2(t), · · · , qrv+rT (t)]T , we obtain the following ODE

(see [4] for the detailed derivation)

q̇(t) = µDq(t) + [Cq(t)]q(t) + b, (20)

where µ > 0 is the viscosity µ = 1
Re , D is a negative definite diffusion matrix with diagonal blocks

corresponding to the viscous stress and thermal diffusion, and C is a three-dimensional tensor

corresponding the convection terms in (8) and (10). In the remaining of this paper, we shall call

the model (20) as ROM-G (G for Galerkin).

Remark 2

While the original PDEs (3)–(5) is a system that has bounded solutions from our knowledge

on thermal and fluid dynamics, the obtained POD-ROM (20) might exhibits radially unbounded

solutions depending on the strength of the quadratic nonlinearity [Cq(t)]q(t) and the constant term

b relative to the damping effect µDq(t). We study the effect of µ on the boundedness of the solution

to (20) in the next lemma.

Lemma 1

For a viscosity coefficient satisfying

µ ≥ 2

d
max

{√
cmaxbmax, cmax||q0||

}
, (21)

where d := λmin(−D) > 0, cmax = ||C||F , bmax = ||b||, the following explicit bound holds

||q|| ≤ Y ∗ +
b̄

cmax +
(

b̄
||q0||−Y ∗ − cmax

)
eb̄t
, (22)

Copyright c© 2019 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2019)

Prepared using acsauth.cls DOI: 10.1002/acs
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where b̄ =
√
µ2d2 − 4bmaxcmax, and Y ∗ = µd−b̄

2cmax
. Moreover, the solution is uniformly bounded by

a positive constant M = µd
2cmax

, i.e., ||q|| ≤M .

Proof

Consider the following Lyapunov function

V = qT q = ||q||2. (23)

Taking the time derivative of (23) and using (20) yields

V̇ = µqT (D +DT )q + 2[Cq]qT q + 2bT q. (24)

Due to the negative definiteness of D = DT < 0, we have

qT (D +DT )q ≤ −2d||q||2. (25)

By the Cauchy Schwarz inequality, it holds that

[Cq]qT q ≤ cmax||q||3, bT q ≤ bmax||q||. (26)

Applying (25) and (26) to (24), one can derive the following differential inequality

V̇ ≤ −2µd||q||2 + 2cmax||q||3 + 2bmax||q||. (27)

Next, we consider

Y =
√
V = ||q||. (28)

Then, the time derivative of (28) is

Ẏ =
V̇

2Y

≤− µdY + cmaxY
2 + bmax (29)

Applying comparison principle to (29), Y is bounded by the solution to the Riccati differential

equation ẏ = −µdy + cmaxy
2 + bmax with initial condition y(0) = Y (0). If the viscosity is

sufficiently large to satisfy (21), the solution of y(t) is given by the right hand side of (22). Hence,

Y satisfies the inequality (22). Moreover, by condition (21), we have ||q0|| ≤ µd
2cmax

. Applying this

to (22), the bound ||q|| ≤ Y ∗ + b̄
cmax(1+eb̄t)

is obtained. Since b̄
cmax(1+eb̄t)

≤ b̄
2cmax

and Y ∗ = µd−b̄
2cmax

,

the uniform bound ||q|| ≤ µd
2cmax

is deduced.

3.3. Closure model for ROM stabilization

The main idea behind the closure modeling is to replace the viscosity coefficient µ in (20) by a

virtual viscosity coefficient µcl, which is chosen to stabilize the POD-ROM. Furthermore, a penalty

Copyright c© 2019 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2019)
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8 S. KOGA ET AL.

term H(q(t)) is added to the POD-ROM as follows

q̇(t) = µclDq(t) + F̃ (q) +H(q(t)), (30)

where F̃ (q) is defined as

F̃ (q) = [Cq(t)]q(t) + b. (31)

A well known choice of the virtual viscosity is the Heisenberg ROM (ROM-H) which is simply

given by

µcl = µ0 + µe, (32)

where µ0 is the nominal value of the viscosity coefficient, and µe is the additional constant added

to compensate for the loss of the damping effect of the truncated modes. The choice of H(q) is

presented in [4] based on the function of F̃ (q), by imposing the following assumption.

Assumption 1

There exists a C1 function f̃(q) : Rn → R such that the norm of vector field F̃ (q) : Rn → Rn is

bounded, i.e.,

||F̃ (q)|| ≤ f̃(q). (33)

Using the vector field function (31), the bounded function f̃ is given by

f̃(q) = cmax||q||2 + bmax, (34)

where cmax = ||C||F , and bmax = ||b||L∞ . In [4], the authors proved the following lemma.

