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Abstract

This paper presents a method for online estimation of linear friction (i.e., tire stiffness) and
inertial parameters (i.e., mass and inertia) using sensors readily available from the CAN bus in
production vehicles. We treat the tire stiffness as a timevarying Gaussian disturbance acting
on the vehicle, and the inertial parameters are modeled as nearly constant parameters with
large initial uncertainty. We leverage particle filtering and the marginalization concept to
estimate in a computationally efficient way the tire-stiffness and inertial parameters, together
with the vehicle state. We integrate the estimator with a nonlinear model-predictive controller
(NMPC) and evaluate the efficacy of the estimator in closed-loop control.
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Abstract— This paper presents a method for online estimation
of linear friction (i.e., tire stiffness) and inertial parameters (i.e.,
mass and inertia) using sensors readily available from the CAN
bus in production vehicles. We treat the tire stiffness as a time-
varying Gaussian disturbance acting on the vehicle, and the
inertial parameters are modeled as nearly constant parameters
with large initial uncertainty. We leverage particle filtering and
the marginalization concept to estimate in a computationally
efficient way the tire-stiffness and inertial parameters, together
with the vehicle state. We integrate the estimator with a
nonlinear model-predictive controller (NMPC) and evaluate the
efficacy of the estimator in closed-loop control.

I. INTRODUCTION

Inertial and road-surface properties are among the most
important when assessing vehicle handling and performance
characteristics. Automotive manufacturers can provide values
for the inertial parameters. However, they are typically for
some nominal (e.g., empty) loading conditions, whereas in
reality the loading conditions will vary significantly between
different drives. The interaction between road and vehicle
is highly nonlinear and depends on several factors [1], and
individual tires have different characteristics. To identify the
nonlinear tire-force function, obtaining data is difficult as it
requires to drive the vehicle to its performance limits.

The force-slip relation is approximately linear for small
slip values. Hence, excluding at-the-limit maneuvers, it is
reasonable to model the tire forces as proportional to the re-
spective slip quantity. The proportionality constant is referred
to as the tire stiffness. However, the tire stiffness and inertial
parameters are tightly coupled, such that wrong estimates
for, for example, the mass, will result in biased stiffness
estimates [2]. This will affect the control performance, both
in terms of constraint violations and vehicle stability, but also
in terms of comfort and energy efficiency.

Model-predictive control (MPC) has become an estab-
lished vehicle-control method [3]-[5]. As MPC exploits a
vehicle model to perform predictions in its optimal control
problem (OCP), the model should adequately represent the
current vehicle behavior. A key issue in applying MPC to
vehicle tracking control is in its combination with estimation
algorithms to adjust the prediction model to the current envi-
ronmental conditions. For instance, in challenging maneuvers
it is imperative to have a well-informed guess about the
surface on which the car is driving [4].

Previously, in [6], we developed a joint vehicle state and
tire-stiffness estimator relying on inertial and wheel-speed
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sensing readily available from the CAN bus. In [5], we
integrated the tire-stiffness estimator with a nonlinear MPC
to provide friction adaptation within the MPC framework.
However, a limitation with the tire-stiffness estimator in [6]
is that it assumes fixed inertial parameters. If the inertial
parameters used in the estimator are inaccurate, the estimates
will be biased, which leads to degraded control performance.

This paper extends the particle-filter (PF) based tire-
stiffness estimation method in [6] to include online adap-
tation to the mass and inertia of the vehicle. Both the
mass and inertia enter the vehicle dynamics nonlinearly,
which would motivate to treat the mass and inertia in the
PF by augmenting the state. However, to enable a compu-
tationally efficient implementation, we leverage that for a
standard passenger vehicle, the inertial parameters are large
such that for small initial errors the nonlinear relation is
approximately linear. Hence, we can solve for the mass
and inertia by approximately marginalizing them out, which
leads to an analytic solution that is locally accurate. We
integrate the method into a nonlinaer MPC (NMPC) based on
an efficient block-sparse quadratic program (QP) solver [7]
for use within the real-time iteration (RTI) framework of
nonlinear optimal control [8], and show that the inclusion of
inertial parameter estimates in the NMPC formulation leads
to significantly improved tracking performance compared to
only adapting to the tire-stiffness estimates.

