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Robust Adaptive Dynamic Mode Decomposition for Reduce Order
Modelling of Partial Differential Equations

Aniketh Kalur[1], Saleh Nabi[2], and Mouhacine Benosman[2]

Abstract— This work focuses on the design of stable
reduced-order models (ROMs) for partial differential equa-
tions (PDEs) with parametric uncertainties. More specifi-
cally, we focus here on using dynamic mode decomposition
(DMD) to reduce a PDE to a DMD-ROM and then pose the
ROM stabilization or closure problem in the framework
of nonlinear robust control. Using this robust control
framework, we design two DMD-ROM closure models
that are robust to parametric uncertainties and truncation
of modes. We finally add an adaptation layer to our
framework, where we tune the closure models in real-time,
using data-driven extremum seeking controllers.

I. INTRODUCTION

The use of reduced-order models (ROMs), i.e., reduc-
ing partial differential equations (PDEs) model to a sys-
tem of finite-dimensional ordinary differential equations
(ODEs), in control and optimization has led to practical
solutions for extremely challenging problems, such as
control of thermo-fluidic systems [1], [2], windfarms [3],
and solutions to the Hamilton–Jacobi–Bellman equation
arising in nonlinear feedback control [4], among others.
The presence of increasingly large data sets, from exper-
iments or simulations, enables the design of ROMs using
methods like proper orthogonal decomposition (POD)
or dynamic mode decomposition (DMD), both of which
can extract tractable and physically relevant information
from the data at a given set of the system’s parameters.
However, one major challenge is that ROMs can in-
troduce stability loss and prediction degradation. These
degradations are mainly due to the truncation of higher
modes and parametric uncertainties. More specifically,
the basis functions (spatial modes) obtained from data
snapshots at one given set of parameters, may show
deterioration in the accuracy of the ROMs prediction
or even become unstable when applied to represent the
solutions for a different range of parameters.

Many methods have been developed to remedy such
difficulties, aiming at what is known as stable model
reduction. This paper investigates the solution to such
issues, especially for the DMD method, which, unlike
POD, allows the selected basis to be directly associated
with desired characteristic frequencies and growth/decay
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rates. Furthermore, as revealed by [5], DMD has a strong
connection to Koopman operator theory [6], which
makes it more appealing for predicting and analyzing
nonlinear dynamical systems.

For the purpose of robust stable model reduction, we
focus on the so-called closure models. Indeed, various
approaches are reported in the literature to determine
closure models, e.g. variational data assimilation [7],
physics-inspired closure models [8], and Lyapunov-
based stable model reduction [9], [10]. We propose to
formulate the closure model problem as a virtual robust
control (stabilization and tracking) problem, and then,
using nonlinear robust control theory, we propose two
robustly stabilizing closure models. We propose using
a learning-based method, based on multi-parametric
extremum seeking (MES) control, to automatically tune
the coefficients of the closure models to optimally track
the actual PDE model solutions. As a test problem, we
consider the Burgers equation, with uncertain Reynolds
number (viscosity coefficient).

The rest of the paper is organized as follows: Sec-
tion II establishes some basic notations and definitions.
Section III introduces the concept of DMD. Section IV
represents the main contribution of the paper, consisting
of two new robust DMD-ROM closure models, and their
MES-based auto-tuning method. In Section V we present
the test case and validation. Finally, conclusions and
future steps are discussed in Section VI.

II. BASIC NOTATION AND DEFINITIONS

For a vector x ∈ Rn, the transpose is denoted by
xT . The Euclidean vector norm for x ∈ Rn is denoted
by ‖ · ‖ so that ‖x‖ =

√
xTx. ‖M‖F denotes the

Frobenius norm of the matrix M ∈ Rr×r. We shall
abbreviate the time derivative by ḟ(t,x) = ∂

∂tf(t,x),
and consider the following Hilbert spaces: H = L2(Ω),
Ω = (0, 1), which is the space of Lebesgue square
integrable functions, i.e., f ∈ H, iff

∫
Ω
|f(x)|2dx <∞.

We define the inner product 〈·, ·〉H and the associated
norm ‖ · ‖H on H as 〈f, g〉H =

∫
Ω
f(x)g(x)dx, for

f, g ∈ H, and ‖f‖2H =
∫

Ω
|f(x)|2dx. A function f(t,x)

is in L2([0, tf ];H) if for each 0 ≤ t ≤ tf , f(t, ·) ∈ H,
and

∫ tf
0
‖f(t, ·)‖2Hdt <∞.



