
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
https://www.merl.com

Overview of the Eighth Dialog System Technology
Challenge: DSTC8

Kim, Seokhwan; Galley, Michel; Gunasekara, Chulaka; Lee, Sungjin; Atkinson, Adam; Peng,
Baolin; Schulz, Hannes; Gao, Jianfeng; Li, Jinchao; Adada, Mahmoud; Huang, Minlie; Lastras,

Luis; Kummerfeld, Jonathan K.; Lasecki, Walter S.; Hori, Chiori; Cherian, Anoop; Marks, Tim K.;
Rastogi, Abhinav; Zang, Xiaoxue; Sunkara, Srinivas; Gupta, Raghav

TR2021-064 June 04, 2021

Abstract
This paper introduces the Eighth Dialog System Technology Challenge. In line with recent
challenges, the eighth edition focuses on applying end-to-end dialog technologies in a prag-
matic way for multi-domain task-completion, noetic response selection, audio visual scene-
aware dialog, and schema-guided dialog state tracking tasks. This paper describes the task
definition, provided datasets, baselines and evaluation set-up for each track. We also summa-
rize the results of the submitted systems to highlight the overall trends of the state-of-the-art
technologies for the tasks.

IEEE/ACM Transactions on Audio, Speech, and Language Processing

c© 2021 ACM. Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org or
Publications Dept., ACM, Inc., fax +1 (212) 869-0481.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139





1

Overview of the Eighth Dialog System
Technology Challenge: DSTC8

Seokhwan Kim, Michel Galley, Chulaka Gunasekara, Sungjin Lee,
Adam Atkinson, Baolin Peng, Hannes Schulz, Jianfeng Gao, Jinchao Li,

Mahmoud Adada, Minlie Huang, Luis Lastras, Jonathan K. Kummerfeld,
Walter S. Lasecki, Chiori Hori, Anoop Cherian, Tim K. Marks,

Abhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara, Raghav Gupta

Abstract—This paper introduces the Eighth Dialog System
Technology Challenge. In line with recent challenges, the eighth
edition focuses on applying end-to-end dialog technologies in a
pragmatic way for multi-domain task-completion, noetic response
selection, audio visual scene-aware dialog, and schema-guided
dialog state tracking tasks. This paper describes the task defini-
tion, provided datasets, baselines and evaluation set-up for each
track. We also summarize the results of the submitted systems
to highlight the overall trends of the state-of-the-art technologies
for the tasks.

I. INTRODUCTION

The Dialog System Technology Challenge (DSTC) is an
ongoing series of research competitions for dialog systems. To
accelerate the development of new dialog technologies, the
DSTCs have provided common testbeds for various research
problems. The earlier Dialog State Tracking Challenges [1],
[2], [3] focused on developing a single component for dialog
state tracking on goal-oriented human-machine conversations.
Then, DSTC4 [4] and DSTC5 [5] introduced human-human
conversations and started to offer multiple tasks not only for
dialog state tracking, but also for other components in dialog
systems as the pilot tasks. From the sixth challenge [6], the
DSTC has rebranded itself as “Dialog System Technology
Challenge” and organized multiple main tracks in parallel
to address a wider variety of dialog related problems. Most
recently, DSTC7 [7], [8] focused on developing end-to-end
dialog technologies for the following three tracks: noetic
response selection [9], [10], grounded response generation [11],
and audio visual scene aware dialog [12].

For the eighth DSTC, we received seven track proposals
and went through a formal peer review process focusing on
each task’s potential for (a) broad interest from the research
community, (b) practical impact of the task outcomes, and
(c) continuity from the previous challenges. Finally, we ended
up with the four main tracks including two newly introduced
tasks and two follow-up tasks of DSTC7. Multi-domain task-
completion track (Section II) addresses the end-to-end response
generation problems in multi-domain task completion and cross-
domain adaptation scenarios. NOESIS II (Section III) explores
a response selection task extending the first NOESIS track in
DSTC7 and offers two additional subtasks for identifying task
success and disentangling conversations. Audio visual scene-
aware dialog track (Section IV) is another follow-up track of

DSTC7 which aims to generate dialog responses using multi-
modal information given in an input video. Schema-guided
dialog state tracking track (Section V) revisits dialog state
tracking problems in a practical setting associated with a large
number of services/APIs required to build virtual assistants in
practice.

More than 280 participants were registered in one or several
of the tracks; finally 70 teams submitted their final results; and
37 scientific papers were presented in the DSTC8 workshop
which was held on February 8, 2020 collocated with the Thirty-
Fourth AAAI Conference on Artificial Intelligence (AAAI-20).
The remainder of this paper describes the details of each track.

II. MULTI-DOMAIN TASK-COMPLETION TRACK

This track offers two tasks to foster progress in two important
aspects of dialog systems: dialog complexity and scaling to new
domains. One task is the end-to-end task-oriented dialog task
aiming to solve the complexity of building end-to-end dialog
systems that span over multiple sub-domains to accomplish
complex user goals. The other is the fast domain adaptation
task to address the domain adaptation problem by investigating
how a dialog system trained on a large corpus can be adapted
to a new domain given a smaller in-domain corpus.

A. Task 1: End-to-end multi-domain dialog system

Previous work in dialog research communities mainly
focuses on individual components in a dialog system and
pushes forward the performance of each component. However,
the improvement of individual components does not necessarily
boost the entire system performance [13], [14]. The metrics
used for an individual component might not be significant for
an end-to-end system, and the propagation of error down the
pipeline is likely to mitigate the component-wise improvement.
With these concerns, recently researchers have taken efforts
to create end-to-end approaches [15], [16], but it is hard to
compare them with conventional methods given the efforts
and complexity to combine individual models in conventional
approaches.

To address these concerns, we provide ConvLab1 [13], a
multi-domain end-to-end dialog system platform covering a
range of state-of-the-art models, to reduce the efforts of building

1https://github.com/ConvLab/ConvLab
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and evaluating end-to-end dialog systems. Based on ConvLab,
participants of the task are to build a dialog system that
takes natural language as input, tracks dialog states during the
conversation, interacts with a task-specific knowledge base,
and generates natural language response as output. There
is no restriction on system architectures, and participants
are encouraged to explore various approaches ranging from
conventional pipeline systems to end-to-end neural approaches.

1) Data: In this task, we consider MultiWOZ [17] dataset,
a dialog corpus collected from conversations over multiple
domains under the tourist information desk setting. It consists
of 10,438 dialogues and covers 7 domains, including Attraction,
Hospital, Police, Hotel, Restaurant, Taxi, and Train. We
enhanced the dataset with additional annotation for user dialog
acts, which is missing in the original dataset, and included it
in ConvLab.

2) Evaluation and Results: Two evaluation metrics are
offered in this task:

Simulator-based evaluation: The end-to-end user simulator
for automatic evaluation is constructed by combining an
agenda-based user simulator [18], a rule-based natural
language generation (NLG) model and a multi-intent language
understanding (MILU) model, all of which have been
implemented in ConvLab. The evaluation metrics employed
include success rate, average reward, and number of turns for
each dialog. We also report precision, recall, and F1 score for
slot prediction.

Crowdworker-based human evaluation: With simulator-
based automatic evaluation, we filter out low-quality
submissions and send the remaining systems to Amazon
Mechanic Turk for human evaluation. Crowd-workers
communicate with the system via natural language, judge the
system and provide ratings based on language understanding
correctness, response appropriateness on a 5 point Likert-scale.
Extra metrics including success rate and number of turns are
also reported.