Lemma 2

Let Assumption 1 holds. Then, the reduced order model (30) with

H(q) = µnlf̃(q)D∗q, µnl > 0 (35)

where D∗ = diag(d11, d22, · · · , drr), stabilizes the solution of the ROM to the invariant set

S =

{
q ∈ Rn s.t. µcl

λmax(D)||q||
f̃(q)

+ µnl||q||max{d11, · · · , drr}+ 1 ≥ 0

}
. (36)

Thus, the nonlinear reduced order model with closure model H is given by

q̇(t) =µclDq(t) + [Cq(t)]q(t) + b+ µnl(cmax||q||2 + bmax)D∗q. (37)

In the remaining of this paper, we shall call the model (37) as ROM-CL (CL stands for closure).
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4. ROBUSTNESS OF NONLINEAR OBSERVER IN LOCAL ISS SENSE

4.1. Observer based on the ROM-G model

To solve for the POD-ROM in (20), the values of the viscosity parameter µcl and the initial

conditions q(0) are needed, however, in most applications they are uncertain. Instead, we can

allocate thermal and velocity sensors to measure some partial states of the system, which can be

formulated as a linear map from the POD states

y(t) = H̃q(t), (38)

where H̃ ∈ Rm×n is a measurement matrix given by the sensor placement. Then, to assimilate the

model (20) with the acquired sensor data, the state estimator is designed to reconstruct the entire

state q(t) from the measured data, which enables to estimate the velocity field vpod(x, t) and the

temperature profile T pod(x, t) for all x. A well-known design is Luenberger-like observer which is

constructed as a copy of the plant plus the injection of the measurement error states, written by

˙̂q(t) =µ̂clDq̂(t) + [Cq̂(t)]q̂(t) + b+ L(y(t)− H̃q̂(t)), (39)

where q̂(t) is the estimation of states q(t), µ̂cl is the estimated value of µcl, and L ∈ Rn×m is the

observer gain to be determined. For analysis purposes, we impose the following assumption.

Assumption 2

The lower bound of the viscosity µcl is known, i.e., µ ≤ µcl. Furthermore, our estimated value of

the viscosity also satisfies µ ≤ µ̂cl.

Let q̃(t) be the estimation error state defined by

q̃(t) := q(t)− q̂(t). (40)

The ideal performance of the observer is characterized by some sort of the stability property of the

estimation error q̃(t). Subtraction of the estimator (39) from the system (20) yields the following

estimation error dynamics

˙̃q(t) =(µD − LH̃)q̃(t) + µ+Dq̃(t) + µ̃Dq(t)

+ [Cq̃(t)]q(t) + [Cq(t)]q̃(t)− [Cq̃(t)]q̃(t). (41)

where µ+ := µ− µ > 0, and µ̃ = µ− µ̂.

Our main result is presented in the following theorem.

Theorem 2

Consider the estimation error system (41). Let the observer gain L be designed so that the matrix

Copyright c© 2019 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2019)
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10 S. KOGA ET AL.

µD − LH̃ is Hurwitz and satisfies the following property

λmin(Q) ≥ 16cmaxMλmax(P ), (42)

where P = PT > 0 and Q = QT > 0 are the solutions of Lyapunov equation P (µD − LH̃) +

(µD − LH̃)TPT = −Q. Then, there exist positive constants ρ0 > 0, ρu > 0, and a class KL

function β and a classK function γ such that if |q̃(0)| < ρ0 and |µ̃| < ρu, then the following estimate

of the norm holds :

||q̃(t)|| ≤ β(||q̃(0)||, t) + γ (|µ̃|) , (43)

which guarantees the local input-to-state stability (LISS) of the estimation error system with respect

to the parameter uncertainty. Moreover, by defining σ̄ = λmin(Q)

4
√
λmin(P )

√
λmax(P )

, δ̄ = cmax
λmax(P )
λmin(P )3/2 ,

and ᾱ = Mλmax(P )√
λmin(P )

λmax(−D) , the explicit formulation for the constant bound and functions are

obtained by ρu = λmin(Q)

4
√
λmin(P )

√
λmax(P )

, ρ0 = σ̄
4δ̄

, and

β(||q0||, t) =4||q0||e−
σ̄
2 t, (44)

γ(u) =5
σ̄ −

√
σ̄2 − 4

√
2δ̄ᾱu

2δ̄
, (45)

which ensures the exponentially LISS.

Proof

We consider the candidate of LISS Lyapunov function V defined by

Ṽ = q̃TP q̃ (46)

Note λmin(P )q̃T q̃ ≤ Ṽ ≤ λmax(P )q̃T q̃. Taking the time derivative of (46) along the solution of (41),

we obtain

˙̃V =− q̃TQq̃ + 2µ̃qTDTP q̃ − µ̃q̃T (DP + PD)q̃

+ 2µ+q̃
TDPq̃ + 2 ([Cq̃]q)

T
P q̃ + 2 ([Cq]q̃)

T
P q̃

− 2 ([Cq̃]q̃)
T
P q̃ (47)

Owing to the negative definiteness of D < 0 and positivity of µ+ > 0, it holds µ+q̃
TDPq̃ < 0.