III. DATA-DRIVEN MODELING: DYNAMIC MODE
DECOMPOSITION

Dynamic mode decomposition (DMD) is a data-
driven method to uncover the underlying dynamics of
a system from data. In this paper, we typically consider
data collected from a dynamical system of the form

ż(t) = F(z(t), ν), z(0) ∈ Z, (1)

where Z is an infinite-dimensional Hilbert space, and
where ν represents a parameter of the system.

Assumption 1: The solutions of the original PDE
model (1) are assumed to be in L2([0,∞);Z), ∀ν ∈ R.

Solutions to the PDE model (1) can be approximated
in a finite dimensional subspace Zn ⊂ Z through expen-
sive numerical discretization, which can be impractical
for real-time applications. In many systems solutions
of the PDE may be well-approximated using only a
few basis functions [11]. In this paper we use DMD
to construct these model reduction basis functions.

DMD is a data-driven technique that has been widely
used in the fluid dynamics community to extract spatio-
temporal modes from complex and dynamically evolv-
ing data-sets [12], [13]. DMD operates on empirical
snapshot data to extract rich dynamical information that
can be used to extract underlying dynamics from data.
We consider a time series of data, collected at various
instances in time, where the time is presented by tk,
where k is the time index. The data at the tk and
tk+1 time instance are given by vector xk ∈ Rn and
xk+1 ∈ Rn both of which are subsets of Zn.

Once we collect measurement data from the system,
the time-series data is stored in a snapshot matrix X =[
x1 x2 · · · xm−1

]
∈ Rn×m and a time shifted

snapshot matrix Y =
[
x2 x3 · · · xm

]
∈ Rn×m.

We seek to find a linear map Aorig ∈ Rn×n such
that Y = AorigX . Using singular value decomposi-
tion (SVD), X = UΣV ∗, then a lower-dimensional
proxy system A = U∗AorigU can be formed, where
U contains the leading r left singular vectors of X and
the reduced-rank linear operator is given by

A = U∗Y V Σ−1, (2)

where, A ∈ Rr×r is the reduced-rank operator of Aorig.

IV. CLOSURE MODELS AND EXTREMUM SEEKING
BASED TUNING

The reduced-order model obtained by DMD is

ẋ = Ax, (3)

where A ∈ Rr×r is the uncertain state matrix. Further-
more, to retain the physical nature of the diffusive PDE,
we explicitly add a diffusive term to the ROM (3), as

ẋ = Ax− ν1Dx, (4)

where D > 0 represents a constant viscosity damping
matrix, and ν1 > 0 a viscosity gain which will be
used later to auto-tune the reduced order model tracking
performance. This explicit addition of diffusion terms in
the ROM is common in ROMs literature, e.g., ([10] and
references therein).

In this work, to account for physical model parametric
uncertainties e.g., Reynolds number mismatch in wind-
farm applications [14], Richardson number uncertainties
in HVAC applications [15], as well as, uncertainties
induced by modal or basis function truncation, we for-
mulate the DMD-ROM construction as a robust control
problem, as

ẋ = (An + ∆A)x− ν1(Dn + ∆D)x + u, (5)

where, Dn > 0,∆D > 0, An and the uncertainty terms
∆A, ∆D satisfy the following assumptions.

Assumption 2: The nominal state matrix An is sta-
ble, i.e., λ(An) < 0.

Assumption 3: The state matrix uncertainty term ∆A
is bounded, such that ‖∆A‖F ≤ ∆A.

Assumption 4: The viscosity damping matrix uncer-
tainty term ∆D is bounded, such that ‖∆D‖F ≤ ∆D.

The virtual control term u is added here to represent
a general closure model term, added to stabilize the
DMD-ROM model. The difference with existing physics
based literature on closure models, e.g., [8] is that we are
formulating the closure model problem, in this context
of DMD-ROM, as a robust stabilization problem.

We propose two closure models which we call, robust
correction and robust correction with vanishing viscos-
ity, respectively. We introduce these closure models,
analyze their stability and robustness using Lyapunov
theory in the follow section.

A. Closure models for DMD-ROM

1) Closure model 1-Robust correction: First, we con-
sider the nonlinear closure model u = u1

cl(x), such that:

ẋ = (An + ∆A)x− ν1(Dn + ∆D)x + u1
cl(x) (6)

where,

u1
cl(x) = −ν2

(
∆A‖x‖ − ν1∆D‖x‖

)
Dnx, ν2 > 0.

(7)

The stability property of this closure model is summa-
rized in the following Lemma.

Lemma 1: The solutions of the DMD-ROM (6), un-
der Assumptions 2-4, with the closure model (7), are
bounded and converge to the positive invariant set S,
given by

S = {x ∈ Rr : 1− ν2λmax(DnP )‖x‖...