There is a large amount of prior work on estimation of
inertial parameters and tire stiffness independently of each
other, but the literature on joint estimation of tire stiffness
and inertial parameters is limited. In [9], a recursive linear
least-squares estimator with multiple forgetting factors for
simultaneous estimation of the road grade and vehicle mass
in real time was developed. The method in [2] is based on
the multiple-model framework and considers tire stiffness,
mass, and other parameters using a quite standard sensor
setup. However, [2] does not consider that multiple-model
estimation may be unsuitable for real-time control due to
abrupt switching between models and the corresponding
chattering behavior in the estimates. Our proposed method
does not exhibit this behavior. For tire-stiffness estimation,
many methods use sensors that are nonstandard in production
vehicles or are not readily available from the CAN bus. A
regression-based method is found in [10] and two methods
for cornering stiffness estimation are described in [11], [12].

Notation: With p(xo.x|yo.x), we mean the posterior den-
sity function of the state trajectory xg.; from time in-
dex 0 to time index k given the measurement sequence
Yok := {Yo,- -, Yx}. We write fj, for a function f(xy, ur),



where w is the input. For a vector ¢, ¢ ~ N(u,X)
means that  is Gaussian distributed with mean p and
covariance X, and |X| is the determinant of 3. The notation
T(w, Y,v) means the multivariate Student-t distribution
with mean p, scaling Y, and v degrees of freedom. Sim-
ilarly, NIW(v, u, A, v) reads the Normal-inverse-Wishart
distribution with statistics (hyperparameters) summarized in
S := (v, p, A, v). The notation Zk|m denotes the estimate of
z at time index k£ given measurements up to time index m.

II. ESTIMATION MODELING

We summarize the estimation model and problem formu-
lation. For details, see [6]. We model the vehicle by a single-
track model [13], and assume that the left and right wheels on
each axle have the same stiffness. Furthermore, we assume
that the inertial parameters are slowly time varying and any
large changes occur in discrete jumps. This is motivated by
that substantial loading changes typically occur when the
vehicle is at standstill and not during driving.

In the following, F*, F'Y are the longitudinal and lateral
tire forces, respectively, « is the wheel-slip angle, ¥ is the
yaw, and subscripts f,r denote front and rear, respectively.
With the state = = [v* v¥ 9] T, where v is the longitudinal
vehicle velocity, v is the lateral vehicle velocity, and w is
the yaw rate, the equations of motion are

m(0X — oY) = F¥ — F{sin(6), (1a)
m(0" +vX¢) = F{ cos(6) + FY + Fyf sin(5), (1b)
I = 15(FY cos(8) + Ff sin(8)) — 1.FY, (lc)

where m is the unknown mass, I is the unknown inertia, and
FX = F¢ cos(d) + Fy’. We assume that the tire force can

be expressed as linear functions of the wheel slip A and slip
angle «, respectively,

F*=~C*\, FY=C(CY%, 2)
where C” and CY are the longitudinal and lateral stiffness,
respectively. We define \; and «; as
R,w; — v}

x v?_/
L. o; = —arctan <;) , 3)
v

i

Ai =
3 ']_)LI
where ¢ € {f,r}, w; is the wheel rotation rate, v¥ and vf are
the longitudinal and lateral wheel velocities for wheel ¢ with
respect to an inertial system, in the coordinate system of the
respective wheel, and R,, is the effective wheel radius.
The complete vehicle model (1)—(3) is nonlinear in vX and
vY and the inertial parameters 1 = [m I]T. There are also
bilinearities between both states, and states and parameters.
Considering both longitudinal and lateral dynamics allows to
account for the coupling in (1), but increases computational
burden. The wheel rotation rates wy,w, and the steer angle
0 form the input vector u, which is assumed known.