Furthermore, by Cauchy-Schwarz inequality,

([Cq̃]q)
T
P q̃, ≤ ||[Cq̃]q|| · ||P q̃||

≤ cmaxλmax(P )M ||q̃||2, (48)
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where we used ||q|| ≤M given in Lemma 1. Using the same technique to all terms in the last line

in (61), and defining d̄ := λmax(−D) > 0, the inequality (47) leads to

˙̃V ≤− λmin(Q)||q̃||2 + 2Md̄λmax(P )||q̃|||µ̃|+ 4cmaxλmax(P )M ||q̃||2 + 2cmaxλmax(P )||q̃||3

+ 2λmin(P )d̄|µ̃|||q̃||2,

≤− λmin(Q)

2
||q̃||2 + 2cmaxλmax(P )||q̃||3 +

(
2Md̄λmax(P )|µ̃| − λmin(Q)

4
||q̃||
)
||q̃||

+

(
4cmaxλmax(P )M − λmin(Q)

4

)
||q̃||2 + 2λmin(P )d̄|µ̃|||q̃||2. (49)

Therefore, by designing the observer gain L such that the condition (42) holds, we can state that if

|µ̃| ≤ p||q̃||, (50)

where p := λmin(Q)

16Md̄λmax(P )
, then (49) leads to

˙̃V ≤ −σ||q̃||2 + δ||q̃||3, (51)

where σ = λmin(Q)
2 , δ = 2λmax(P )

(
cmax + d̄p

)
. Applying Theorem 1 in [9], we can conclude the

local ISS w.r.t. the parameter uncertainty µ. Applying the similar technique in proof of Lemma 1 to

(49), we can further obtain the explicit bound by the solution of Riccati differential equation, which

derive the explicit formulation of the functions β and γ in LISS.

4.2. Observer based on the ROM-CL model

Similarly to (39), the Luenberger-like observer in this case is written as

˙̂q(t) =µ̂clDq̂(t) + [Cq̂(t)]q̂(t) + b+ µ̂nl(cmax||q̂||2 + bmax)D∗q̂ + L(y(t)− H̃q̂(t)), (52)

where µ̂nl is the estimated value of µnl. Subtraction of the estimator (52) from ROM-CL system

(37) yields the following system for the estimation error state q̃(t) := q(t)− q̂(t) :

˙̃q(t) =Aq̃(t) + (µ+,clD + µ+,nlD
∗)q̃(t) + µ̃clDq(t) + [Cq(t)]q(t)− [Cq̂(t)]q̂(t)

+ µ̂nlcmax(||q||2D∗q(t)− ||q̂||2D∗q̂(t)) + µ̃nl(cmax||q||2 + bmax)D∗q(t). (53)

where A := µ
cl
D + µ

nl
bmaxD

∗ − LH . The last two terms in (53) are calculated as

[Cq(t)]q(t)− [Cq̂(t)]q̂(t) =[Cq(t)]q(t)− [C(q(t)− q̃(t))](q(t)− q̃(t)),

=[Cq̃(t)]q(t) + [Cq(t)]q̃(t)− [Cq̃(t)]q̃(t). (54)

||q||2D∗q − ||q̂||2D∗q̂ =||q||2D∗q − (q − ||q||q̃)T (q − q̃)D∗(q − q̃),

=||q||2D∗q − (||q||2 − 2q̃T q + ||q̃||2)D∗(q − q̃),

=(2q̃T q − ||q̃||2)D∗q + ||q̂||2D∗q̃. (55)
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Substituting (54) into (53), the estimation error dynamics is written as

˙̃q(t) =Aq̃(t) + (µ+,clD + µ+,nlD
∗)q̃(t) + µ̃clDq(t) + [Cq̃(t)]q(t) + [Cq(t)]q̃(t)− [Cq̃(t)]q̃(t)

+ µ̂nlcmax((2q̃T q − ||q̃||2)D∗q + ||q̂||2D∗q̃) + µ̃nl(cmax||q||2 + bmax)D∗q(t). (56)

To validate the performance of the designed estimator, we aim to prove the stability of the estimation

error state q̃ governed by the differential equation in (56). Analogously to Theorem 2, a theoretical

result for ROM-CL is presented in the following theorem.