...− ν1
λmax(DnP )

∆A‖P‖F − ν1∆D‖P‖F )
≥ 0} (8)



Proof: To analyze stability of this correction term, we
define a candidate Lyapunov function V (x) = xTPx
such that V (x) > 0, ∀x 6= 0 and P = PT > 0. The
time derivative of V (x) along all trajectories is given
by:

V̇ (x) =
1

2

(
ẋTPx + xTP ẋ

)
. (9)

Substituting Eq. (6) into Eq. (9), we get,

V̇ (x) =
1

2

[
(An + ∆A)x−ν1(Dn + ∆D)x +u1

cl(x)
]T
Px

· · ·+ 1

2
xTP

[
(An + ∆A)x−ν1(Dn + ∆D)x +u1

cl(x)
]

(10)

therefore,

V̇ (x) =
1

2

{
xT(ATnP + PAn)x+xT(∆ATP + P∆A)x...

−ν1x
T(DT

nP + PDn)x−ν1x
T (∆DTP + P∆D)x...

+u1
cl(x)TPx +xTPu1

cl(x)
}
.

(11)

In Eq. (10), we know that ATnP + PAn = −Q, since
the nominal system is stable, here Q > 0. This gives us
the relation,

V̇ (x) ≤ 1

2

{
xT (∆ATP + P∆A) x− ...

...ν1x
T (DT

nP + PDn)x− ν1x
T (∆DTP + P∆D)x...

...+ u1
cl(x)TPx + xTPu1

cl(x)
}

(12)

The upper bound of the time derivative of Lyapunov
function is given as

V̇ (x) ≤ ‖x‖2
(
∆A‖P‖F

)
− ν1‖x‖2 (λmax(DnP )) · · ·

− ν1‖x‖2
(
∆D‖P‖F

)
· · ·

− ν2‖x‖2
(
∆A‖P‖F − ν1∆D‖P‖F

)
‖x‖λmax(Dn)

(13)

this leads to,

V̇ (x) ≤ ‖x‖2(∆A‖P‖F − ν1∆D‖P‖F ) · · ·[
1− ν2λmax(Dn)‖x‖ − ν1

λmax(DnP )

∆A‖P‖F − ν1∆D‖P‖F )

]
,

(14)

which shows the convergence of solutions to the
invariant set S.

2) Closure model 2- Robust correction with vanishing
viscosity: In addition to the closure term shown in
above, we add a time varying exponential decaying term
to ensure faster convergence. The time varying closure
model is given us:

ẋ = (An + ∆A)x− ν1(Dn + ∆D)x + u2
cl(x) (15)

where,

u2
cl(x) = −ν2(∆A+ ∆D)‖x‖Dnx− ν1e

−αtDnx
(16)

The stability analysis of the DMD-ROM (15), with the
closure model (16) is given below.

Lemma 2: The solutions of the DMD-ROM (15),
under Assumptions 2-4, with the closure model (16),
are bounded and converge to the positive invariant set
S, given by

S = {x ∈ Rr : 1− ν2λmax(DnP )‖x‖...

...− ν1
λmax(DnP )

∆A‖P‖F − ν1∆D‖P‖F )
≥ 0}. (17)

Furthermore, the convergence to S is accelerated pro-
portionally to ν1e

−αtλmax(DnP ).
Proof: The proof follows similar steps as in the proof
of Lemma 1.

B. Extremum seeking-based closure models adaptive
tuning

Multi-parametric extremum seeking (MES) is a model
free control algorithm, often used to optimize a given
performance cost without closed-form information on
the cost, e.g., [16]. However, MES control can also be
used for open-loop model parametric identification, and
feedback gain tuning, e.g., [17], [18]. We follow similar
ideas here, and propose to use MES to auto-tune the
closure models described in Eq. (6) and Eq. (15), by
continually updating the parameter weights ν1 and ν2,
from online measurements from the system.

In this section, we will briefly describe the MES
algorithm used to update the closure model parameters
ν1 and ν2, in an online setting. We first define a suitable
learning cost function for the MES algorithm. The learn-
ing cost function is a positive definite function of the
norm of error between the measured output of the full-
order model (FOM) (real system), and the output from
the DMD-ROM with corrections in Eq. (6), Eq. (15),
respectively. Given the output y(t) = Cx(t), where C
is the output matrix, and x(t) is the state of the system
at time t. The cost function (J) is given as

J(ν1, ν2) =

∫ tf

0

‖y(t)− yROM (t, ν1, ν2)‖2dt. (18)

Here, tf > 0 denotes the learning time horizon,
yROM corresponds to the output of the DMD-ROM
with closure model. In this work the error is computed
online using measurements from exact solutions of the
PDE, however, the same error can be computed in real
applications, by direct measurements of the system.