Twelve teams participated in this task. Table I lists the results
for both human evaluation and simulator-based evaluation. A
component-wise system with BERT-based NLU model [19],
elaborated rule-based dialog policy and dialog state tracker
achieves the best success rate of 88.80% in simulator-based
evaluation. However, there are discrepancies between human
evaluation and simulator-based evaluation. The best system
in the human evaluation is based on fine-tuning GPT-2 [20].
It predicts dialog states, system actions, and responses in an
end-to-end fashion, and achieves a success rate of 68.32%.

B. Task 2: Fast Adaptation Task

Neural dialog response generators require very large datasets
to learn to output consistent and grammatically correct sen-
tences [21], [22], [23]. This makes it extremely hard to scale
out the system to new domains with limited in-domain data,
for example, when modeling user responses for a task-oriented
chatbot on a narrow domain. With this challenge, our goal is to
investigate whether sample complexity can decrease with time,

i.e., if a dialog system that was trained on a large corpus can
learn to converse about a new domain given a much smaller
in-domain corpus.

1) Data: We provide two dialog datasets, in which each
dialog belongs to exactly one domain.

Reddit Dataset We constructed a corpus of over five million
dialogs from Reddit submissions and comments spanning one
year of data. Content is selected from a curated list of one
thousand subreddits using a methodology similar to the DSTC7
sentence generation task [11]. We provide pre-processing code
for Reddit data so that all participants work on the same corpus.

Goal-Oriented Corpus MetaLWOz We collected 37 884
goal-oriented dialogs via crowd-sourcing using a Wizard of Oz
scheme. These dialogs span 47 domains (e.g. bus schedule,
alarm setting, banking) and are particularly suited for meta-
learning dialog models. For each dialog, we paired two crowd-
workers, one had the role of being a bot, and the other one was
the user. We defined 227 tasks distributed over the domains.
Note that all entities were invented by the crowd-workers
(for instance, the address of a bus stop) and the goal of this
challenge is to predict convincing user utterances.

2) Evaluation and Results: We evaluate responses by the
domain-adapted dialog model using two metrics:

Automatic metrics: For each incomplete test dialogue, a set
of 128 complete single-domain MultiWOZ [17] dialogs is
provided to the model, which is then asked to respond to the
incomplete test dialog. Intents and slot values correctly detected
by the baseline NLU (cf. Sec. II-A) in the response serve as
an indicator that the domain adaptation was successful. We
report intent F1 as well as intent+slot F1.

Human evaluation: The model is given a small set of
complete dialogs from a held-out MetaLWOz domain, and is
then asked to predict a response to an incomplete dialog from
the same domain. Three human annotators were asked to judge
the appropriateness, informativeness and utility of the responses
[11] given the MetaLWOz task, i.e. whether the simulated user
tries to complete the task. Crowd-workers submit pairwise
binary preference judgements given dialog context and metric.
Pairs are picked using Multisort [24] and per dialog/metric
rankings are aggregated using Copeland’s method [25]. We
use bootstrapping [26] over dialog contexts to assess ranking
robustness and found it to be stable. Inter-annotator agreement
[27], [28] is at κ = 0.29. No method outperformed the ground
truth.

As a baseline, we provided a retrieval model that relies
on FastText embeddings [29] of SentencePiece tokens [30]
and only takes into account the given in-domain dialogs. The
track received four submissions, all of which surpassed baseline
performance on automatic evaluation. As in Task 1 (Sec. II-A2),
we find differences in ranking between human and automatic
evaluation.

The two best teams use a Transformer [31] (TeamB)
or BiLSTM-based [32] (TeamA) base model that is fine-
tuned on the in-domain dialogs. The BiLSTM-based model
is additionally fine-tuned on dynamically sampled Reddit
dialogs, while the Transformer model additionally ranks both
the observed in-domain dialog responses and the generated
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TABLE I: Task 1 Evaluation Results

Human Evaluation Simulator-based Evaluation

Team Succ. % Under. Appr. Turns Succ. % Reward Turns Prec. Rec. F1 Book %

Baseline 56.45 3.10 3.56 17.54 63.40 30.41 7.67 0.72 0.83 0.75 86.37
Besthuman 68.32 4.15 4.29 19.51 79.40 49.69 7.59 0.80 0.89 0.83 87.02
Bestsimulator 65.81 3.54 3.63 15.48 88.80 61.56 7.00 0.92 0.96 0.93 93.75

Besthuman: The best team for human evaluation. Bestsimulator: The best team for simulator-based evaluation.
Metrics: Succ.: success rate, Under.: understanding score, Appr.: appropriateness score, Prec./Rec.: precision/recall of slots prediction.

response using next sentence classification. Team C first fine-
tuned GPT-2 on the MetaLWOz training corpus, then fine-tuned
it further on the support sets of the MetaLWOz and MultiWOZ
test sets. Team D trained a Bi-LSTM encoder and attentional
LSTM decoder on both Reddit and MetaLWOz training corpora,
without any fine-tuning to the test sets.

III. NOESIS II: PREDICTING RESPONSES TRACK

This track is a follow-up to DSTC 7 Track 1, ‘NOESIS:
Noetic End-to-End Response Selection Challenge’ [7], where
the next-utterance selection problem in two-party dialogues
was considered in two domains. This task extends the previous
challenge in three ways: (1) conversations with more than two
participants; (2) predicting whether a dialogue has solved the
problem or not; (3) handling multiple simultaneous conversa-
tions in the same communication channel. Each of these adds
an important aspect of real-world conversations.

A. Task definition

The primary task of focus is the next-utterance selection.
In this problem, each example consists of a partial dialogue
and a set of options for what the next utterance is in the
dialogue. Participants must rank the potential messages plus
the possibility that the true next message is not in the set. We
followed the configuration from DSTC 7 track 1, with one
hundred options for the next message. In 20% of cases, the true
next message is not in the set. Participants were permitted to
use the provided external knowledge sources in their systems.

1) Supplementary task 1: In-Channel Selection: The first
supplementary task was a variant of the main task in which the
conversation context was not a prefix of a single conversation,
but instead a section of chat from the raw Ubuntu IRC channel.
The raw chat often contained multiple conversations, including
cases where speakers participate in multiple conversations
simultaneously. To reduce ambiguity about which conversation
the next message is part of, we provided the identity of the
speaker.

2) Supplementary task 2: Task Completion Success: The
second supplementary task considered identification of task
success in the Advising data. Specifically, we provided a partial
conversation and participants had to identify utterances that
indicated the student had accepted or rejected the advisor’s
suggestion. Cases were also included in which no utterance
accepting or rejecting the suggestion was present.

3) Supplementary task 3: Dialogue Disentanglement: The
final supplementary task considered the process of extracting
conversations from chat logs. We provided sections of the logs

as input and requested sets of messages as output, where each
set corresponded to a conversation.

The detailed task description is shown at the github page2.

B. Data

As in DSTC 7 track 1, two sources of data were considered.
Both are task oriented, but one is much broader in scope and
has more data (Ubuntu) while the other is smaller and more
focused (Advising).

1) Ubuntu: A new set of disentangled Ubuntu IRC dialogues
was provided for this challenge based on recent work [33].
These are derived from the raw Ubuntu logs directly, not
from any prior corpus. The dataset consists of multi-party
conversations extracted from the Ubuntu IRC channel.3 A
typical dialogue starts with a question that was asked by one
participant, and then other participants respond with either an
answer or follow-up questions that then lead to a back-and-forth
conversation. In this challenge, the context of each dialogue
contains at least three messages between the participants. The
next turn in the conversation is guaranteed to be from one of
the participants who has spoken so far.