Remark 1. In the remainder of this paper we focus on
determining the lateral (i.e., cornering) stiffnesses jointly
with the inertial parameters, since the cornering stiffness is
more important than the longitudinal stiffness for vehicle-
stability control. However, the longitudinal case can be
treated using the same framework, see [6].

A. Estimation Model

To establish the estimation model, focusing on the lateral
dynamics, we decompose the stiffness parameters into one
known nominal part and one unknown part,

CY = CY + ACY, )

where C), is the nominal value of the stiffness, for example,
a priori determined on a nominal surface, and AC is a time-
varying, unknown part. We define wy, := [AC}  ACY] T as
random process noise acting on the otherwise deterministic
system. We model the noise term wy, as Gaussian distributed
according to wy ~ N(pk, X)), where pg and Xy are
the unknown, usually time varying, mean and covariance.
With the decomposition (4) and after discretization of the
continuous-time vehicle model (1)—(3),

Tip1 = flxp, My, uy) + g(xp, My, up)wy,.  (5)

Hence, the vehicle dynamics naturally leads to an inter-
pretation of the unknown part of the tire stiffness as a
process disturbance with unknown mean and covariance,
which motivates a noise-adaptive approach.

We estimate both the state xj, the parameters gy, 3y (i.e.,
the mean and variance of the process noise wy), and the
inertial parameters m. The loading conditions for a vehicle
can have large variations between drives, but fuel consump-
tion is the main cause for loading variations while driving.
Hence, it is appropriate to model the inertial parameters as
random walks with large initial uncertainty and Gaussian
process noise. The measurements y are the longitudinal and
lateral acceleration, X, ¥, and yaw rate 1.

Automotive-grade inertial sensors have errors b, which can
be significant over long time periods. The error terms are
both additive (bias) and multiplicative (scaling offsets). We
assume that these bias terms are cancelled out a priori (see,
e.g., [14]). The measurement model can be written as

Y = h(wk, m;wuk) + d(wk,mhuk)wk + er, (6)

where e; € R™¢, is the Gaussian zero-mean noise from the
inertial sensors, e ~ AN(0, R), where R is determined a
priori. The joint Gaussian distribution of the tire-stiffness
parameters wj, and measurement noise € can be written as

wy, = [w] ]’ ~N (i, Zi)

where we have introduced the short-hand notation e, =
d(xy, My, ug)wy, + ey, and where

— | Mk

K = |:dkl~1‘k:| ) (7a)
= | X EkdkT

Xk = {dkz dyZd] + R|’ (7b)

and dj, := di(xy, My, ux). Thus, due to the use of inertial
sensing, the noise sources with the structure given by (7b)
are dependent. In this work, we estimate the process-noise
statistics p;, and 3, which are embedded in (7), together
with the inertial parameters m, and the state trajectory.



Remark 2. If there is additional sensing, for example, from
the suspension system effectively measuring the normal force,
the estimation problem is significantly simplified since we
then have measurements of the mass that are independent of
the stiffness, whereas currently due to the inertial sensing,
the mass and stiffness are coupled through the acceleration.

Remark 3. In this paper we only estimate the lateral tire
stiffness and assume the longitudinal stiffness to be deter-
mined completely by the lateral stiffness as C¥ = 2C?. This
approximation provides a coarse update of the longitudinal
stiffness without introducing additional parameters into the
tire-stiffness estimator. The linear relationship is based on the
models used in simulation and could alternatively be fit with
experimental data. Since the maneuvers in this work do not
require large longitudinal accelerations, accurately modeling
the longitudinal stiffness is not critical for performance.

B. Observability

There are several ways to investigate observability for the
present estimation model. A straightforward approach is to
investigate nonsingularity of the observability Gramian. This
can be done locally by defining the state vector

z=[z" pn’ m'], (8)

linearizing the system for different pairs of inputs and states,
and checking the rank conditions. For nonzero inputs and
velocities, by using exponential forgetting in the stiffness pa-
rameter estimation (see Sec. III), the observability Gramian
is nonsingular and hence the system is weakly observable.

