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Abstract
Automatic optimization of individual thermal comfort in indoor spaces shared by multiple
occupants is difficult, because it requires understanding of the individual thermal comfort
preferences, modeling of the room thermodynamics, and fast online optimization to account
for movements of the occupants. We explore an approach to optimizing individual thermal
comfort subject to the seating arrangement of a group of individuals through temperature
set-point optimization of Heating, Ventilation, and Air Conditioning (HVAC) equipment. In
this paper, we learn both the individual thermal comfort preferences using a weakly super-
vised approach and the room thermodynamics via static approximations. Finally, we use
optimization to determine the HVAC set points that maximize individual thermal comfort
subject to the current seating arrangement. The proposed method is tested on a real data set
obtained from workers in an open office. The results show that, on average, the temperature
in the room at each user’s location can be regulated on average to within 0.85 degree C of
the user’s desired temperature, with a standard deviation of 0.12 degree C.
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Dynamic Thermal Comfort Optimization for Groups

Emil Laftchiev∗1, Diego Romeres1, Daniel Nikovski1

Abstract— Automatic optimization of individual thermal
comfort in indoor spaces shared by multiple occupants is diffi-
cult, because it requires understanding of the individual thermal
comfort preferences, modeling of the room thermodynamics,
and fast online optimization to account for movements of the
occupants. We explore an approach to optimizing individual
thermal comfort subject to the seating arrangement of a group
of individuals through temperature set-point optimization of
Heating, Ventilation, and Air Conditioning (HVAC) equipment.
In this paper, we learn both the individual thermal comfort
preferences using a weakly supervised approach and the room
thermodynamics via static approximations. Finally, we use
optimization to determine the HVAC set points that maximize
individual thermal comfort subject to the current seating
arrangement. The proposed method is tested on a real data
set obtained from workers in an open office. The results show
that, on average, the temperature in the room at each user’s
location can be regulated on average to within 0.85oC of the
user’s desired temperature, with a standard deviation of 0.12oC.

I. INTRODUCTION

Thermal comfort is an individual’s feeling as to how cold,
comfortable, or hot they are [1]. Each person has a unique set
of physiological factors such as ethnicity, body composition,
gender, and state of health that shape their perception of
thermal comfort. These perceptions are manifested as unique
responses to the question of how comfortable the individual
is to environmental factors such as temperature, humidity,
airflow, and the weather outdoors. When modeled, individual
thermal comfort is typically described using easily measured
variables of temperature and humidity [1], [2], [3]. A per-
son’s comfort zone is the set of temperature and humidity
values for which that person is comfortable. Engineering
bodies such as the American Society for Heating Refrigera-
tion and Air-conditioning Engineers (ASHRAE) define zones
that should be common to the majority of individuals [1], [2].

Traditionally, maintaining thermal comfort has been an
individual’s own responsibility. Individuals maintained their
comfort by changing clothes, opening windows, or adjusting
thermostats. However, these traditional routes of comfort
optimization require the individual to have both learned the
properties of the room within which they are sitting, as well
as to be empowered to make changes to the environment.
These requirements do not necessarily hold in the modern
office environment, where the windows usually do not open,
the thermostat is controlled centrally, and the individual’s
wardrobe choices are limited to their predictions of the
indoor environment that morning. In addition, while the
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individual may learn the expected temperature in a particular
location of the room, the individual may move later, because
of new seating arrangements, such as those that take place in
open offices with fluid seating plans, or because of meetings
throughout the day. The inherent restrictions on the user
actions brought on by the office environment, along with the
possible variance of user locations throughout the day, often
impair personal thermal comfort. Yet, studies show improv-
ing comfort is the key to improved work performance and
satisfaction, and increased social happiness [4]. Improving
comfort can also lead to greener buildings and important
energy savings [5]. This motivates us to seek automatic
solutions to improving individual thermal comfort in the
group setting. Interest in this problem is also growing in
the literature [6].