We list some classical assumptions on the learning
cost functions, which are needed to ensure some MES
convergence guarantees.



Assumption 5: The cost function J has a local min-
ima at νopt = (νopt1 , νopt2 ).

Assumption 6: The cost function J is analytic and its
variation with respect to the parameter ν = [ν1, ν2] is
bounded in the neighborhood of the local minima νopt.

For simplicity of the presentation we consider a
simple dither-based MES algorithm, given by:

ż1(t) = a1sin(ω1t+
π

2
)J (19)

ν1 = z1 + a1sin(ω1t−
π

2
) (20)

ż2(t) = a2sin(ω2t+
π

2
)J (21)

ν2 = z2 + a2sin(ω2t−
π

2
) (22)

The convergence properties of this algorithm are sum-
marized in the following Lemma.

Lemma 3: Consider the PDE (1) under Assumption
1, together with its DMD-ROM model (6), (7), or (15),
(16). Furthermore, suppose the closure model coeffi-
cients ν1, ν2 are tuned using the MES algorithm (19)-
(22) where ωmax = max(ω1, ω2) > ωopt, ωopt large
enough, and J(·) is given by (18). Let eν(t) := (ν1 −
νopt1 , ν2−νopt2 ) , then, under Assumptions 5, and 6, the
norm of the distance to the optimal values admits the
following bound

‖eν(t)‖ ≤ ξ1
ωmax

+
√
a2

1 + a2
2, t→∞, (23)

where a1, a2 > 0, ξ1 > 0, and the learning cost func-
tion approaches its optimal value within the following
upper-bound

‖J(ν)− J(νopt)‖ ≤ ξ2( ξ1ω +
√
a2

1 + a2
2), (24)

as t→∞, where ξ2 = maxν∈N (νopt) ‖∇νJ(ν)‖.
Proof: Refer to [18].

V. TEST-CASE AND NUMERICAL RESULTS

In this section, we discuss the results obtained by
evaluating the proposed framework on the Burgers equa-
tion. Firstly, we briefly introduce the Burgers equation.
Secondly, we describe the problem setup. Lastly, we in-
vestigate the performance of the tunable closure models
for DMD-ROMs, by evaluating the error between the
DMD-ROMS with closure terms and the standard DMD-
based models.

A. Test-case: Burgers Equation

The proposed framework is tested on the viscous
Burgers equation which describes the dynamics of a
single advecting-diffusing wave in one dimension, given
by

∂v

∂t
= ν

∂2v

∂x2
− v

∂v

∂x
, (25)

where, v(t,x) is the velocity of the wave, x is the spatial
direction along which the wave propagates, t is the time
and ν is the viscosity of the wave.

Spectral methods are used to solve the Burgers equa-
tion by discretizing the x direction using Fourier series

v(t,x) =

N∑
k=−N

v̂ke
ikx. (26)

Here, v̂(t) is the Fourier coefficient, k is the
wavenumber, and N is some finite value truncation of
the wavenumber. By substituting Eq. (26) into Eq. (25),
we obtain the following ordinary differential equa-
tion (ODE)

˙̂v = −νk2v̂ − ikv̂2. (27)

The above equation can now be solved for various
wave numbers using standard solvers like ODE45 in
MATLAB. The spatial direction x is discretized using
256 linearly spaced points and the system is initialized
with an velocity profile given by v(t0) = e−(x+2)2 .

B. Problem Setup

In Eq (27), it is known that ν ∝ 1
Re , where Re

is Reynolds number. Therefore, changes in ν results
directly in change of the flow regime the system is
operating in. This variation in ν over time can causes
many challenges while developing ROMs, since the
ROMs need to be able to accommodate for parametric
variations. Hence, we test the proposed frameworks and
its efficacy in adapting to the ν parameter variations.

We first develop a ROM using DMD only (without
closure model), this ROM is developed on data ob-
tained from the Burgers equation at a nominal parameter
νnom = 0.01, using 50 time units worth of data. The
domain is 1-dimensional in x ∈ [0 1] with periodic
boundary conditions such that v(0) = v(1). The re-
sulting ROM developed on the nominal parameter has
a reduced state size r = 14, while the original system
is of size n = 256. However, due to disturbances and
changes in the environment, we assume that the system
is operating at the true value ν = 1, which is far away
from the nominal value (νnom). This discrepancy in
parameter between the nominal value and the true value
makes the ROM developed on the nominal value not
usable, since the large variance between parameters νnom
and ν may lead to an unstable ROM or may lead to large
solution errors or both. In our study, with a DMD-ROM
developed on νnom with size r = 14, we observe that
the DMD-ROM is not stable due to presence of two
positive eigenvalues λ1 = 0.00082 + i0.0577 and λ2 =
0.0073 − i0.0596 respectively. These unstable modes
with low-energy cause the large error with oscillations
(see orange curve in Fig. 2), which will eventually
become radially unbounded.