For the first supplementary task, we use raw samples from
the channel, with pre-processing for speaker identification. For
the third supplementary task, we used data from [33], without
pre-processing.

The test data for each task was chosen so that it did not
overlap with any other sets. For example, the test data for the
main task came from a portion of the IRC log that was not
used for training or testing in any other subtask. This was done
to avoid information leakage across tasks and data.

We randomly split the conversations into training, de-
velopment, and test sets. The development set had 4,827
conversations, the test set had 5,529 conversations, and the
training set had the rest. For the first supplementary task there
were 112,262 instances for training, 9,565 for development,
and 9,027 for testing. For the third supplementary task, we
use the training, development and test split from [33], which
contains 67,463 messages for training, 2,500 for development,
and 5,000 for testing.

2) Advising: This dataset contains two party dialogues that
simulate a discussion between a student and an academic
advisor. The purpose of the dialogues is to guide the student
to pick courses that fit not only their curriculum, but also
personal preferences about time, difficulty, areas of interest,
etc. The conversations used are the same as those used in

2https://github.com/dstc8-track2/NOESIS-II
3https://irclogs.ubuntu.com/
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TABLE II: Fast Adaptation Task Evaluation Results

Automatic Evaluation Human Evaluation

Submission Intent F1 Intent & Slot F1 Mean Bootstrap Rank Final Rank

Baseline 0.52 0.27 3.97 4
TeamA 0.79 0.60 3.03 3
TeamB 0.64 0.48 1.01 1
TeamC 0.61 0.42 1.99 2
TeamD 0.55 0.42 5.00 5

Time Speaker Message

12:30 s0 how can i boost microphone volume? The volume is toooooo low
12:30 s1 s0 , look for a microphone boost in alsamixer
12:30 s2 s0 : type ’alsamixer’ into terminal
12:31 s0 how the heck do i use alsamixer? :P what is microphone ?
12:32 s0 how do i choose volume on input s2 ?
12:33 s2 s0 : arrow keys up and down
12:33 s0 s2 , yes i understand that. But wich one of those things am i supposed to choose ?
12:33 s2 s0 : you wanted input, right?
12:34 s0 s2 , yes. But i there is no way i can turn that up. :S
12:34 s2 s0 : press tab to go over to capture, then turn it up
12:34 s0 aha :) thanks

Speaker Message

Student Hello!
Advisor Hi!
Student I am currently trying to figure out what courses to take next semester.
Student Could you suggest any?
Advisor Let me see. Give me a minute to go over your transcript
Advisor Can you tell me what your preferences are?
Student Of course! I am interested in Computer Science, video game design is something that has always

been interesting for me.
Advisor Eecs 280 I should a prerequisite for most computer science classes, including game design
Student Okay yeah I will take that course. Do you know of any other prerequisites for game design?
Advisor Eecs 281 is also necessary, and unfortunately you can’t take both 280 and 281 in the same

semester.
Advisor You should take Eecs 203 as that is also a prerequisite for most Eecs classes
Student Okay thanks for the info! Are both EECS 203 and EECS 280 project based?
Advisor 280 is all project based and 203 is not, but don’t let that fool you. Many students say 203 is

harder than 280
Student Oh wow okay so do you think that taking them both in the same semester will be manageable?
Advisor If you have a good grasp of probability and combinations it I should perfectly manageable

Fig. 1: Examples of data in NOESIS II track: new dialogues from Ubuntu (top) and prior dialogues from Advising (bottom).

Property Advising Ubuntu

Dialogues 700 496,469
Average Number of Speakers 2 2.6
Utterances / Dialogue 18.6 7.2
Tokens / Utterance 9.8 11.4
Utterances / Unique utterances 4.4 1.2
Tokens / Unique tokens 10.5 44.1

TABLE III: Comparison of the two data sources (based on
training, development, and test data). Tokens are identified by
splitting on whitespace.

DSTC 7 task 1 [7]. They were collected by having students at
the University of Michigan act as the two roles using provided
personas. Structured information in the form of a database
of course information was provided, as well as the personas

(though at test time only information available to the advisor
was provided, i.e. not the explicit student preferences). The
data also includes paraphrases of the sentences and of the target
responses.

The training, development, and test sets were the same as in
DSTC 7 track 1. The development and test sets are based on
100 raw conversations, each paraphrased five times and then
cut off at different points. The training set is based on 500
conversations, also paraphrased five times, but then remixed
many times. For the second supplementary task, we use the
same data split. Instances were annotated by one of the authors.

Examples conversations from the two datasets are shown
in Figure 1 and and Table III shows stats about the datasets.
A training set with answers was provided to participants to
use as they wished. For the evaluation period, inputs for the
test set were provided. The answers for the test set were not
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released until after the challenge was complete.

C. Evaluation and Results

A range of metrics were considered to evaluate the submis-
sions. The main task and the first supplementary task followed
DSTC 7 track 1, using the mean of (a) Recall@10 and (b)
mean reciprocal rank (MRR). The second supplementary task
used accuracy, measured as whether each example was correct
or not. The final supplementary task used precision, recall,
and F-score over complete conversations and several clustering
metrics (Variation of Information [34], Adjusted Rand Index,
and Adjusted Mutual Information). These treat each message
as an item and conversations as clusters.

We provided baselines for task 1 and task 4. The task
1 baseline was a slightly modified form of the encoder-
decoder baseline provided in track one of DSTC 7. The task
4 baseline was from [33]: a feedforward neural network that
uses GloVe embeddings and structural features to represent the
conversation.

D. Discussion

In this section we discuss the results obtained by the
participants in all tasks for the challenge.

1) Main Task: While many participants used a version of
BERT[19] as their main model, there was still a broad range
of results. This indicates the importance of elements like the
loss definition, data augmentation, and text segmentation, in
achieving strong results. The team ranked 1st for this task used
RoBERTa[35] with a technique to augment the training data
and a binary classification at the last layer of the network. One
clear trend was a switch from the ESIM model [36] used by
participants in DSTC 7 to BERT and RoBERTa.

Performance varied significantly on the main task, with
the best teams scoring far higher than the reference baseline
provided. As in DSTC 7, the Advising data proved harder.
Unlike in DSTC 7, the best approach varied across the datasets,
with the best approach on Ubuntu coming second on Advising
and the best approach on Advising coming 5th on Ubuntu.

One aspect of the challenge was identifying when no true
answer was present. Seven teams did better on cases with no
answer and ten teams did better on cases with an answer. Table
IV shows the scores of top 3 teams on the main task.

2) Supplementary task 1: In-Channel Selection: As expected,
shifting to the more realistic setting of the raw channel led
to lower performance. This suggests that the complications
introduced in the raw setting are real, but surmountable. Table
V shows the scores of the 3 top performed teams on this task.

3) Supplementary task 2: Task Completion Success: All
three teams that attempted this new task performed well in
general and the results are shown in Table VI. Task success
could be a good signal for training dialogue systems with
reinforcement learning, and so these results are an encouraging
sign that automated training via interaction with people may
be feasible (with success detection as the reward).

Two teams had almost exactly the same results (3 and 15).
Investigating these further, we found several differences in the

patterns of errors in their output. Team 15 tended to predict
“No Decision Yet” more often, achieving higher recall and
lower precision that team 3 on that category. The trend was
reversed for “Accept”, with team 3 predicting it more often and
achieving higher recall and lower precision. For identifying
“Reject”, the results were extremely similar.