Theorem 3

Consider the estimation error system (56) and let µ̃ ∈ R2 be a vector of parameters’ error defined

by µ̃ = (µ̃cl, µ̃nl)
T . Let design the observer gain L such that the system matrix A := µ

cl
D +

µ
nl
bmaxD

∗ − LH is Hurwitz matrix and having the property

λmin(Q) ≥ 16cmaxλmax(P )M(1 +Md̄µ̂nl), (57)

where P = PT > 0 and Q = QT > 0 are the solutions of Lyapunov equation PA+ATPT = −Q.

There exists positive constants ρ0 > 0, ρu > 0, and a class KL function β and a class K function γ

such that if ||q̃(0)|| < ρ0 and ||µ̃|| < ρu, then the following estimate of the norm holds :

||q̃(t)|| ≤ β(||q̃(0)||, t) + γ (||µ̃||) , (58)

which guarantees the local input-to-state stability (LISS) of the estimation error system with respect

to the multi parametric uncertainties.

Proof

The proof of Theorem 3 is analogous to the proof of Theorem 2. Namely, we consider the candidate

of LISS Lyapunov function V defined by

V = q̃TP q̃. (59)

Let f1(q̃, µ̃cl) be defined by the first line of RHS in (56), and f2(q̃, µ̂nl, µ̃nl) be defined by the second

line of RHS. Taking the time derivative of (59), we obtain

V̇ =f1(q̃, µ̃cl)
TP q̃ + q̃TPf1(q̃, µ̃cl) + f2(q̃, µ̂nl, µ̃nl)

TP q̃ + q̃TPf2(q̃, µ̂nl, µ̃nl) (60)

Then, we have

f1(q̃, µ̃cl)
TP q̃ + q̃TPf1(q̃, µ̃cl)

={Aq̃(t) + (µ+,clD + µ+,nlD
∗)q̃(t) + µ̃clDq(t) + [Cq̃(t)]q(t) + [Cq(t)]q̃(t)− [Cq̃(t)]q̃(t)}TP q̃

+ q̃TP{Aq̃(t) + (µ+,clD + µ+,nlD
∗)q̃(t) + µ̃clDq(t) + [Cq̃(t)]q(t) + [Cq(t)]q̃(t)− [Cq̃(t)]q̃(t)},

=− q̃TQq̃ + q̃T D̄q̃ + 2µ̃clq
TDTP q̃ + ([Cq̃]q)

T
P q̃ + ([Cq]q̃)

T
P q̃ − ([Cq̃]q̃)

T
P q̃

+ q̃TP ([Cq̃]q) + q̃TP ([Cq]q̃)− q̃TP ([Cq̃]q̃), (61)
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where

D̄ = (µ+,clD + µ+,nlD
∗)TP + P (µ+,clD + µ+,nlD

∗) < 0, (62)

and hence q̃T D̄q̃ < 0. By Cauchy-Schwarz inequality,

([Cq̃]q)
T
P q̃ ≤ ||[Cq̃]q|| · ||P q̃|| ≤ ||[Cq̃]q||λmax(P )||q̃||. (63)

For all a ∈ Rn and b ∈ Rn, it holds that

||[Ca]b|| ≤ cmax||a|| · ||b||. (64)

Applying (64) to (63) with the help of ||q|| < M , we obtain

([Cq̃]q)
T
P q̃ ≤ cmaxλmax(P )M ||q̃||2. (65)

Using the same technique to all terms in the last two lines in (61) yields

f1(q̃, µ̃cl)
TP q̃ + q̃TPf1(q̃, µ̃cl)

≤− λmin(Q)||q̃||2 + 2Mλmax(−D)λmax(P )||q̃|||µ̃cl|

+ 4cmaxλmax(P )M ||q̃||2 + 2cmaxλmax(P )||q̃||3,

≤− λmin(Q)

2
||q̃||2 +

(
2Mλmax(−D)λmax(P )|µ̃cl| −

λmin(Q)

4
||q̃||
)
||q̃||

+

(
4cmaxλmax(P )M − λmin(Q)

4

)
||q̃||2 + 2cmaxλmax(P )||q̃||3. (66)

Next, we consider

f2(q̃, µ̂nl, µ̃nl)
TP q̃ + q̃TPf2(q̃, µ̂nl, µ̃nl)

=µ̂nlcmax

{
||q̂||2q̃T D̄q̃ + (2q̃T q − ||q̃||2)(qTD∗TP q̃ + q̃TPD∗q)

}
+ µ̃nl(cmax||q||2 + bmax)(q̃TPD∗q + qTD∗TP q̃), (67)

where

¯̄D = D∗TP + PD∗ < 0, (68)

and therefore ||q̂||2q̃T ¯̄Dq̃ < 0. Also, using ||q|| < M , we have

qTD∗TP q̃ + q̃TPD∗q ≤ 2Mλmax(P )d̄||q̃||, (69)

where d̄ = maxi{−dii} > 0. Applying the same technique to all terms in (67), we get

f2(q̃, µ̂nl, µ̃nl)
TP q̃ + q̃TPf2(q̃, µ̂nl, µ̃nl)