In this paper, similar to our previous work [7], [8], we
leverage the Internet of Things (IoT), and specifically the
ability to place multiple low-cost temperature and humidity
sensors throughout the room. We utilize these sensors to
learn a model of the individuals thermal comfort, subject to
the temperature and humidity experienced by the user at his
or her seat, and to learn static mappings from the Heating,
Ventilation, and Air Conditioning (HVAC) set points (system
inputs) to each seating location in a room. These static
mappings help us to learn the temperature field produced in
the room in response to the HVAC system and the external
conditions. We leverage the learned models in an optimiza-
tion across all users that determines the set of HVAC set
points that minimize the deviation of temperature observed
at each user’s location from the user’s desired temperature.
Our approach is evaluated on data collected from 18 users
in an open office in Japan.

A. Background

There is a large body of literature in the thermal com-
fort modeling community and the thermodynamic modeling
community. We review here relevant works and focus mainly
on work that contrasts with our approach.

1) Thermal Comfort Modeling: The extensive work in the
field of thermal comfort estimation and optimization can be
subdivided into three approaches. The first approach focuses
on cost of computing the most popular model, Predicted
Mean Vote (PMV) [9], and tries to improve (simplify) the
computation [10], [11], [12], [13]. The second approach
notes weaknesses in thermal comfort standards: small cohort
sizes, homogeneity in the cohorts, and averaged model
outputs. To overcome these weaknesses, authors lean on user
surveys and interaction to learn personalized models. These
works yield either population models over many users with



as little as 1 data point [14], or individual models with many
collected data points per user [15], [16], [17], [7], [18], [19],
[20], [21], [22], [23]. The third approach is to use a standard
method of thermal comfort modeling and focus on the HVAC
control.

We generally agree (and have observed in our experiments
in the US and Japan) that the standard models of thermal
comfort (ex. PMV, comfort zones) are inadequate for many
people [7]. And we have learned through several projects that
collecting supervised thermal comfort data via user surveys
is difficult, resulting in small and specific existing datasets.
This has been observed by many authors: in [15] 58 data
points and 20 data points; in [16] a single user in a single
room testing 5 strategies in 14 days; and in [19] making
personalization optional with a reduced 1D linear model
based on PMV; OccuTherm [22], Spot Monitoring [14] 1
label provided per user; Ranjan and Scott [18] between 8
and 33 labels per user over 5 weeks of data collections;
and [24] combining multiple small data sets across cities;
and others referenced herein. Survey methods also suffer
from important issues such as granularity of the thermal
comfort scale [22], [25], while detailed comfort models
suffer from difficulties like measuring critical values such
as Mean Radiant Temperature (MRT) [12].

It has been our experience from prior publications [7]
that deployment of sensor setups commonly described such
as for example the Kinect, Raspberry Pi, Adafruit sensors
are a strong deterrent to the adoption of improved thermal
comfort technology. Similarly, we found strong resistance,
particularly in Japan, to accepting the intrusion of labeling.
This is problematic because the best personalized individual
comfort models are found by tracking and interacting with
an individual [7], [23]. We conclude that methods that
rely on models with multiple difficult measurements, or
surveys/direct user queries, despite being very accurate, have
low chance of practical impact. Similarly, we have found
that transfer learning methods [8], [24] although promising,
represent an initial investment that may be too large to speed
adoption.

2) Room Thermodynamic Modeling: Similar to thermal
comfort models, thermodynamic modeling has a long history.
Each room exhibits a temperature gradient. This gradient
means that each user experiences a different temperature and
this temperature is not the same as the HVAC set point.
Therefore, modeling the room thermodynamics at the loca-
tions of the users is essential for automatic thermal comfort
optimization of a room. In this paper we make a distinction
between learning a truly dynamical thermodynamic model,
which models the temporal evolution of temperatures in
response to the HVAC system operation at all user locations,
and static (or quasi-static) models that learn the relationships
between discrete room locations in the equilibrium (steady)
state. Thermodynamic systems have been modeled using
the broad categories of white-box models [26], [27], which
model the physical processes from first principles; grey-box
models [28], which rely on reduced-order physical models,
simulation and optimization; and black-box models [29],

which are purely data-driven models, and include statistical
models.