C. Results

1) Results from robust correction: The difference in
parameters νnom and ν creates a large discrepancy,
which directly effects the performance of the ROM.
Hence, we test the performance of the DMD-ROM with
closure models (6), (7), and the tuning algorithm (19)-
(22), with the constants: a1 = 10−3, ω1 = 10, φ1 = π

2
and a2 = 10−6, ω2 = 1000, φ2 = π

2 , respectively.
Using measurement data over 50 time units, we first
report the convergence of the learning cost in Fig. 1(a).
The values of ν1 and ν2 over learning iterations are
shown in Fig. 1(b), where the final value is ν1 = 0.043
and ν2 = −0.6 × 10−6. We underline here that the
optimal value of ν2 is very small, which makes brute
force manual tuning intractable. It should be noted that
we stop the learning of parameters ν1,2 after 3000
iterations since the cost function has converged, any
additional gains in ν1,2 will have only marginal effects
in the results. The obtained values of ν1 and ν2 from
MES algorithm are then tested to simulate the robust
closure model for an extended time using measurement
data elapsing 200 time units. Even though the parameters
ν1,2 are learned over 50 time units worth of data, they
perform well when applied to an extended time study
with 200 time units worth of data, which shows the
extrapolation performance of the obtained robust DMD-
ROM models. We also compare the performance of
the DMD-ROM with robust correction to that of the
standard DMD. This result is shown by the blue curve in
Fig. 2 , where it can be seen that the DMD-ROM with
robust correction (blue) improves to model estimation
error in comparison to the standard DMD (orange).

2) Results from Robust correction with vanishing vis-
cosity: We report in this section the results correspond-
ing to the robust correction with vanishing viscosity for
the same problem. We observe the convergence of the
cost function similar to that of Fig. 1(a).

The parameters ν1 and ν2 obtained from MES for
50 time units of data, are then applied on the system
with robust correction with vanishing viscosity for an
extended time of 200 time units. It can be seen from
Fig. 2 that the DMD-ROM with vanishing viscosity
term (green) converges faster than the DMD-ROM with
robust correction (blue). This result is expected from the
analysis results of Lemma 2. However, it should be noted
that both correction methods do better than the standard
DMD without any correction (orange in Fig.2).

3) Robustness to modes truncation: As mentioned in
Section. V-B, we use a reduced-order model of size r =
14. To further investigate the robustness of the proposed
DMD-ROMs, we study the correction terms obtained
on the ROM model with r = 14 states and implement
the same correction term on a ROM model system with
r = 5 states. More specifically, the parameters ν1 and

ν2 are identified on a model of size r = 14, then we
use the obtained parameters on a model of reduced size
r = 5. We aim to study the effect of uncertainty caused
by error in modes truncation. To this effect, as shown in
Fig. 3, we see that the robust correction terms effectively
minimize the model estimation error. This is despite
the fact that the DMD-ROM without closure models is
unstable.

In Fig. 3, we can see that the correction term is robust
to uncertainty due to modes truncation as well. Since,
the correction terms minimize the error consistently in
comparison with the standard DMD without correction.
Further, we can also see that the solution of the DMD-
ROM with vanishing viscosity term achieves faster
convergence and minimization of the model estimation
error.

VI. CONCLUSIONS

In this paper, we reported some recent results on
stable model reduction for PDEs with parametric un-
certainties. We focused on data-driven model reduction,
and proposed a DMD-ROM approach. However, one of
the main problems with ROMs is their instability, which
often occurs due to model truncation and parametric
uncertainties. This problem is usually solved using the
so called closure models. We formulated the DMD-
ROM closure model for uncertain PDEs, in the context
of robust nonlinear control, and designed two robust
closure models. We then proposed to add an adaptation
layer to these DMD-ROM closure models, by using
extremum-seeking controllers as real-time tuning algo-
rithms. Finally, we validated our approach on a 1D
Burgers equation. The obtained results are interesting,
however, we want to investigate in our next steps,
the performance of such approach on a more realistic
fluid dynamics PDEs, i.e., Navier-Stokes, or Boussinesq
equations.
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