≤2Mλmax(P )d̄µ̂nlcmax(2M ||q̃||2 + ||q̃||3)

+ 2Mλmax(P )d̄(cmaxM
2 + bmax)|µ̃nl| · ||q̃||. (70)
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Finally, applying (66) and (70) to (60) leads to

V̇ ≤− λmin(Q)

2
||q̃||2

+

(
2Mλmax(−D)λmax(P )|µ̃cl| −

λmin(Q)

8
||q̃||
)
||q̃||

+

(
2Mλmax(P )d̄(cmaxM

2 + bmax)|µ̃nl| −
λmin(Q)

8
||q̃||
)
||q̃||

+

(
4cmaxλmax(P )M(1 +Md̄µ̂nl)−

λmin(Q)

4

)
||q̃||2

+ 2cmaxλmax(P )(1 +Md̄µ̂nl)||q̃||3. (71)

Therefore, by designing the observer gain L such that the condition (57) holds, we can state that if

||q̃|| ≥ p||µ̃||, (72)

where p := 16Mλmax(P )
λmin(Q) max{λmax(−D), d̄(cmaxM

2 + bmax)}, then (71) leads to

V̇ ≤ −σ||q̃||2 + δ||q̃||3, (73)

where

σ =
λmin(Q)

2
, δ = 2cmaxλmax(P )(1 +Md̄µ̂nl). (74)

Hence, similarly to the end of proof of Theorem 2, we can conclude the local ISS w.r.t. the multi

parametric uncertainties.

Remark 3

Our present work develops a state observer for ROM of the original PDE and analyzes the stability of

only the ROM-based observer dynamics, which does not guarantee a rigorous analysis with respect

to the original PDE model. Indeed, [24] analyzes the norm of the state observer with respect to the

full space of the original PDE model, while the design procedure is distinct from our present work,

we will consider such a norm analysis for our observer design in our future work.

5. PARAMETRIC UNCERTAINTY ESTIMATION BY AN EXTREMUM SEEKING

ALGORITHM

To enhance the performance of the state observer (39) or (52), based on the measured value, the

uncertain parameters estimate µ̂ = (µ̂cl, µ̂nl)
T ∈ R2 in (52) for ROM-CL, or simply µ̂ ∈ R in (39)

for ROM-G, used in the observer should be corrected through learning iterations. The learning cost

function to minimize at every iteration is an error between the measured value and its estimate,

which is formulated as

Q(µ̂) =

∫ tf

0

(y(t)− H̃q̂(t))TR(y(t)− H̃q̂(t))dt, R > 0. (75)
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Since the estimate of the parameter µ̂ affects the observer state q̂, the cost function Q is an implicit

function of µ̂. Following [5], we impose the following assumptions on the cost function.

Assumption 3

The cost function Q(·) in (75) has a local minimum at µ̂ = µ.

Assumption 4

The cost function in (75) is analytic and its variation with respect to µ̂ is bounded in the

neighborhood of µ, i.e., ||∇µ̂Q(δµ)|| ≤ ξ2, ξ2 > 0, for all δµ ∈ N (µ), where N (µ) denotes a

compact neighborhood of µ.

We apply an extremum seeking algorithm as a learning method for parameter identification. Let

µ̂(i) be the estimate of the parameter µ at i-th iteration, and we introduce an internal variable z(i)

with initial value z(1) = µ̂(1). The parameters update through ES algorithm is given by

z
(i+1)
1 =z

(i)
1 + a1δ sin

(
ω1iδ +

π

2

)
Q(µ̂(i)) (76)

µ̂
(i+1)
cl =z

(i+1)
1 + a1 sin

(
ω1iδ −

π

2

)
(77)

z
(i+1)
2 =z

(i)
2 + a2δ sin

(
ω2iδ +

π

2

)
Q(µ̂(i)) (78)

µ̂
(i+1)
nl =z

(i+1)
2 + a2 sin

(
ω2iδ −

π

2

)
, (79)

where the tuning parameters are (a1, ω1, a2, ω2, δ) which are the amplitude, the frequency, and the

iteration increment δ > 0, respectively. Owing to the convergence analysis of the extremum seeking

algorithm as presented for example in [14, 5], the performance of the learning-based observer is

addressed in the following lemma.