White- and grey-box models that simultaneously model
many room locations are still difficult to deploy rapidly and
at scale in the commercial setting because they usually either
exhibit large computational costs or require individualized
tuning by an expert for each deployment. On the other hand,
black-box models, and in particular neural networks, have
recently been shown [30] to perform well in the absence of
external knowledge such as room geometry or layout. Be-
cause of this, and because of the relatively easier problem of
inferring static relationships from data, in this paper we will
use neural networks to approximate static thermodynamic
relationships.

B. Contributions

In search of a more easily deployable method we propose
two contributions. First, we propose a weakly supervised
approach to learning thermal comfort models that extends
the logic embedded in the ASHRAE comfort zones and does
not require any new behavior or behavioral change in the
users’ routine. Second, the thermal comfort of the users is
improved via an optimization problem over the given seating
arrangement of the users considering the learned desired
user temperatures and static mappings that describe the room
thermodynamics.

Our contributions emphasize weakly supervised learning
to minimize the disruption to the users, and to avoid re-
quiring users to change their behavior (ex. learn to use a
new system/device or provide any additional feedback). We
further emphasize static modeling of the relationship between
multiple room locations and the HVAC set point(s). Such
modeling is simpler than requiring the use of truly dynamical
models over a multitude of location in a given room. Lastly,
we leverage the existing HVAC controller and simply provide
input to this system. Thus the proposed approach, controls
the HVAC units in a given shared space such that user com-
fort is maximized while avoiding thermodynamic modeling
and new controller derivations.

II. PROBLEM FORMULATION

Consider an indoor space occupied by K users for an
extended period of time, e.g. a shared office with assigned
desks. The indoor space is equipped with N HVAC devices
distributed over the space, which can heat or cool the
environment, and with M sensors at fixed locations that can
measure the local temperature and level of humidity.

With a slight stretch of notation, let i ∈ 1, . . . ,M denote
one sensor and its location in the space, and let xi(t) =
[xT,i(t),xH,i(t)] ∈ R2 be the measurement of the ith sensor
at time t, called the thermal state, where xT,i and xH,i are the
temperature and humidity measurements, respectively. The
room thermal state is denoted by X(t) = [x1(t), . . . ,xM(t)]T ∈
R2M . The thermal state perceived by the kth user, k∈ 1, . . . ,K,
is approximated by the measurements of the closest ith

sensor.



We denote by x∗T,k the optimal temperature of user k. Then,
let X∗T (t) be a time-varying vector of optimal temperatures
desired by the occupants, such that the ith element in the
vector corresponds to the ith location in the room, and
contains the optimal temperature x∗T,k for kth user seated in
the ith location. We note that in this work, the user seated
in the ith location may change for any given time t and that
multiple users may be seated near the same sensor. When
multiple users are seated near the same sensor, the optimal
temperature at this sensor is the average of the optimal
temperatures for each user near the sensor. We assume that
each user has the capability of providing identifiable feed-
back regarding their perceived thermal comfort by changing
the temperature set point of an appropriate HVAC unit.
By associating the user’s feedback with the measurement
of the closest sensor, we can determine if the user feels
hot, cold, or comfortable at that time instant. Finally, let
j ∈ 1, . . . ,N denote a given HVAC device, and h j(t) ∈ R be
the temperature set point of the jth HVAC device at time
t. The vector of set points for all devices is denoted as
H(t) = [h1(t), . . . ,hN(t)]T .

Our goal is to learn a control law H∗(t) = π(X∗T (t))
that, given the preferred temperature x∗T,k,i for each user k,
maximizes the comfort probability of all the users denoted
by yc = [y1

c , . . . ,y
k
c]

T . We note here that this control law is
time varying because users are allowed to change locations.
However, if the users are given a fixed seating assignment,
then the control law is not time varying, and instead has the
form H∗ = π(X∗T ).