4) Supplementary task 3: Dialogue Disentanglement: Only
one team attempted this supplementary task, but they achieved
strong performance (shown in Table VII, improving over the
baseline by 7.8 F1. This is still far from perfect performance,
indicating that this problem remains an open challenge.

IV. AUDIO VISUAL SCENE-AWARE DIALOG TRACK

Spoken dialog systems on the market are still missing
one important piece of technology: natural and context-aware
human-machine interaction, in which machines understand
the surrounding scene from the human perspective and are
able to share their understanding with humans using natural
language. The goal of building an automated system to converse
with humans about surrounding scenes via natural dialog is
a challenging research problem that lies at the intersection
of natural language processing, computer vision, and audio
processing. To advance research into multimodal reasoning-
based dialog generation, we developed the Audio Visual Scene-
Aware Dialog (AVSD) dataset and held the AVSD challenge in
DSTC7. The DSTC7 winning system of the challenge applied
hierarchical attention mechanisms to combine text and visual
information, yielding a relative improvement of 22% in the
human rating of the output of the winning system vs. that of the
baseline system. This large improvement suggested that there
is perhaps significantly more potential in store for advancing
this new research area. Toward this end, we proposed a second
edition of our AVSD challenge in DSTC8.

A. AVSD Task definition

This track is a follow-up of the AVSD track from DSTC7 to
evaluate using on a new set of previously unseen test questions
from the AVSD dataset. In this track, the system must generate
a sentences as a response to a user question, in the context of a
given dialog about a video. The target of both VQA and VisDial
was sentence selection based on information retrieval. For real-
world applications, however, spoken dialog systems cannot
simply select from a small set of predetermined sentences.
Instead, they need to immediately output only one response to
a user input, and the quality of the 1-best hypothesis needs to
be evaluated precisely. For this reason, in this track we focus
on sentence generation rather than sentence selection. In this
track, the system’s task (illustrated in Figure 2) is to use a
dialog history (the previous rounds of questions and answers in
a dialog) and (optionally) a brief video script (also referred to
as the caption), plus (in one version of the task) the visual and
audio information from the input video, to answer a follow-
up question about the video. The detailed task description is
shown at the github page of DSTC8 AVSD4.

4https://github.com/dialogtekgeek/DSTC8-AVSD
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TABLE IV: Results of the top 3 performers in Track 2 - main task (subtask 1)

Ubuntu Advising

Team R@1 R@5 R@10 MRR Team R@1 R@5 R@10 MRR

Baseline 0.212 0.421 0.565 0.325 Baseline 0.222 0.493 0.622 0.355
15 0.761 0.958 0.979 0.848 17 0.564 0.806 0.878 0.677
12 0.719 0.948 0.976 0.819 15 0.306 0.632 0.762 0.455
5 0.663 0.943 0.974 0.786 13 0.254 0.560 0.690 0.401

Recall@
Team 1 5 10 MRR Score

3 0.505 0.755 0.834 0.621 0.727
13 0.596 0.847 0.904 0.707 0.806
15 0.706 0.916 0.957 0.799 0.878

TABLE V: Results for the in-channel next-utterance selection
task (Ubuntu).

Team Exact Match Precision Recall F1

3 80.0 83.2 80.2 81.7
13 66.2 70.7 66.2 68.4
15 80.8 83.2 80.2 81.7

TABLE VI: Results for the advising success task (Advising).

B. Data and Baseline System

We collected (in [12]) text-based dialogs about short videos
from the Charades dataset5 [37], which consists of untrimmed
multi-action videos along with a brief script for each video.
The data collection paradigm for dialogs was introduced in
[38]. We extracted the test data for DSTC8 from the collected
data. In our audio visual scene-aware dialog setup, two parties
had a discussion about events in a video. One of the two
parties played the role of an answerer who had already watched
the video and read the video script. The answerer answered
questions asked by their counterpart, the questioner. The
questioner was not allowed to watch the video but was able
to see three frames of the video (the first, middle, and last
frames) as static images. The two parties had 10 rounds of
Q and A, in which the questioner asked about the events that
happened in the video. At the end, the questioner summarized
the events in the video as a video description. This downstream
task incentivized the questioner to collect useful information
for the video description. Table VIII shows the data statistics.

We provided the same baseline system in both DSTC7 and
DSTC8. This baseline system and an additional submitted
system featuring encoder-decoder models using multimodal
fusion are described in [39]. The baseline system utilizes
two state-of-the-art feature encoders, which are described in
more detail below, to capture the information from the video:
I3D [40] for visual information, and Audio Set VGGish [41]
for audio. The VGGish model was trained to predict an
ontology of more than 600 audio event classes from only the
audio tracks of 2 million human-labeled 10-second YouTube
video soundtracks [41]. The I3D features [40] are state-of-
the-art spatiotemporal features that were developed for action
recognition. The I3D model inflates the 2D filters and pooling

5http://allenai.org/plato/charades/

Team P R F VI Rand AMI

Baseline 36.3 39.7 38.0 0.915 0.650 0.837
3 44.3 49.6 46.8 0.933 0.752 0.865

TABLE VII: Results for the conversation disentanglement task
(Ubuntu).

… …

Caption: “A man walks into the room carrying a 
folder, that he throws on a pile of clothes. He then 
picks up a vacuum, turns it on and vacuums. Then, 
shuts it off, and sneezes four times.”

Input Video and its Audio

Q1: “Is the machine vacuum cleaner?” 
A1: “Yes, the machine on the floor is a vacuum.”

A2: “It looks like a laundry room”

Question

Generated answer

Q2: “What room do you think it is? “
A2: __UNDISCLOSED__

Dialog History

Fig. 2: A sample dialog for the AVSD challenge data set. Given
a video clip (including audio), its caption, dialog history, and a
follow-up question, the AVSD generation task aims to generate
an answer to the question in natural language form.

kernels from the Inception V3 network along their temporal
dimension, building 3D spatiotemporal ones. We pre-computed
these features for all of the videos in the dataset (including
the test videos), and we made them available to all challenge
participants. Detailed results from all models on the DSTC7

TABLE VIII: The dialog data for the AVSD track. The test
videos for this challenge were selected from the official test
data of the Charades dataset.

DSTC7 DSTC8
training validation test test

# of dialogs 7,659 1,787 1,710 1,710
# of turns 153,180 35,740 13,490 18,810
# of words 1,450,754 339,006 110,252 178,619
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challenge, including additional techniques and data set details,
were reported in [42].

C. Evaluation

In both DSTC7 and DSTC8, each automatically generated
answer was evaluated by comparing with 6 human-generated
ground-truth answers: the answer from the original dialog plus
5 subsequently collected answers. We used the MS COCO
evaluation tool6 for objective evaluation of system outputs. The
supported metrics include word-overlap-based metrics such as
BLEU, METEOR, ROUGE_L, and CIDEr. We also collected
human ratings of the responses of each system using a 5-point
Likert Scale, where humans rated system responses given a
dialog context as: 5 (very good), 4 (good), 3 (acceptable), 2
(poor), or 1 (very poor).

D. Outcomes from DSTC7

In the AVSD Challenge at DSTC7, Most systems employed
an LSTM, Bidirectional LSTM, or GRU encoder/decoder.
Some systems used hierarchical and attention frameworks.
Furthermore, several additional techniques were introduced
to improve the response quality, such as Maximum Mutual In-
formation (MMI) and Episodic Memory Module [42]. The best
system applied hierarchical attention mechanisms to combine
text and visual information, yielding a relative improvement
of 22% in human ratings compared to the baseline system.
The language models trained using the text information alone
(without video or audio) also performed strongly despite the
lack of multimodal information. After the AVSD Challenge
at DSTC7, [38] also reported results on the AVSD dataset
(although instead of evaluating on the sentence generation task
as in the AVSD challenge, that paper evaluated performance
on a the task of sentence selection).