Lemma 3

Let Assumptions 2–4 hold. Consider the ROM-CL (37) and the designed observer (52) satisfying

(57). Furthermore, where the viscosity estimate µ̂ is tuned by the ES algorithm (76)-(79) associated

with the cost function (75) at the iteration step i ∈ N. Then, there exists ξ1 > 0 such that the norm

of the parameter estimation error and the learning cost function admit the following bounds

lim sup
i→∞

||µ̂(i) − µ|| ≤ξ1
ω

+ ||a||, (80)

lim sup
i→∞

|Q(µ̂(i))−Q(µ)| ≤ξ2
(
ξ1
ω

+ ||a||
)
, (81)

where a = (a1, a2)T , and ω = max{ω1, ω2}. Moreover, if ||q̃(0)|| < ρ0 and ||µ̃|| < ρu then the

norm of the state estimation error admits the following bound

lim sup
i→∞

||q̃(i)(t)|| ≤ β(||q̃0||, t) + γ

(
ξ1
ω

+ ||a||
)

(82)

where q̃(i)(t) = q(t)− q̂(i)(t) with the observer state q̂(i)(t) in i-th iteration, ρ0, ρu, β, and γ are

defined in both Theorems 2 and 3.
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Figure 1: Sensor placement for both temperature (red) and velocity (blue).

Proof

The proof of (80) and (81) is the same derivation as in [4], and hence is omitted here. Finally, taking

the supremum limit in the norm bound (58) in Theorem 3, we obtain

lim sup
i→∞

||q̃(i)(t)|| ≤ β(||q̃0||, t) + lim sup
i→∞

γ
(
||µ− µ̂(i)||

)
(83)

from which the norm estimate (82) is derived with the help of (80).

Remark 4

The result of Lemma 3 are obviously valid for the case of a scalar parameter µ̂ in the case of the

ROM-G (20), and its ROM-G observer (52), under condition (42).

Remark 5

Note that, due to the LISS results, the proposed method is modular, in the sense that one could use

other learning algorithms to estimate the viscosity parameter. For instance, we can readily use other

ES algorithms, with no residual oscillations, e.g., [26], or with vanishing perturbations, e.g., [17].

One could also use Bayesian optimization methods, e.g., GP-UCB [27].

6. NUMERICAL SIMULATION

6.1. Numerical solvers for the 2D Boussinesq equations

The numerical solution for the 2D Rayleigh-Benard convection problem follows the scheme

outlined in [19]. Compact fourth-order Padé finite difference schemes are used for the spatial

derivatives as in [20]. The first derivative is approximated using the stencil

αf ′i−1 + f ′i + αf ′i+1 =
a

2h
(fi+1 − fi−1)

with α = 1/4 and a = 2
3 (α+ 2). The second derivative is approximated using the stencil

αf ′′i−1 + f ′′i + αf ′′i+1 =
a

h2
(fi+1 − 2fi + fi−1)

with α = 1/10 and a = 4
3 (1− α). Time integration is performed using the optimal third-order total

variation diminishing Runge-Kutta (TVDRK3) scheme given in [21]. The stream function ψ can be
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obtained from the vorticity using the Poisson equation

∂2ψ

∂x2
+
∂2ψ

∂y2
= −ω.

This is solved using the Mehrstellen scheme [22].

6.2. Input parameters

We implement the numerical simulation by setting the spatial domain as a 2-D rectangular shape,

namely, Ω = (0, 8)× (0, 1). The non-dimensional parameters are chosen as Re = 104, Pr = 1,

and Gr = 4× 108. The setup of this experiment, e.g., [4] , is as follows: Two fluids of different

temperatures are separated by a vertical barrier at x = 4. On the right side of the barrier we have

low temperature set to 1, whereas, on the left side of the barrier we have high temperature, set to 1.5.

When we remove the barrier between the two fluids, we expect the low density, warmer fluid to rise,

while the high density, cooler fluid sinks. The flow is at rest initially (i.e., the vorticity and stream

functions are set to zero at t = 0) with constant temperature values for the left and right fluids. The

2-D equations were simulated using a vorticity-stream function formulation with no-slip boundary

conditions for vorticity and adiabatic boundary conditions for temperature. We use 10 POD basis

functions for the vorticity and 10 POD basis functions for the temperature variables computed

from snapshots taken every 2× 10−2[s]. The simulation time is set as tf =10 [s]. In Figures 2,

and 3, we present the direct numerical simulation (DNS) of (8)-(10). We show two snapshots, one

close to the initial simulation time, and one close to the final simulation time. The first snapshot,

shown in Figure 2, is taken at the initial instant t = 2× 10−2 [sec] (to avoid the trivial snapshot

corresponding to t = 0 sec showing the static boundary conditions), the second snapshot, shown in

Figure 3, corresponds to t = 8[sec]. One case see the mixing happening after the removal of the

barrier between the two fluids, which makes this case a challenging fluid dynamics example.

The observer gain is obtained using an LMI solver in MATLAB to ensure the existence of a

positive solution to the Lyapunov equation stated in Theorem 2. For measurements, we consider

5 sensors for temperature and 5 sensors for velocity, and they are placed, using Q-DEIM method,

e.g., [7], at the locations which are depicted in Fig. 1. Then, the measurement matrix H̃ in (38) is

obtained through the POD basis functions.