III. MODEL LEARNING

For the kth user, associated with the ith sensor at time
t, there exists an unknown function, yk,i

c = f̃ k,i(x̃i(t)) that
maps the user’s thermal state, x̃i(t) at time t, to their personal
probability of comfort, yk,i

c (t) ∈ (0,1) at time t. In practice,
the user’s thermal state x̃i(t) is defined by an extended set of
parameters that include age, gender, metabolic rate, ethnicity,
clothing, and others. Because many of these parameters are
not measurable, it is not possible to learn f̃ . Here, as in
prior works [7], [18], [13], [31], [17], we aim to learn an
approximation to f̃ using the measurable quantities xi(t):

yk
c(t) = f k(xi(t)). (1)

where we dropped the superscript i for ease of notation.
It is important to note that while the location of the user
may change, the model f k(xi(t)) remains the same, because
the user’s preferences do not depend on the seating location
of the user, but rather on the temperature and humidity
experienced by the user in the seating location. In this paper,
the burden of providing feedback by the users is reduced
by taking two steps. First, a standard default model, f 0, is
learned from unsupervised data recorded in the room. Then,
the standard model is adapted using feedback provided by
each user, if available. The model for the kth user is denoted
as f k.

Fig. 1: Possible methods of specifying thermal comfort zones
on the psychrometric chart.

Fig. 2: Standard and personalized models based on indoor
temperature. User index is used to denote users and make
the plot clearer.

A. Learning an Initial User Model

The standard model, f 0, common to all users, is a model
that describes the range of measurements that are comfort-
able for all users. Thus, selecting these ranges is an important
design choice. There are at least two methods of choosing
these ranges. The first method, defined on the measurements
of temperature and humidity, is through expert opinion. An
example of expert opinion (also based on past experimental
studies) are the summer and winter comfort regions pub-
lished by ASHRAE [1]. These are visualized by blue and
yellow rectangles, respectively, on the psychrometric chart
[32] shown in Fig. 1. The second method is to define a
region on the psychrometric chart that encompasses the
actual observed data points at a given location. This latter
method extends the logic used in the ASHRAE zones. This
can be conveniently captured in a quadrilateral region on the
psychrometric chart by finding the observed Tmin,Tmax,RHmin
and RHmax from measurements in the room. An example of
such a region is shown in the red rectangle in Fig. 1. The
points plotted inside the rectangle represent data collected
for the verification of this paper. Note that these fall largely
outside of the expert-defined comfort zones. This method is
convenient, because it does not require prior knowledge or
hand engineering.

During the course of developing this work, we exper-
imented with both approaches suggested above. Because



Fig. 3: Standard and combined personalized models based on
indoor temperature. Group index is used to denote groups of
users with overlapping preferences and make the plot clearer.

of the international nature of this project, it was observed
that the standard ASHRAE zones might not apply to the
thermal comfort preferences of individuals outside of the
United States. We also observed that while users seemed
to react to temperature changes in the office environment,
there was little reaction to changes in humidity. Thus keeping
track of humidity adds complexity to the model but does
not materially improve the model quality. For this reason,
we suggest a third approach, that defines an initial user
comfort zone corresponding to the interval encompassing the
observed maximum and minimum indoor temperature. This
1-Dimensional model is simple to learn and maintain for
each user, easy to initialize using room measurements, and
provides an extensible foundation for incorporating outdoor
temperature (or other sensors) into the comfort model in the
future.

In this third approach, a standard comfort zone based on
indoor temperature, is shown by the blue dashed line in Fig.
2. The initial model shows that the maximum and minimum
indoor temperatures. This shows a wide range of tempera-
tures recorded indoors which might be because some sensors
are located such that they are irradiated by the sun near a
window, or because the indoor temperature is allowed outside
of its regulated range outside of the regularly scheduled office
hours. The initial comfort interval is customized for each user
based on the feedback provided, and represents the learned
thermal comfort model of the user. For the 18 users in this
study, the standard comfort model and the customized model
for each user are shown in Fig. 2. Note here that while we
choose to have a 1-Dimensional user comfort interval, the
number of measurements can be expanded using a similar
approach for each measurement. In addition, the interval
could be indexed to a time measurement such as day (or
month) of the year, or a seasonal measurement such as
outdoor temperature, to learn, over the course of a year, a
time-varying interval of comfort preferred by a user.