In general, results on the AVSD dataset show that including
dialog history provided a large boost to performance as
compared to only providing the one question to be answered.
This makes sense, as dialogs are self-referential; in the AVSD
dataset, 55% of the questions contain co-reference words such
as her, they, and it. Such questions strongly depend on the
prior rounds of dialog. Systems using text information alone
(questions, answers, and dialog history) performed quite well.
Nonetheless, adding the audio and video as inputs improved
systems’ performance further by providing complementary
information to ground the questions.

Furthermore, the best performance is achieved when systems
have access to the video script (caption). Using such manual
descriptions improves the performance of all systems. However,
such summaries are unavailable in the real world, posing
challenges during deployment. Recently, [43] proposed an
approach to transfer the power of a teacher model that was
trained using summaries to a student model that does not have
access to summaries at test time.

6https://github.com/tylin/coco-caption

Fig. 3: Distribution of human rating scores across score values
for each system. The figure shows each system’s distribution of
rating scores (1, . . . , 5) across all sentences and all raters. In
this figure, the area of the violin plot for each score indicates
the number of scores at each level on the Likert scale.

E. DSTC8 Results

In this section, we analyze the results from the AVSD
challenge track at DSTC8 of each of the submitted systems,
which are summarized in Table IX [44]. Most of the DSTC8
systems employed transformers, rather than recurrent networks
using LSTM or GRU. The inclusion of transformers drastically
improved performance on the AVSD task from DSTC7 to
DSTC8, similar to transformer-powered improvements that
have been observed in other applications such as machine
translation and speech recognition and synthesis. Two of the
most successful systems extracted semantic features of the
word sequences by initializing network weights using a pre-
trained model such as BERT or GPT-2, then fine-tuning on the
AVSD dataset.

Figure 3 plots the human ratings for each team’s best-scoring
system. It is evident from the figure that the distribution of
human rating scores across all systems appears to be bimodal—
most answers are rated either highly (5) or poorly (1), with few
examples in the middle. This is because the human ratings of
each answer depend strongly on whether the answer is a correct
response to the question: correct answers generally receive high
human ratings, but incorrect answers receive low human ratings.
The best systems generated mostly correct answers, while the
worst systems generated more incorrect answers.

Table X presents the results (averaged across the test
set) for each team’s entries, using both word-overlap-based
objective measures and subjective human ratings. Although the
language-based transformer models such as BERT and GPT-2
demonstrate state-of-the-art performance on our tasks, these
systems require features extracted from manually generated
video captions (scripts), and such a text modality may be
unavailable in real-world deployment scenarios. There are
two other design difficulties that such text-based captions
introduce that may skew the evaluation: (i) some captions
already include parts of the answers that are used in the
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TABLE IX: Submitted systems to the AVSD Track. The individual system description papers contain more details about the
systems.

Team Encoder-decoder type Multimodal fusion type Features Additional techniques/data

Baseline LSTM Context vector concatenation I3D, VGGish
Team 1 Transformer Input sequence concatenation by univer-

sal multimodal transformer
I3D, VGGish, Pre-trained GPT-2 model, fine-tuned on

AVSD dataset using multi-task learning
Team 2 Transformer Input sequence concatenation (text only) I3D, VGGish Pre-trained BERT model, fine-tuned on

AVSD dataset
Team 3 Transformer Fusion by multimodal transformer net-

work
I3D, VGGish, ResNeXt Pointer network and model ensemble

Team 4 Transformer Semantically-controlled transformer
with multi-head shuffled attention

ResNet-101 Spatio-temporal scene graph feature rep-
resentation

Team 5 Transformer I3D, VGGish Multimodal semantic transformer
Team 6 Transformer Hierarchical attention I3D, VGGish Pre-trained GPT
Team 7 LSTM Multi-step joint-modality attention I3D, VGGish
Team 8 LSTM Multimodal attention over frames across

different modalities
VGG-19, VGGish

Team 9 Dynamic memory network
with GRU

Memory vector concatenation I3D, VGGish

TABLE X: Evaluation results for the AVSD track at DSTC8.
Both word-overlap-based objective measures (based on 6
reference answers for each test question) and a subjective
human rating measure (based on 5-level ratings) are shown.

Team Entry text only video audio
caption 
and/or 

summary
 Bleu_4  METEOR  ROUGE_L  CIDEr Human 

rating

(1) ✔ ️ ✔ ️ ✔ ️ 0.442 0.278 0.586 1.218
(2) ✔ ️ ✔ ️ ✔ ️ 0.447 0.284 0.592 1.226 3.895

Team 1 (3) ✔ ️ ✔ ️ 0.361 0.239 0.533 0.971
(4) ✔ ️ ✔ ️ 0.387 0.249 0.544 1.022
(5) ✔ ️ ✔ ️ 0.442 0.287 0.595 1.231 3.934

Team 2 (1) ✔ ️ ✔ ️ 0.415 0.278 0.582 1.166 3.799
(2) ✔ ️ ✔ ️ 0.403 0.281 0.583 1.168 3.675
(1) ✔ ️ ✔ ️ 0.413 0.270 0.566 1.110
(2) ✔ ️ ✔ ️ 0.417 0.273 0.573 1.108
(3) ✔ ️ ✔ ️ 0.421 0.261 0.561 1.098 3.609

Team 3 (4) ✔ ️ ✔ ️ 0.416 0.259 0.559 1.087
(5) ✔ ️ ✔ ️ ✔ ️ 0.419 0.263 0.564 1.097 3.612
(6) ✔ ️ ✔ ️ 0.414 0.269 0.570 1.101
(7) ✔ ️ ✔ ️ 0.410 0.274 0.573 1.108
(8) ✔ ️ ✔ ️ 0.417 0.274 0.576 1.113

Team 4 (1) ✔ ️ ✔ ️ 0.316 0.266 0.544 0.933
(2) ✔ ️ ✔ ️ 0.357 0.267 0.553 1.004 3.433

Team 5 (1) ✔ ️ ✔ ️ ✔ ️ 0.352 0.262 0.548 0.975 3.404
Team 6 (1) ✔ ️ ✔ ️ 0.338 0.214 0.492 0.807 3.189
Team 7 (1) ✔ ️ 0.321 0.237 0.526 0.857

(2) ✔ ️ ✔ ️ 0.324 0.232 0.521 0.875 3.123
Team 8 (1) ✔ ️ ✔ ️ 0.311 0.224 0.502 0.766 3.064

(1) ✔ ️ ✔ ️ ✔ ️ 0.296 0.214 0.496 0.761
Team 9 (2) ✔ ️ ✔ ️ 0.276 0.209 0.485 0.735

(3) ✔ ️ ✔ ️ 0.301 0.210 0.492 0.769 2.932
Baseline ✔ ️ 0.289 0.210 0.480 0.651 2.885

Reference 4.000

evaluations, making audio-visual inference redundant, and (ii)
language models trained using a simple (and limited) QA
dataset may generate answers using frequently-occurring text
patterns in the training data, without needing to use audio-visual
cues (e.g., Q: How many people are in the scene? A: Two
people). These observations are empirically supported by the
results: without providing human-generated captions, the best
performing model achieves only 0.387 in BLEU score, which is
a relative reduction of 12% from its score when using human
captions. This result suggests that there is still opportunity
to design better audio-visual reasoning approaches to try to
match the performance achieved using manually provided text
captions.