III. MARGINALIZED NOISE-ADAPTIVE PARTICLE
FILTERING FOR INERTIAL ESTIMATION

In this section, we present our method for determining
jointly the vehicle state x, tire-stiffness parameters 6 :=
{p, X}, and inertial parameters 1. For space limitations,
the parts on determining the vehicle state and tire stiffness
are briefly summarized, and the details are in [6]. We
approach our estimation problem by estimating the density
p(My, Ok, Zo.x|Yo:k ), that is, the joint posterior conditioned
on all measurements from time step 0 to k. We decompose

p(M, Ok, To.kx|Yo:x) = p(Mi|Ok, Tok, Yo:x)
- p(Ok |0k, Yo:r )P(x0:k |Y0:k).  (9)

The three densities on the right-hand side of (9) are esti-
mated recursively. The third term on the right-hand side is
given by the particle filter. The key idea is that given the
state trajectory, we can update the distribution of the noise
parameters, that is, the second distribution on the right-hand
side of (9). Given the tire stiffness and the state trajectory,
we can approximately solve for the inertial parameters.
We approximate the state posterior using a PF as [15]

N
p(@o:k|Yo:k) = quifs(fﬂo:k — xh), (10)
i=1

where §(-) is the Dirac delta mass, N is the number
of particles, and ¢ is the importance weight for the ith

state trajectory @ ,. The particles are sampled from a
proposal distribution 7(@k+1|T{.4, Yo:k+1). In this paper,
we choose the proposal according to the motion model
p(x! |2 ;1. Yo:k—1), which implies the weight update

Y

In our setting, since the unknown process-noise parameters
affect both the measurement and prediction step, the predic-
tion density and likelihood have to be adjusted accordingly.
To estimate the tire stiffness (i.e., the process noise statistics)
efficiently, we rely on conjugate priors [16], [17]. Given
a likelihood, the conjugate prior is the prior distribution
such that the prior and posterior are in the same family
of distributions. Thus, for a conjugate prior, the prior and
posteriors are of the same type, and the estimation prob-
lem simplifies to updating the hyperparameters. Given the
state, the measurement likelihood is a multivariate Gaussian
distribution, and for multivariate Normal data @ € R¢
with unknown mean g and covariance 32, a Normal-inverse-
Wishart distribution defines the conjugate prior p(py, Xy) :=

NIW(Yiejes Bkl es Akejies Vielre) DY

Bl Zk ~ N (e, Ve 2,
3k ~ IW Wik, Mki)
o |2k‘_%(’/k\k+d+1)e(_%tr(Ak|k2;1))

@i, % @1 P(Yk|Th 1 Yoik—1)-

where tr(-) is the trace operator. The statistics
Skik = (Vlks Bl Ake|ks Vi) can be updated
recursively [6], and a forgetting factor A € [0,1] is

introduced that allows the estimator to discard older data.
Further, for a Normal-inverse-Wishart prior, the predictive
distribution of the data w is a Student-t,

St(fgk—1, Ak|k71a Vilk—1 —d + 1), (12)
with L+
< Vk|k—1
A1 = Apjr—
k|k—1 A klk—1

This is utilized when sampling the process noise and evaluat-
ing the particles according to the measurement likelihood [6].

A. Mass and Inertia Estimation

The mass and inertia estimation update relies on having
computed both the posterior for the state trajectory and the
noise parameters. Thus, the estimation is concerned with
computing the posterior p(my |0k, ok, Yok ), based on the
following observations. First, the prediction model of the
inertial parameters is a random walk, which is linear and
Gaussian. Second, the dynamics of the mass and inertia are
nonlinearly dependent on both the unknown process noise
and the vehicle states. Third, the inertia does not enter the
measurement equations. This has a few implications. First,
we cannot exactly marginalize out the inertial parameters
from the vehicle model. However, locally the nonlinearity is
well represented by its first-order linearization. Hence, what
we effectively are implementing is a Rao-Blackwellized PF
(RBPF) by local approximations of the inertial parameters,



with extended Kalman filters (EKFs) for each particle. Sec-
ond, because we only have measurements of the yaw rate and
lateral acceleration in our setup, the inertia is not part of the
measurement model. Hence, the only information about the
inertia comes from (1c), which acts as an extra measurement
to the EKF. This extra step in the RBPF is crucial for the
method to work. For the prediction step, since the prediction
model is linear (random walk) with Gaussian process noise
with covariance @, for each particle ¢,