An interesting observation from Fig. 2 is that there is
significant overlap between the individual models of the user.
One assumption of our models is that a user is comfortable
for all temperature measurements inside the determined

comfort interval. If the user is not comfortable, then user
would have adjusted the HVAC set point and thus altered
the comfort interval. Leveraging this assumption greatly sim-
plifies finding a common optimal temperature for the users.
Specifically, when the comfort intervals of two individuals
overlap, a new comfort interval is created for each individual
that is the intersection of the two comfort zones. Repeating
this merge operation for all 18 users and all feedback points
provided, we observe in Fig. 3 that the number of comfort
zones to reconcile in the final optimization problem has
been reduced from 18 to 4. Thus the number of parameters
against which we optimize is greatly reduced. An interesting
extension of this method is that individuals of similar thermal
preferences can be co-located in parts of the room based on
their shared thermal preference. We now elaborate on how
the thermal comfort zones are optimized.

B. Personalizing the User Model

Customization of the standard model for a given user
begins when an uncomfortable user, k, adjusts the jth HVAC
device’s set point. At this point, we observe the user’s
thermal state, xi(t), and the requested set point temperature,
h j. Each set point request reveals three levels of information.
First, we know that the user is uncomfortable in the current
state, xi(t). Second, the user is either hot or cold, depending
on the direction in which the set point, h j, is changed. And
third, the user thinks that their optimal temperature might be
h j.

Of these three feedback components, we make use of the
first two components. This is because we cannot be explicitly
sure that the target set point chosen by the user is optimal.
Thus, when a user adjusts the HVAC thermostat, we obtain
a labeled data point that states that the user is uncomfortable
in these conditions and whether the user is hot or cold.

To personalize f 0, we first check if the user is hot or
cold. If the user is cold, we shift the minimum temperature
of the user’s comfort interval to be the current observed
temperature. If the user is hot, we shift the maximum
temperature of the user’s comfort interval to be the current
observed temperature. The updated model for the kth user is
denoted by f k.

By updating the comfort interval in this fashion, we
determine the range of indoor temperatures that motivate
the user to provide feedback. We obtain estimates for the
minimum indoor temperature for which the user felt hot,
and the maximum indoor temperature for which the user felt
cold. We expect that the comfortable temperature of the user
will be the average of these two temperatures.

By personalizing models for each user and then choosing
the overlapping intervals between users, we find that for the
18 users in the experimental data for this study, there are
4 comfort zones. These are shown in Fig. 3. Taking the
weighted average over these 4 comfort zones, where the
weight is equal to the fraction of users in a given comfort
zone, we find that the average temperature for which the
users would be comfortable is 26oC. Interestingly, if the
average temperature is found over the individual models, then



Fig. 4: The thermal sensor model and the thermal set point
model shown in the autoencoding framework.

the average preferred temperature is 25.6oC, which reflects
the wide temperature range throughout which some users
did not interact with the system. In other words, leveraging
the individual models shows the effect of some outliers, or
disinterested users, on the average comfortable temperature.