6.3. Algorithm for ES-based observer

After time discretization, the dynamics of the ROM-G (20) and the designed observer (39) (or

the ROM-CL (37), and its observer (52)) are described by the difference equation in the form

of q̂k+1 = f(q̂k, yk, µ̂), for k = 0, 1, · · · , Tf , with q̂k = q̂(k∆t) and Tf = tf/∆t. In numerical

experiment, the measured values {yk}
Tf
k=0 are obtained through forward simulation of the model.

Using the collected measured data as inputs, we calculate the observer state {q̂k}
Tf
k=0 with an initial
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Figure 2: True solution profile snapshot at 0.02[sec] (top: temperature, bottom: vorticity)
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Figure 3: True solution profile snapshot at 8[sec] (top: temperature, bottom: vorticity)

guess of µ̂. Once {q̂k}
Tf
t=0 has been obtained, the ES algorithm is implemented to update the learned

parameter. We repeat this process (“run observer” ↔ “parameter update”) up to I-th iterations,

where I is a chosen iteration number. After that, the averaged value of the learned parameter over

the last 10 % steps is calculated, which serves as the value for the uncertain parameter estimate.

Finally, we run the observer dynamics again, using the learned parameter. This procedure is stated

in Algorithm 1.
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Algorithm 1: Iterative learning for online parameter estimation in state observer

Input : {yk}
Tf
k=0 , µ̂(1) , q̂0;

z ← µ̂(1);

for i = 1, 2, · · · , I , do

for k = 0, · · · , tf − 1, do

q̂k+1 ← f(q̂k, yk, µ̂
(i));

ỹk ← yk −Hq̂k;

end for

Q← Trapz{ỹTk ỹt}
Tf
k=0 ;

z ← z + aδ sin
(
ωiδ + π

2

)
Q;

µ̂(i+1) ← z + a sin
(
ωiδ − π

2

)
;

end for

µ̂ave ←Mean
(
{µ̂(i)}Ii=0.9·I

)
;

for k = 0, · · · , Tf − 1, do

q̂k+1 ← f(q̂k, yk, µ̂
ave);

end for

Output : µ̂ave, {q̂k}
Tf
k=0

6.4. Simulation result

6.4.1. Case of the observer based on ROM-G: In these tests, the initial observer state is set as

q̂(0) = (1 + ε)q(0), with setting ε = 0.1, which implies that the observer state has 10 % error on

the initial conditions. The true viscosity is normalized as µ = 1.0, while the initial guess of the

estimated viscosity is set as µ̂(1) = 0.85, which has 15% error. The parameters of dither signals are

set as a1 = 0.02, ω1 = 1000, and δ = 0.001, respectively. The learned parameter is updated through

1000 iterations.

The simulation of the learning-based observer is implemented. Fig. 4 depicts the time evolution

of the first two modes in both velocity and temperature for the: true value (red), estimate before

learning (green), and the estimate after learning (blue), respectively. For all of these four states, we

can observe that the estimated value becomes much closer to the true value after ES-based learning

of the uncertain parameter. As depicted in Fig. 5, the norm of the estimation error is converging

to zero after learning (blue), while the estimation error norm before learning shows a diverging

behavior.

The update of the learned parameter µ̂(i) over the learning iterations is depicted in Fig. 6 (left).

While the initial guess of the parameter has 15% error, by employing ES we can observe that

after 200 steps the learned parameter µ̂(i) converges to the neighborhood of the true value µ̂. The
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Figure 4: Evolution of first and second modes in both velocity and temperature states of ROM-G:

True value (red), estimate before learning (green), and estimate after learning (blue). For all of the

modes given here, we can observe that the estimate value is highly improved after learning the

uncertain parameter.

amplitude of the learned parameter around the averaged value directly depends on the amplitude

a of the dither signal for ES, which can be tuned by the user. Smaller choice of a decreases the

amplitude of the learned parameter, however, the convergence speed becomes slower in general.

Such a tradeoff can be dealt by performance improvement of the ES algorithm proposed in [17],

which provides convergence to global optima in the presence of local extrema. Finally, the iterative

update of the cost function is shown in Fig. 6 (right), from which we observe the convergence to

the minimum value of Q after 100 steps. Overall, the proposed method for a learning-based state

estimation shows a good performance in this numerical study of the challenging 2-D Boussinesq

equations.

However, for this challenging, near turbulent case, the states’ norm of reduced order model ROM-

G is diverging, for large time intervals, as depicted in Fig. 7, which violates the boundedness of the

solution given in Lemma 1. This observation leads us to further study the performance of ROM-CL

and its observer for the large time intervals.