ﬁli+1|k = Aﬁliuc +Li(z) — (An)iﬁlak)a
Pl =APA" + Q- LiN{L.",
Ni = (A") P (AT +di 3,y
L= AP, (A" TN,
2, = ®pyr — Fi — g,

Y
4 = o

13)

)
m:ﬁ"i\k
where ﬁ]k“f = A;lclk/(ukuf — 4). Since we know that the
mass and inertia are tightly connected, we set the cross term
to Q12 = Qo1 = K/\/(QllQQQ) for some 0 < x < 1. This
enforces the estimator to correlate an increased mass with
an increased inertia, and vice versa. For the measurement
update, we have the regular EKF update, per particle, as

ﬁ""i\k = Tinfc\kq + K (yr — hj, — d?;ﬂﬁqk - fn?qkq)a
K = P}, ,(C)"(Sp)7,
Py = - K;,C") Py, _y,
S, =C'Pi, ,(C)" + R+d; X}, (d})",
. oh
c' =

Com| -,
m=m;,

(14)
Algorithm 1 summarizes the method.

Remark 4. We utilize the connection between mass and iner-
tia by cross-correlated process noise and initial covariance.
However, since the process noise is small in practice, the
major effect comes from the initial covariance. To improve
performance further, the relation I = [ p||r||*dV can be
used to derive an explicit connection between mass and iner-
tia, either analytically for a simplified shape or numerically
by look-up tables.

IV. NONLINEAR MPC FOR REAL-TIME VEHICLE
CONTROL

The control inputs are the front road wheel steering angle
rate of change command § and the front and rear wheel
speeds wy and w,, respectively. We design a control strategy
that makes the vehicle motion follow a time-dependent
reference trajectory Yret = (pX¢, pg, Uret, Vi), possibly
generated in real time with an adequate preview, while op-
erating over different surfaces and environmental conditions.
The system dynamics are those given in Sec. II, appended
with differential equations for the position, heading, and

Algorithm 1 Pseudo-code of the estimation algorithm
Initialize: Set {z{}Y, ~ po(xo), {¢}}Y, = 1/N,
{S(Z)}z]\il = {FY(Z)? “67 AB? V(Z)}’ {m%)}ivzl ~ pO(mO)

1: for K< 0to T do

2 for each particle i € {1,...,N} do

3 Update weight using (11).

4 Update noise statistics S,il i according to [6].
5: end for
6
7
8
9

Normalize weights as q;iv[ =q./ (Zf\;l q.)-

Compute Neg = 1/(3";_,(qh)?)

if Nog < Nipr then
Resample particles and copy the corresponding
statistics. Set {¢¢}, = 1/N.

10: end if

11: Compute estimates of noise parameters.

12: for each particle i € {1,...,N} do

13: Update mass and inertia using (14).

14: Predict noise statistics Sf€ 1k according to [6].
15: Sample w}, from (12).

16: Predict state x; , , using (5).

17: Predict mass and inertia using (13).

18: end for

19: end for

steering-wheel angle. We introduce the following tracking-
type optimal control problem formulation in continuous time,

T
o N CORMOIEPOT R RIEY
st. 0=x(0) — o, (15b)
z(t) = fo-(x(t),u(t)), Vte[0,T], (15c)
0> h(z(t),u(t)), vt € [0,T], (15d)
0> r(x(T)), (15e)

where x(t) € R"= denotes the differential states and u(t) €
R™ are the control inputs for ¢ € [0,7], and where 6*
are the set of tire stiffness and inertial parameters. For our
particular setup n, = 7 and n, = 3, and we include an
auxiliary slack variable to treat state-dependent inequality
constraints as discussed in [5]. The objective in (15a) consists
of a nonlinear least-squares type Lagrange term and an L1
penalty on the slack variable. For simplicity, 7' denotes both
the control and prediction horizon length and we do not
consider a terminal cost term. Note that the NMPC problem
depends on the current state estimate & through Eq. (15b).