C. Approximating the Room Thermodynamics

In a given common room with M sensors and N HVAC
units, at steady state, there exists a function X(t) = g(H(t))
that maps the forward (causal) relationship in the data from
HVAC set points to room sensor measurements. In addition,
there exists a function H(t) = g−1(X(t)) that maps the
inverse relationship, g−1, in the data from room sensor
measurements to HVAC set points. Ideally, one invertible
model g can be learned from steady-state data. Unfortunately,
collecting steady-state data is both time consuming and
requires further thermodynamic modeling. For this reason,
we focus on tightly controlled environments, such as an
office, and accept that there will be some thermodynamic
transients in the data. We learn two models. In the forward
direction, we learn a model, herein called the thermal sensor
model, that maps the HVAC set points to the resulting room
thermal state X :

X̂(t) = fsensor(H(t)). (2)

and in the inverse direction we learn a model, herein referred
to as the thermal set point model, that maps the current room
state to the best estimate of the input HVAC set points,

Ĥ(t) = fSetPts(X(t)) (3)

We also observe that due to the nature of our data, the
functions fsensor and fSetPts might be highly non-linear and
non-convex. Noting that neural networks are particularly
suitable for approximating such functions, we choose to
model both the forward and inverse models with neural
networks. Then, observing the symmetry in these models,
and that the number of HVAC set-points N is usually strictly
less than the number of sensors M, N < M, and the fact that
these are black-box neural network models, we observe that
these models can be trained as an autoencoder, where

X̂(t) = fsensor( fSetPts(X(t))). (4)

Fig. 4 shows the models linked in the autoencoding
framework. From left to right, the input layer of the model

corresponds to the room thermal state, X(t). The hidden
layers consist of a tunable group of layers with the usual non-
linear activation functions. The latent layer has a dimension
equal to the number of HVAC units controlling the room,
and represents the learned set-point for each HVAC unit, h j.
Next comes a new set of hidden layers that translate the
latent layer’s outputs into an estimate of the room thermal
state, X̂ . As shown in the figure, the model inputs can be
further augmented using HVAC state conditions such as fan
on/off state, fan speed, etc. We denote these as xC, j(t).

To learn the forward and inverse models together in an
autoencoder, we augment the usual autoencoding loss func-
tion with a term minimizing the deviation of the embedding
from the real HVAC set-points, h j. The new loss function
is denoted as LT (t), where T denotes that this is an
approximation of the static thermodynamic relationships.

LT (t) =
M

∑
i=1

(x̂T,i(t)− xT,i(t))2 +(x̂H,i(t)− xH,i(t))2

︸ ︷︷ ︸
Reconstruction Loss on X(t)

+

N

∑
i=1

(ĥ j(t)−h j(t))2

︸ ︷︷ ︸
Embedding Loss on H(t)

(5)

IV. THERMAL COMFORT CONTROL LAW

We now combine the models described in Section III
to learn a control law, π(X∗T ), that controls the HVAC
units such that thermal comfort is optimized. To begin,
we first leverage the personalized user models, f k, to find
the optimal temperature of each user. To do this, for each
individual or joint comfort interval we obtain the average
indoor temperature determined as (Tmax−Tmin)/2. We record
this temperature as the optimal temperature, x∗T,k, preferred
by the user(s) in this individual (joint) comfort interval.

Next, we obtain the control law by optimizing the loss
function,

LC,I(X̂(t),X∗T ) = ∑
i∈M

∑
k∈K

(1(i)x̂T,i(t)−1(i,k)x∗T,k,i)2 (6)

where x∗T,k,i is the optimal temperature of the kth user who is
currently sitting in the ith location, 1(i) = 1 if i corresponds
to the closest sensor location to at least one user, and
1(i,k) = 1 if i corresponds to the closest sensor location for
the kth user. The estimated value of the temperature at the ith

location is approximated by the thermal sensors model (eq.
(2)). Optimization is performed using the Powell method,
which is a derivative free optimization method [33]. Using
this optimization method allows the static approximation to
the room thermodynamics to take any form without con-
straining the function to have analytically tractable deriva-
tives. In the future, if desired, a constrained optimization
approach may be used to optimize energy efficiency or other
desirable building parameters.

A key observation is that neither the static room ap-
proximation nor the objective function are expected to be
globally convex. For this reason, it is important to begin the



optimization at a point that is near the local optimum of the
loss function. We use the thermal set points model, (eq. (3)),
to provide this initial estimate of the solution.