F. Summary

We introduced a new challenge task and dataset for Audio
Visual Scene-Aware Dialog (AVSD) in DSTC7, and we held a

follow-up challenge in DSTC8. The participating teams built
scene-aware dialog systems by combining end-to-end conver-
sation models and end-to-end multimodal video description
models into complete end-to-end differentiable systems. The
DSTC8 winning system achieved an impressive 98.4% of hu-
man performance based on human ratings (a 9% improvement
over DSTC7). The large performance improvement of this
year’s best systems was enabled by using transformers [45],
including pre-trained GPT-2 and BERT models. It should
be noted that in order to achieve its nearly human level of
performance, the winning system used the human-generated
video captions that were included in the dataset—it was not
able to glean all of the necessary information directly from the
video features, as would be required in a real-world, real-time
interaction.

V. SCHEMA-GUIDED DIALOGUE STATE TRACKING TRACK

Today’s virtual assistants such as the Google Assistant, Alexa,
Siri, Cortana, etc. help users accomplish a wide variety of tasks
including finding flights, searching for nearby events, surfacing
information from the web etc. They provide this functionality
by offering a unified natural language interface to a variety
of services and APIs from the web. Building such large scale
assistants offers many new challenges such as supporting a large
variety of domains, data-efficient handling of APIs with similar
functionality and reducing maintenance overhead for integration
of new APIs among others. Despite tremendous progress in
dialogue research, these critical challenges have not been
sufficiently explored, owing to an absence of datasets matching
the scale and complexity presented by virtual assistants. To this
end, we created the Schema-Guided Dialogue (SGD) dataset,
a large-scale corpus of over 18K multi-domain task-oriented
conversations spanning 17 domains. This track explores the
aforementioned challenges on this dataset, focusing on dialogue
state tracking (DST).

A. Task definition

The dialogue state is a summary of the entire conversation till
the current turn. In a task-oriented system, it is used to invoke
APIs with appropriate parameters as specified by the user over
the dialogue history. The state is also used by the assistant to



9

Fig. 4: Illustration of Track 4: the dialogue state (dashed edges) for the same dialogue is conditioned on the domain/service
schema under consideration (extreme left/right), provided as input.

generate the next actions to continue the dialogue. Dialogue
State Tracking (DST), therefore, is a core component of
virtual assistants. Deep learning-based approaches to DST have
recently gained popularity. Some of these approaches estimate
the dialogue state as a distribution over all possible slot values
[46], [15] or individually score all slot-value combinations
[47], [48]. Such approaches are, however, hard to scale to real-
world virtual assistants, where the set of possible values for
certain slots may be very large (date, time or restaurant name)
and even dynamic (movie or event name). Other approaches
utilizing a dynamic vocabulary of slot values [49], [50] still
preclude zero-shot generalization to new services and APIs
[51], since they use schema elements i.e. intents and slots as
class labels.

The primary task of this challenge is to develop multi-domain
models for DST with particular emphasis on joint modeling
across different services or APIs (for data-efficiency) and zero-
shot generalization (for handling new/unseen APIs). This takes
the shape of a DST task where the dialogue state annotations
are guided by the APIs under consideration. Figure 4 illustrates
how the dialogue state representations can be conditioned on
the corresponding schema for two different flight services
(extreme left and right). In order to generate these schema-
guided dialogue state representations, the systems are required
to take the relevant schemas as additional inputs. The systems
can also utilize the natural language descriptions of slots and
intents supported by the APIs to yield distributed semantic
representations, which can help in joint modeling of related
concepts and generalization to new APIs. In addition, the
participants are allowed to use any external datasets or resources
to bootstrap their models.

B. Data and Baseline

The SGD dataset7 consists of over 18K annotated multi-
domain task-oriented conversations between a human and a
virtual assistant. These conversations involve interactions with
services/APIs spanning 17 domains (see Table XI). For most of
these domains, SGD contains multiple APIs having overlapping
functionalities but different interfaces - common in the real
world; it is the first dataset set up this way. The schemas for

7https://github.com/google-research-datasets/
dstc8-schema-guided-dialogue

all services/APIs pertinent to a dialogue, as well as natural
language descriptions and other semantic features for a service
and its intents and slots, are also included in the dataset. [52]
contains more details about the dataset and the data collection
methodology.

With annotations for slot spans, intent, dialogue state and
system actions, our dataset is designed to serve as an effective
testbed for intent prediction, slot filling, state tracking and
language generation, among other tasks in large-scale virtual
assistants. Furthermore, the evaluation set is tailored to contain
many new services not present in the training set. This helps
to quantify the robustness to changes in an API’s interface or
the addition of new APIs.

We also provide a baseline system [52], using user and
system utterances and schema element descriptions as inputs
to a model based on BERT [19]. The baseline model extends
BERT-DST [53] by removing all domain-specific parameters,
accomplishing zero-shot generalization to new APIs.

C. Evaluation

Joint goal accuracy, defined as the fraction of dialogue turns
for which all slot values across all domains in the dialogue state
are correctly predicted, is a popular metric for DST evaluation.
We use it as our primary metric for comparison of different
approaches, with two modifications in its definition. First, we
use a fuzzy matching score for non-categorical slots (i.e. slots
with large or unbounded sets of possible values) to reward
partial matches, drawing from metrics used for slot tagging in
spoken language understanding. Second, instead of including
all services in the dialogue state, only the services which are
active or pertinent in a turn are included. Thus, a service
ceases to be a part of the dialogue state once its intent has
been fulfilled. This is done because of the presence of a large
number of services in our dataset. Including all services in the
joint goal accuracy evaluation would result in near zero value
if the traditional definition is used, reducing the insight into
the performance on different services we may glean.

For a better understanding of the underlying models, we
evaluated the submissions on other auxiliary metrics such as:

• Active Intent Accuracy: The fraction of user turns for
which the active intent is predicted correctly.
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TABLE XI: The number of intents (services in parentheses) and dialogues per domain in the train and dev sets for Track 4.
Multi-domain dialogues contribute to counts of each domain.

Domain #Intents #Dialogs Domain #Intents #Dialogs Domain #Intents #Dialogs
Alarm 2 (1) 37 Home 2 (1) 1027 Restaurant 4 (2) 2755
Bank 4 (2) 1021 Hotel 8 (4) 3930 RideShare 2 (2) 1973
Bus 4 (2) 2609 Media 4 (2) 1292 Service 8 (4) 2090
Calendar 3 (1) 1602 Movie 4 (2) 1758 Travel 1 (1) 2154
Event 5 (2) 3927 Music 4 (2) 1486 Weather 1 (1) 1308
Flight 8 (3) 3138 RentalCar 4 (2) 1966

TABLE XII: Evaluation Results for Schema-Guided State Tracking track for the baseline and the top 3 submissions

Team Joint Goal Accuracy Avg Goal Accuracy Active Intent Accuracy Requested Slots F1
All Seen Unseen All Seen Unseen All Seen Unseen All Seen Unseen

Baseline 0.254 0.413 0.200 0.560 0.678 0.519 0.906 0.951 0.892 0.965 0.996 0.955
Team 9 0.865 0.924 0.846 0.971 0.980 0.967 0.948 0.957 0.945 0.985 0.994 0.982
Team 14 0.773 0.991 0.730 0.922 0.961 0.908 0.969 0.958 0.971 0.995 0.996 0.992
Team 12 0.738 0.880 0.690 0.920 0.957 0.907 0.926 0.958 0.912 0.995 0.997 0.994

• Requested Slot F1: The macro-averaged F1 score for slots
requested by the user over all valid turns.