The path constraints (15d) in the NMPC problem for-
mulation consist of geometric and physical limitations of
the system, such as constraints on the vehicle position. In
practice, it is important to reformulate these requirements as
soft constraints since otherwise the problem may become
infeasible, for instance due to unknown disturbances and
modeling errors. In this paper, we define an exact L1 penalty
on the slack variable to ensure feasibility, similar to [3]. For
the specific constraints, see [18].



A. Implementation Aspects

The nonlinear, nonconvex problem (15) renders analytical
solutions intractable. Instead, we transform the infinite di-
mensional OCP (15) into a nonlinear program (NLP) by a
control and state parameterization. To this end, we formulate
an equidistant grid over the control horizon consisting of the
collection of time points t;, where ¢;41 — t; = % =: T
for i =0,..., N — 1. Additionally, we consider a piecewise
constant control parametrization u(7) = w, for 7 € [t;, t;11).
The time discretization for the state variables can then
be obtained by simulating the system dynamics using a
numerical integration scheme. This corresponds to solving
the following initial value problem

(1) = fo- (@(7), wi),

We employ a tailored implementation using the open-
source ACADO Toolkit [8]. The nonlinear optimal control
solver in this toolkit uses an online variant of SQP, known as
the RTI scheme [19]. Under some reasonable assumptions,
the stability of the closed-loop system based on the RTI
scheme can be guaranteed also in presence of inaccuracies
and external disturbances [19]. ACADO Toolkit exports
efficient, standalone C-code implementing the RTI scheme
for fast optimal control. Specifically, we use the recently
proposed PRESAS QP solver [4], [7], which applies block-
structured factorization techniques with low-rank updates to
preconditioning of an iterative solver within a primal active-
set algorithm. This results in an efficient QP solver suitable
for embedded automotive applications. A primal active-set
approach has the advantage of providing a feasible, even
though suboptimal, solution when being terminated early.

T E [ti,tile}, a:(tl) =x;. (16)

V. SIMULATION RESULTS

First, we simulate a sinusoidal steering maneuver to see
the estimation performance under sufficient persistence of
excitation. In the second simulation, we close the loop with
the NMPC, where we want to perform a double lane-change
maneuver when there is an abrupt change in road surface.

The vehicle parameters are from a mid-size SUV, and the
tire parameters for the different surfaces are the same as
in [18]. The tire-stiffness estimator uses N = 500 particles
and the inertial sensor measurement noise values are taken
from those of a low-cost inertial measurement unit common
in automotive applications. The initial estimates and the
different tuning parameters for the tire-stiffness part are
generic and the same as in [6].

A. Estimation Performance Evaluation

For the first results, we have simulated a sinusoidal steer-
ing maneuver for 50 seconds with constant velocity data (40
km/h). Fig. 1 shows the inertial estimates averaged over 50
Monte-Carlo runs when driving on asphalt with a sudden
change to snow. The gray filled area is the 20 spread of the
estimates over the executions. We set the mean of the initial
guess of the stiffness estimates to be in between the true
values for snow and asphalt, and the mass and inertia have
an initial covariance matrix P, = [200, 100; 100, 400]. Note
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Fig. 1. Mass and inertia results for 50 Monte-Carlo executions on surface
change from asphalt to snow at ¢ = 30s for sinusoidal steering maneuvers.

that for the case of having correct inertial parameters, we
have previously shown that the estimator is unbiased, even
for experimental data [6]. The mass estimates converge accu-
rately, but there is a bias in the inertia. This is unsurprising,
since the only information we get about the inertia is from
the states, not from the actual measurements, and the filter
executes with 500 particles.