V. DATA COLLECTION AND TRAINING PARAMETERS

Data to test the proposed approach was collected in a
large field experiment in an open office. The office is air-
conditioned by N = 5 HVAC units, each of which directly
cools or heats a particular part of the room.

The desks in the room are arranged in rows, and each
desk has two sensors, one at each corner that abuts the
next desk. Each sensor measures temperature and humidity.
There are 39 such sensors in the room, resulting in M = 78
sensor measurements. There are 18 users in the room, who
are actively participating by setting the set-points of the
HVAC units. No assumptions are made about additional heat
loads in the room, such as computers or non-participating
occupants.

Data collection was performed continuously for 10 days
in August of 2019. During this time, sensor and HVAC data
was collected at 1-minute increments and the users were
free to request a new set-point temperature at any time.
This experiment resulted in 12,425 measured data points
and 136 user set-point change requests. We observed that
the request data are not uniformly obtained from all users;
some users were much more inclined to change the HVAC
unit set-points, while others provided as few as one HVAC
change over the course of the experiment. This distribution
of interaction is common to this setting and fits the expected
behavior of the users.

For the experiments in this paper, the data are split using
an 80/20 (train/test) split. The thermal set point and thermal
sensor models are each composed of a single hidden layer
with 50 neurons. This number of neurons is chosen based on
the number of available data points. Training is performed
using the loss function in eq. (5) and using an Adam
optimizer [34] with standard parameters. Model learning and
testing is performed on a Linux desktop machine with an i7
processor.

VI. NUMERICAL EXPERIMENTS

Here we present numerical results and compare them to a
baseline linear model and using the inverse model directly.
We begin by training the forward and inverse models. Table
I shows the average performance of models quantified using
both the Mean Absolute Error (MAE), and the effect of
model output outliers quantified using Root Mean Squared
Error (RMSE). When MAE is approximately equal to RMSE,
model performance is consistent, with few outliers.

We note here that the neural network model with xC, j
outperforms both other models when predicting temperature
and set points. This is also true when comparing the per
measurement (set point) standard deviation (σ ) of this model
with the linear regression model (MAE/RMSE): σSetPt :
0.23/0.27 vs. 0.70/0.80; σTemp.: 0.15/0.22 vs. 0.26/.34; and
σHumid.: 0.48/0.66 vs. 1.13/1.27 (outliers omitted). Outliers
notably exist in predictions of humidity measurements, which

Fig. 5: Linear model performance histogram for individual
comfort models. X-axis (left) MAE [oC] (right) RMSE [oC]

Fig. 6: Linear model performance histogram for combined
comfort models. X-axis (left) MAE [oC] (right) RMSE [oC]

is seen when comparing MAE to RMSE for this model. We
believe these will improve as the size and diversity of our
data set grows.

For the remainder of the experiment, we use the neural
network models that incorporate the HVAC conditions. Here,
we learn a control law π using the described optimization
method. We compare the proposed approach to linear model-
ing and using the inverse model directly. To use the inverse
model directly we input to the learned inverse model, eq.
(3), a measurement vector with the desired temperatures
substituted at the correct temperatures. All approaches are
tested over 100 randomly chosen seating arrangements of
the 18 individuals, and 190 test points for each seating
arrangement. We compare the models for the case where
the user comfort zones are combined and the case where
the comfort zones are left individually, Table II. We plot
histograms of the RMSE and MAE, in Figs. 5-8, of the linear
model and the proposed optimization method to gain better
insight of the method performance.

The data in Table II and Figs. 5-8 show that the combined
non-linear modeling and optimization method reduces the
average error rate with respect to the desired temperature
of an individual across the many seating arrangements by
more 50% as compared to the linear regression model. In
addition from the figures, we note that while the linear
model error rates are left-skewed, they exhibit a long tail,
indicating that in some seating arrangements, this approach
fails to satisfy any of the users. In contrast, the optimization
approach proposed in this paper exhibits a symmetrical
Gaussian distribution about the mean, which indicates that



TABLE I: Error rates of static thermodynamic models.