6.4.2. Case of the observer based on ROM-CL: Next, we have studied the performance of the

observer based on ROM-CL (52). Following the results in [4], the true (normalized) parameters

are chosen as µcl = 1.0 and µnl = 1.25 · 10−3. The initial value of the learning parameters are
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Figure 5: Comparison of the estimation error’s norm before learning (green) and after learning

(blue), which illustrates high improvement of the estimater performance through ES-based auto-

tuning of parameter.
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Figure 6: Updates of the learned parameter (left) and the cost value Q (right) by ES through 1000

iterations. After 200 steps, the learned parameter µ̂(i) stays on neighborhood of the true value

µ = 1.0. The averaged value of the learned parameter over the last 100 steps becomes µ̂ave = 1.0,

same value as the true value. The value of the cost is largely decreased during the first 100 steps,

and after that it maintains small oscillations around the minimum.

0 5 10 15 20
0

100

200

300

Figure 7: Divergence of ROM-G states’ norm for large time interval is observed, which leads us to

propose ROM-CL model and its observer.

µ̂
(1)
cl = 0.8 (20% error) and µ̂

(1)
nl = 10−3 (20% error). The amplitudes and the frequencies of the

dither signals in ES algorithm are set as a1 = 0.01, a2 = 1.0 · 10−4, ω1 = 1000, ω2 = 1500, with the
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Figure 8: Evolution of first and second modes in both velocity and temperature states of ROM-CL:

True value (red), estimate before learning (green), and estimate after learning (blue). We observe

that the estimate value is highly improved after learning two parameters.
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Figure 9: Comparison of the estimation error’s norm before learning (green) and after learning

(blue), which illustrates high improvement of the estimator’s performance through multi-parametric

ES-based learning.

iteration increment δ = 0.001. We implemented the proposed learning-based estimation for ROM-

CL with 5000 iterations.

Fig. 8 depicts the time evolution of the first two modes in both velocity and temperature states

of ROM-CL: true value (red), estimate before learning (green), and estimate after learning (blue).

First, the boundedness of the true states is observed, which shows the expected effect of the closure
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Figure 10: Updates of the learned parameters through multi-parametric ES: viscosity coefficient µ̂cl

(left) and ROM-CL’s damping parameter µ̂nl (right).
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Figure 11: Decrease of the cost value through the parameters’ learning.

model. Second, the estimated states becomes much closer to the true states after the multi-parametric

ES-based learning of the uncertain parameters. The norm of the estimation error is depicted in Fig.

9 before learning (green) and after learning (blue), which illustrates the high improvement of the

estimation through multi-parametric learning of uncertain parameters by ES.

Fig. 10 shows the updates of the learned parameters through the iterations: the viscosity

coefficient µ̂cl (left) and ROM-CL’s damping parameter µ̂nl (right). As observed from Fig. 11, the

value of the cost Q is decreased through the first 1000 iterations. Overall, we see that the proposed

method is successful also for ROM-CL under the large time interval.
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7. CONCLUSIONS AND FUTURE WORK

In this paper, we develop a learning-based robust observer design for POD-ROM models of

the Boussinesq equations. We prove ISS between the states estimation error and the uncertain

parameters estimation error. Then, we use ES for online estimation of model parametric

uncertainties. The proposed method is applied to the 2-D Boussinesq equations, which illustrates

the good performance in estimating the entire POD time coefficients, i.e., the entire profile of

temperature and velocity which can be obtained by lifting the POD time coefficients to the x-domain

by using the POD basis functions parametrization of the temperature and velocity. In future works,

we will study the case of 3-D Boussinesq equations, which correspond to a more realistic model of

indoor airflows related to practical applications in HVAC systems.
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APPENDIX A DESIGN OF THE OBSERVER GAIN L VIA LMI

For a system

ẋ(t) = Ax+Bu, (84)

y = Cx, (85)

We design the observer

˙̂x(t) = Ax̂(t) +Bu+ L(y − Cx̂(t)). (86)

The error system is

˙̃x(t) = (A− LC)x̃(t). (87)

We design the observer gain L so that there exists a positive matrix P which satisfies the following

Lyapunov equation

P (A− LC) + (A− LC)TP < 0, (88)

which is equivalent to (through the expansion),

ATP + PA− CTLTP − PLC < 0. (89)

Since L and P are unkown variables, PL is a nonlinear term on the unknown variables. Hence, we

define M := −PL. Then, the matrix inequality becomes

ATP + PA+ CTMT +MC < 0, (90)

under the constraint P > 0. Now, the problem is to find P and M such that the linear matrix

inequality (90) holds. By Schur’s compliment, the problem is equivalent to the following matrix

inequality  ATP + PA+ CTMT +MC 0

0 −P

 < 0, (91)

which can be solved by LMI solver in MATLAB.
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