• Average Goal Accuracy: The average accuracy of predicting
the slot assignments for a turn correctly. Like the joint goal
accuracy, this also uses a fuzzy matching score for non-
categorical slots. In addition, we discard instances when
both the ground truth and the predicted values for a slot
are empty since, if naively evaluated, models can achieve a
relatively high average goal accuracy just by predicting an
empty assignment for each slot.

D. Results

We received submissions from 25 teams. Table XII lists
the results for the top 3 teams (determined by joint goal
accuracy) and the baseline system. The test set contains a total
of 21 services, among which 6 services are also present in the
training set (seen services), whereas the remaining 15 are not
present in the training set (unseen services). Among these 15
unseen services are three entirely new domains - “Messaging",
“Payment" and “Trains", the other unseen APIs being from
domains present in training and dev sets. We observe that the
submitted models are able to generalize well to new APIs and
domains - partly attributable to the use of pre-trained models
like BERT [19], XLNet [54] in most submissions.

Our most patent observation from the results is the higher
joint goal accuracy metric than reported on other public datasets.
This is because our dataset excludes the slots for APIs not
under consideration in the current turn from the dialogue state
for multi-domain dialogues, as opposed to other datasets which
include slots for all domains and APIs present over the dialogue
history. Thus, in our setup, an incorrect dialogue state prediction
for a service only penalizes the joint goal accuracy metric for
the turns in which that service is under consideration by the
user or the system. Further, our fuzzy matching score rewards
partial matches for non-categorical slots, leading to still higher
joint and average goal accuracy values. The following trends
were observed across all submissions:

• For unseen services, performance on categorical slots is
comparable to that on non-categorical slots. On the other

hand, for seen services, the performance on categorical
slots is better. This could be because there is less signal
to differentiate between the different possible values for
a categorical slot when they are not seen during training.

• The winning team’s performance on seen services is
similar to that of the other top teams. However, the
winning team has a considerable edge on unseen services,
outperforming the second team by around 12% in terms
of joint goal accuracy. This margin was observed across
both categorical and non-categorical slots.

• Among unseen services, when looking at services belong-
ing to unseen domains, the winning team was ahead of
the other teams by at least 15%. The performance on
categorical slots for unseen domains was about the same
as that for seen services and domains. For other teams,
there was at least a 20% drop in accuracy of categorical
slots in unseen domains vs seen domains and services.

• The joint goal accuracy of most of the models was worse
by 15 percentage points on an average on the test set as
compared to the dev set. This could be because the test
set contains a much higher proportion of turns with at
least one unseen services as compared to the dev set (77%
and 45% respectively).

VI. CONCLUSIONS

This paper summarizes the four tracks of the eighth dialog
system technology challenges (DSTC8). Multi-domain task-
completion track offered two sub-tasks: end-to-end multi-
domain dialog task and fast adaptation task. NOESIS II
track extended the response selection task of DSTC7 with
new datasets with multi-party dialogs and two additional
subtasks. Audio visual scene-aware dialog track explored
further improvements from its first edition on DSTC7 with
a new test dataset. Schema-guided dialog state tracking track
introduced a new dialog state tracking task from a practical
perspective.

From the evaluation results, we’ve got a common observation
that Transformer-based large-scale pre-trained language models
helped to achieve the state-of-the-art performances on all the
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challenge tasks. This is a significant difference from what we
learned from previous DSTCs where most winning entries
were based on RNN variants trained from scratch or minimal
pre-training mostly for word embeddings only. This transition
shows a recent trend in dialog research.

This challenge also leaves an open question about how we
can make these benchmark results more realistic, reproducible
and accumulable over time. Especially for the generation tasks,
we’ve observed some limitations of the automated metrics with
the gaps from the end-to-end human evaluation results. On the
other hand, the human evaluations are too expensive to make
it scalable and relatively less reproducible compared to the
conventional corpus-based evaluation methods. We expect to
address these issues further in the future challenges.

REFERENCES

[1] J. Williams, A. Raux, D. Ramachandran, and A. Black, “The dialog state
tracking challenge,” in Proceedings of the SIGDIAL 2013 Conference,
2013, pp. 404–413.

[2] M. Henderson, B. Thomson, and J. Williams, “The second dialog state
tracking challenge,” in 15th Annual Meeting of the Special Interest Group
on Discourse and Dialogue, 2014, p. 263.

[3] M. Henderson, B. Thomson, and J. D. Williams, “The third dialog state
tracking challenge,” in Spoken Language Technology Workshop (SLT),
2014 IEEE. IEEE, 2014, pp. 324–329.

[4] S. Kim, L. F. D’Haro, R. E. Banchs, J. D. Williams, and M. Henderson,
“The fourth dialog state tracking challenge,” in Dialogues with Social
Robots. Springer, 2017, pp. 435–449.

[5] S. Kim, L. F. D’Haro, R. E. Banchs, J. D. Williams, M. Henderson,
and K. Yoshino, “The fifth dialog state tracking challenge,” in 2016
IEEE Spoken Language Technology Workshop (SLT). IEEE, 2016, pp.
511–517.

[6] C. Hori, J. Perez, R. Higashinaka, T. Hori, Y.-L. Boureau, M. Inaba,
Y. Tsunomori, T. Takahashi, K. Yoshino, and S. Kim, “Overview of the
sixth dialog system technology challenge: Dstc6,” Computer Speech &
Language, vol. 55, pp. 1–25, 2019.

[7] K. Yoshino, C. Hori, J. Perez, L. F. D’Haro, L. Polymenakos, C. Gu-
nasekara, W. S. Lasecki, J. K. Kummerfeld, M. Galley, C. Brockett et al.,
“Dialog system technology challenge 7,” arXiv preprint arXiv:1901.03461,
2019.

[8] L. F. D’Haro, K. Yoshino, C. Hori, T. K. Marks, L. Polymenakos, J. K.
Kummerfeld, M. Galley, and X. Gao, “Overview of the seventh dialog
system technology challenge: Dstc7,” Computer Speech & Language,
vol. 62, p. 101068, 2020.

[9] C. Gunasekara, J. K. Kummerfeld, L. Polymenakos, , and W. S. Lasecki,
“Dstc7 task 1: Noetic end-to-end response selection,” in 7th Edition of
the Dialog System Technology Challenges at AAAI 2019, January 2019.
[Online]. Available: http://workshop.colips.org/dstc7/papers/dstc7_task1_
final_report.pdf

[10] C. Gunasekara, J. K. Kummerfeld, L. Polymenakos, and W. Lasecki,
“Dstc7 task 1: Noetic end-to-end response selection,” in Proceedings of
the First Workshop on NLP for Conversational AI, 2019, pp. 60–67.

[11] M. Galley, C. Brockett, X. Gao, J. Gao, and B. Dolan, “Grounded
response generation task at dstc7,” in AAAI Dialog System Technology
Challenges Workshop, 2019.

[12] H. Alamri, C. Hori, T. K. Marks, D. Batr, and D. Parikh, “Audio visual
scene-aware dialog (avsd) track for natural language generation in dstc7,”
in DSTC7 at AAAI2019 Workshop, vol. 2, 2018.