Set-Point (oC) Temperature (oC) Humidity (%)

MAE RMSE MAE RMSE MAE RMSE
Linear Regression 1.42 1.89 0.88 1.13 3.98 4.82

Thermal Model w/o xC, j 1.15 1.53 1.96 4.54 10.94 19.24
Thermal Model with xC, j 0.58 0.75 0.51 0.71 4.13 12.82

TABLE II: A comparison of modeling approaches for indi-
vidual and combined user comfort zones. Averaged error per
user in oC ± standard deviation in oC.

MAE RMSE
Individual Comfort Models

Baseline Regression 2.46±0.90 2.94±0.91
Direct Inverse Model 1.69±0.16 2.02±0.16
Online Optimization 1.09±0.16 1.41±0.22

Combined Comfort Models
Baseline Regression 1.81±0.64 2.17±0.66

Direct Inverse Model 1.14±0.12 1.55±0.17
Online Optimization 0.85±0.12 1.07±0.14

Fig. 7: Proposed model performance histogram for individual
comfort models. X-axis (left) MAE [oC] (right) RMSE [oC]

the approach is performing well and that the higher error
rates are likely due to an incompatibility of individuals seated
next to one another.

This is expected for two reasons. First, the linear method
is extrapolating from a few inputs to many outputs. Thus,
the model is attempting to predict an average data point in a
very large dimensional space. Furthermore, the input to the
model suffers from an out-of-sample condition where the
synthetic desired data point may not have been observed in
the training data set. In contrast, the optimization approach
uses physically learned models to predict the start point of the
optimization, and then to learn the optimal room set points.
Because the models are learned from physical data, and we
assume that sufficient training data can be collected, the out-
of-sample condition observed in the linear model is not likely
to happen for our optimization based approach.

Comparing the performance of our approach to using
inverse model directly shows a reduction in the error rates by
about 1/3 or more. There are two likely reasons for the out
performance of the optimization approach as compared to the
direct inverse model. The first is that the inverse model learns
to approximate a set of HVAC set points that is most likely

Fig. 8: Proposed model performance histogram for combined
comfort models. X-axis (left) MAE [oC] (right) RMSE[oC]

to result in the observed temperature field. This solution is
not connected to personal thermal comfort and thus the op-
timization algorithm is able to locally optimize for personal
thermal comfort about the physical solution. The second,
that inputting a modified measurement vector into the inverse
model means that the model is receiving a temperature field
that likely violates the physical relationships learned from
the data. Such an input would result in an out-of-sample
condition for the inverse model and thus reduce the fidelity
of the model output.

Lastly, we note that the models learned in this work are
expected to be at least seasonal. For example, given the train-
ing dataset in this paper, we only expect the learned model
here to apply for the summer season. This seasonality can be
accommodated in the neural network model through online
adaptation, and through periodic relearning of the thermal
comfort models. The seasonal thermal comfort models can
then be saved in seasonal dictionaries per user and re-used
when appropriate. We leave to future work the development
of a single time varying thermal comfort model per user.

VII. CONCLUSION

In this paper, we proposed an online approach to learning
how to determine HVAC set-points in order to optimize
user’s comfort in a room. We proposed a new weakly
supervised learning approach that learns personalized ther-
mal comfort models during ordinary HVAC operation. This
approach does not require teaching new behaviors to the indi-
viduals or altering the individual behavior in any way. Then,
we learned a static model of the relationship of temperature
and humidity readings between the HVAC sensor and room
sensors. This model enabled the prediction of state of the
user’s environment for given HVAC set points. Finally, we
combined the static room models with the user models to
learn a control law via optimization that improves the user



thermal comfort subject to the learned individual models.
We proposed two approaches to using the individual user
models, either utilizing the models separately, or combining
similar users into a single comfort model. Our approach
was tested using real data from an open office in Japan for
100 randomly chosen seating arrangements of the users. The
approach achieved a mean absolute error of 0.85oC and a
root mean square error of 1.07oC per user location over all
seating arrangements.
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