B. Closed-Loop Control Performance

Here, the vehicle tracks nine double lane-change and
return maneuvers, with the middle three on snow and the
rest on dry asphalt. The maneuver is reminiscent of the
standardized ISO 3888-2 maneuver. The tire-stiffness and
inertial parameter estimates are fed into the NMPC. On the
other hand, the simulation model uses a nonlinear Pace-
jka tire model and the friction ellipse to model combined
slip [1], [20]. The reference velocity is fixed to 19 m/s.
The reference is generated with Bezier polynomials and
the position, heading, longitudinal velocity, and yaw rate
are given to the controllers to track. The lateral constraints
we enforce are that the vehicle is not allowed to leave
the road boundaries. We compare the following controllers:
STIFFNESS, an NMPC with the tire-stiffness estimator in [6];
PROPOSED, the proposed method with both tire-stiffness and
inertial parameter estimation; ORACLE, which uses an NMPC
with the true nonlinear tire-force model and correct inertial
parameters (this controller acts as ground truth and cannot
be implemented in practice); SNOW, an NMPC that uses
the correct inertial parameters but snow stiffness values;
ASPHALT, an NMPC that uses the correct inertial parameters
but asphalt stiffness values. All controllers perform 1 SQP
iteration per planning step. The estimator is executed at
100Hz and the MPC at 20Hz. The metrics to evaluate
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Fig. 2. Resulting path for the various approaches during the lane-change

maneuvers. Red and green dashed lines are the constraints and reference,
respectively. The gray vertical dashed line indicates the surface change from
asphalt to snow. The blue, cyan, magenta, black, and gold lines indicate the
trajectories for PROPOSED, STIFFNESS, SNOW, ASPHALT, and ORACLE.

TABLE I
RESULTS FOR 100 MONTE-CARLO RUNS FOR THE MANEUVER IN FIG. 2.

Method Mean Cost Max Cost Mean Score  Max Score
STIFFNESS 3.144 6.879 0.051 0.077
PROPOSED 2.091 6.546 0.010 0.035
ORACLE 0.699 0.700 0 0
SNOW 3.344 3.361 0 0
ASPHALT 203.399 256.583 6.107 6.473

the controllers are cost, Cost = ), l(x},us), and score,
Score = Zk((yk - ymax)+ + (ymin - yk)+)t87 summed
over the simulation time, where ()4 = max(-,0) and I(-) is
defined by the MPC objective function.

Fig. 2 shows the lateral tracking performance for one
representative realization. ASPHALT destabilizes itself once
the surface switches to snow (indicated by the gray vertical
dashed line). PROPOSED achieves better tracking perfor-
mance than SNOW, despite SNOW using the correct stiffness
and inertial values after the surface switch. However, note
that the objective in the MPC formulation does not only
consider lateral tracking error. When comparing PROPOSED
with STIFFNESS, which uses the nominal inertial parameters,
it is clear that estimating the inertial parameters indeed has
benefits. The ASPHALT controller is unable to safely navigate
the maneuvers on snow, and the SNOW controller behaves
conservatively on asphalt. Both PROPOSED and STIFFNESS
overshoot the first maneuver on snow, but are able to match
the performance of the SNOW and ORACLE controllers once
they have learned about the surface change.

Table I shows the results for 100 Monte-Carlo runs.
Due to the nature of the maneuver, ASPHALT destabilized
the vehicle in every execution when entering snow, so its
results are summed up to the point of divergence. PROPOSED
outperforms STIFFNESS (33%) and the snow models (37%)
in terms of average cost, which shows the benefits with
introducing active inertial-parameter estimation, at least for
this particular maneuver.

VI. CONCLUSION

We extended a previously developed PF-based tire-
stiffness estimator to relax the assumption of having known

inertial parameters. Our simulation results show clear bene-
fits with introducing inertial-parameter estimation into the
tire-stiffness estimation, as the parameters are dependent
on each other. While the exact knowledge of the inertial
parameters is secondary for vehicle stability, the tracking
error and objective function cost are clearly improved.
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