[13] S. Lee, Q. Zhu, R. Takanobu, Z. Zhang, Y. Zhang, X. Li, J. Li, B. Peng,
X. Li, M. Huang, and J. Gao, “ConvLab: Multi-domain end-to-end
dialog system platform,” in Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics: System Demonstrations.
Florence, Italy: Association for Computational Linguistics, Jul. 2019, pp.
64–69. [Online]. Available: https://www.aclweb.org/anthology/P19-3011

[14] J. Gao, M. Galley, and L. Li, “Neural approaches to conversational
ai,” Foundations and Trends R© in Information Retrieval, vol. 13, no.
2-3, pp. 127–298, 2019. [Online]. Available: http://dx.doi.org/10.1561/
1500000074

[15] T. Wen, D. Vandyke, N. Mrkšíc, M. Gašíc, L. Rojas-Barahona, P. Su,
S. Ultes, and S. Young, “A network-based end-to-end trainable task-
oriented dialogue system,” in 15th Conference of the European Chapter of
the Association for Computational Linguistics, EACL 2017-Proceedings
of Conference, vol. 1, 2017, pp. 438–449.

[16] W. Lei, X. Jin, M.-Y. Kan, Z. Ren, X. He, and D. Yin, “Sequicity:
Simplifying task-oriented dialogue systems with single sequence-to-
sequence architectures,” in Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers),
2018, pp. 1437–1447.

[17] P. Budzianowski, T.-H. Wen, B.-H. Tseng, I. Casanueva, S. Ultes,
O. Ramadan, and M. Gasic, “Multiwoz-a large-scale multi-domain wizard-
of-oz dataset for task-oriented dialogue modelling,” in Proceedings of the
2018 Conference on Empirical Methods in Natural Language Processing,
2018, pp. 5016–5026.

[18] J. Schatzmann, B. Thomson, K. Weilhammer, H. Ye, and S. Young,
“Agenda-based user simulation for bootstrapping a pomdp dialogue
system,” in Human Language Technologies 2007: The Conference of the
North American Chapter of the Association for Computational Linguistics;
Companion Volume, Short Papers. Association for Computational
Linguistics, 2007, pp. 149–152.

[19] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” in
Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), 2019, pp. 4171–4186.

[20] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,
“Language models are unsupervised multitask learners,” OpenAI Blog,
vol. 1, no. 8, 2019.

[21] O. Vinyals and Q. V. Le, “A neural conversational model,”
arXiv:1506.05869, 2015.

[22] J. Li, W. Monroe, A. Ritter, M. Galley, J. Gao, and D. Jurafsky, “Deep
Reinforcement Learning for Dialogue Generation,” in Proceedings of
the Conference on Empirical Methods in Natural Language Processing,
2016.

[23] T.-H. Wen, Y. Miao, P. Blunsom, and S. Young, “Latent Intention
Dialogue Models,” in Proceedings of the International Conference on
Machine Learning, 2017.

[24] L. Maystre and M. Grossglauser, “Just sort it! a simple and effective
approach to active preference learning,” in International Conference on
Machine Learning (ICML), 2017.

[25] A. H. Copeland, “A ‘reasonable’ social welfare function,” in Seminar on
Mathematics in Social Sciences. University of Michigan, 1951.

[26] P. Hall, H. Miller et al., “Using the bootstrap to quantify the authority
of an empirical ranking,” The Annals of Statistics, vol. 37, no. 6B, pp.
3929–3959, 2009.

[27] J. Cohen, “A coefficient of agreement for nominal scales,” Educational
and psychological measurement, vol. 20, no. 1, pp. 37–46, 1960.

[28] C. Callison-Burch, P. Koehn, C. Monz, and O. F. Zaidan, “Findings of
the 2011 workshop on statistical machine translation,” in Proc. of the
Workshop on Statistical Machine Translation, 2011.

[29] A. Joulin, E. Grave, P. Bojanowski, M. Douze, H. Jégou, and T. Mikolov,
“Fasttext.zip: Compressing text classification models,” arXiv preprint
arXiv:1612.03651, 2016.

[30] T. Kudo and J. Richardson, “SentencePiece: A simple and language
independent subword tokenizer and detokenizer for neural text processing,”
in Proc. of the Conference on Empirical Methods in Natural Language
Processing (EMNLP), 2018.

[31] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. u. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in Neural Information Processing Systems 30, I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds.,
2017.

[32] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, 1997.

[33] J. K. Kummerfeld, S. R. Gouravajhala, J. J. Peper, V. Athreya,
C. Gunasekara, J. Ganhotra, S. S. Patel, L. Polymenakos, and W. S.
Lasecki, “A large-scale corpus for conversation disentanglement,”
in Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, July 2019, pp. 3846–3856. [Online].
Available: https://www.aclweb.org/anthology/P19-1374

[34] M. Meila, “Comparing clusterings–an information based distance,”
Journal of Multivariate Analysis, vol. 98, no. 5, pp. 873–895, 2007.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0047259X06002016



12

[35] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized bert
pretraining approach,” arXiv preprint arXiv:1907.11692, 2019.

[36] Q. Chen, X. Zhu, Z.-H. Ling, S. Wei, H. Jiang, and D. Inkpen, “Enhanced
lstm for natural language inference,” in Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), 2017, pp. 1657–1668.

[37] G. A. Sigurdsson, G. Varol, X. Wang, I. Laptev, A. Farhadi, and
A. Gupta, “Hollywood in homes: Crowdsourcing data collection
for activity understanding,” ArXiv, 2016. [Online]. Available: http:
//arxiv.org/abs/1604.01753

[38] H. Alamri, V. Cartillier, A. Das, J. Wang, A. Cherian, I. Essa, D. Batra,
T. K. Marks, C. Hori, P. Anderson, S. Lee, and D. Parikh, “Audio visual
scene-aware dialog,” in The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2019.

[39] C. Hori, H. Alamri, J. Wang, G. Wichern, T. Hori, A. Cherian, T. K.
Marks, V. Cartillier, R. G. Lopes, A. Das et al., “End-to-end audio visual
scene-aware dialog using multimodal attention-based video features,” in
ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, 2019, pp. 2352–2356.

[40] J. Carreira and A. Zisserman, “Quo vadis, action recognition? a new
model and the kinetics dataset,” in CVPR, 2017.

[41] S. Hershey, S. Chaudhuri, D. P. W. Ellis, J. F. Gemmeke, A. Jansen,
R. C. Moore, M. Plakal, D. Platt, R. A. Saurous, B. Seybold, M. Slaney,
R. J. Weiss, and K. Wilson, “CNN architectures for large-scale audio
classification,” in ICASSP, 2017.

[42] H. Alamri, C. Hori, T. K. Marks, D. Batra, and D. Parikh, “Track 3
overview: Audio visual scene-aware dialog (AVSD) track for natural
language generation in dstc7,” in AAAI 2019 Workshop: DSTC7, 2019,
http://workshop.colips.org/dstc7/workshop.html.

[43] C. Hori, T. Hori, A. Cherian, and T. K. Marks, “Joint student-teacher
learning for audio-visual scene-aware dialog,” in Interspeech 2019. ISCA,
2019.

[44] C. Hori, A. Cherian, T. Hori, and T. K. Marks, “Audio visual scene-aware
dialog (AVSD) track for natural language generation in DSTC8,” in The
Eighth Dialog System Technology Challenge (DSTC8) at the 34th AAAI
conference on Artificial Intelligence (AAAI), 2020.

[45] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in
neural information processing systems, 2017, pp. 5998–6008.

[46] M. Henderson, B. Thomson, and S. Young, “Word-based dialog state
tracking with recurrent neural networks,” in Proceedings of the 15th
Annual Meeting of the Special Interest Group on Discourse and Dialogue
(SIGDIAL), 2014, pp. 292–299.
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