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Abstract
The vehicle control behavior is highly dependenton the road surface. However, accurate and
precise models for the tire–road interaction are typically unknown a priori. It is therefore
important that the vehicle’s control algorithm updates its tire-force model, to adapt to the
changing conditions. In this paper, we propose a stochastic nonlinear model-predictive control
(SNMPC) scheme that uses a linear tire-force model, where the mean and covariance of the
cornering stiffness parameters are estimated and updated online. We formulate constraints
based on the stiffness estimates to ensure that the vehicle maintains stability on low-friction
surfaces. In extensive simulations, where the road surface transitions from asphalt to snow,
we compare the proposed controller with various MPC implementations; for example, the
proposed approach reduces average closed-loop cost over 30% on aggressive maneuvers, when
compared to a non-stochastic controller.
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Abstract— The vehicle control behavior is highly dependent
on the road surface. However, accurate and precise models for
the tire–road interaction are typically unknown a priori. It is
therefore important that the vehicle’s control algorithm updates
its tire-force model, to adapt to the changing conditions. In
this paper, we propose a stochastic nonlinear model-predictive
control (SNMPC) scheme that uses a linear tire-force model,
where the mean and covariance of the cornering stiffness
parameters are estimated and updated online. We formulate
constraints based on the stiffness estimates to ensure that the
vehicle maintains stability on low-friction surfaces. In extensive
simulations, where the road surface transitions from asphalt to
snow, we compare the proposed controller with various MPC
implementations; for example, the proposed approach reduces
average closed-loop cost over 30% on aggressive maneuvers,
when compared to a non-stochastic controller.

I. INTRODUCTION

Control systems for autonomous vehicles actuate the ve-
hicle through tire–road contact; therefore knowledge of the
tire–road relation is of high importance. The interaction
between tire and road is highly nonlinear, and the parameters
describing the nonlinear relation vary heavily based on the
road surface and other tire properties [1], [2]. Figure 1
shows examples of the tire-force variation with the wheel
slip for three different surfaces. The force-slip relation is
approximately linear for small slip values, which are typical
when driving in normal conditions. Knowledge of the tire
stiffness can be used directly in ADAS [3], [4], and even
partial knowledge of the tire stiffness can be used to classify
surface types for road-condition monitoring [2], [5].

Model Predictive Control (MPC) has been effective in
several automotive applications [6]–[8]. MPC solves an
optimization problem, where a dynamic model of the ve-
hicle is integrated over a fixed time horizon to minimize a
user-specified cost subject to constraints on the inputs and
states. In many ADAS applications, this often leads to a
nonlinear MPC (NMPC) problem due to the vehicle model
and constraints. For an overview of integration schemes
with sensitivity analysis to treat explicit and implicit non-
linear differential equations in embedded NMPC, see [9].
In sequential quadratic programming (SQP) based NMPC, a
tailored convex solver is used to solve a sequence of struc-
tured quadratic programs (QPs) [10]. In recent years, many
such algorithms have been developed to exploit particular
sparsity structures that arise in SQP based NMPC, such
as the recently proposed QP solver in [11] and references
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Fig. 1. Examples of normalized lateral force as a function of slip angle α
for dry asphalt (black), wet asphalt (navy), and snow (gray). The solid lines
show the tire-force curves defined by a Pacejka model. The dashed lines
show a linear tire model where the slope is calculated at 0 degrees slip.

therein. In [12], an optimization algorithm is proposed for
stochastic NMPC (SNMPC), which uses a tailored Jacobian
approximation along with an adjoint-based SQP method.

Since the performance of MPC depends heavily on an
accurate model, recent studies have focused on adaptive
controllers, where uncertain parameters are estimated and the
model is updated online. In [13], a robust MPC formulation
is proposed, where a parameter associated with the steering
offset is estimated. In [14], [15], least-squares algorithms
are used to estimate the cornering stiffness and road friction,
which are utilized in the MPC model and constraints. These
two works do not consider uncertainty of the estimated
stiffness, and [13]–[15] all use linear vehicle models.

In [16], a particle-filter based algorithm is proposed, which
estimates the mean and covariance of the tire stiffness using
data from commonly available inertial sensors. Prior work,
see [3], utilized this cornering-stiffness estimator in NMPC
by selecting from a library of predefined nonlinear tire
models. However, relying on a fixed model for surfaces with
large variability (e.g., packed vs loose snow) may result in
poor controller performance. Furthermore, it is not obvious
how to incorporate uncertainty associated with the stiffness
estimate into a library-based approach. In the present paper,
we propose an SNMPC that uses a linear tire-force model.
We directly use the mean and covariance from the stiffness
estimator to approximate chance constraints in the optimal
control problem. The contributions of this paper are that we:

1) Incorporate the stiffness estimate and uncertainty from
the stiffness estimator presented in [16] into the SN-
MPC problem formulation proposed in [12].

2) Develop a set of stability constraints, dependent on the
stiffness estimate, that enable the controller to perform
moderately aggressive maneuvers.



3) Demonstrate through simulations that the proposed
formulation improves robustness and performance over
non-stochastic and non-adaptive controllers.

II. VEHICLE MODELING

We use a single-track chassis model that includes the
longitudinal velocity vx, lateral velocity vy , yaw rate ψ̇, and
wheel angle δ as states. The inputs to the vehicle model are
the front and rear wheel speeds ωf , ωr and the tire-wheel
angle rate of change δ̇. As shown in [17], a single-track
model is sufficiently accurate where the tire forces reach
the nonlinear region but the maneuvers are not aggressive
enough to result in large roll angles. The single-track model
lumps together the left and right wheel on each axle, and
roll and pitch dynamics are neglected. Thus, the model has
two translational and one rotational degrees of freedom. The
model dynamics read asv̇xv̇y

ψ̈

 =

 1
m (F xf cos(δ) + F xr − F

y
f sin(δ)) + vyψ̇

1
m (F yf cos(δ) + F yr + F xf sin(δ))− vxψ̇
1
I (lfF

y
f cos(δ)− lrF yr + lfF

x
f sin(δ))

 ,
(1)

where F x, F y are the longitudinal/lateral tire forces and the
subscripts f, r stand for front and rear, respectively, m is
the vehicle mass, I is the vehicle inertia about the vertical
axis, δ is the front-wheel steering angle, and lf and lr are
the distance from the front and rear axles to the center of
mass. The normal force F zi resting on each front/rear wheel
are approximated as

F zf = mg
lr
l
, F zr = mg

lf
l
, (2)

where the wheel base is l = lf + lr. The slip angles αi and
slip ratios λi are defined as in [18], [19],

αi = − arctan

(
vyi
vxi

)
, λi =

Rwωi − vxi
max(Rwωi, vxi )

, (3)

where i ∈ {f, r} and Rw is the wheel radius, and vxi and vyi
are the longitudinal and lateral wheel velocities for wheel i
with respect to an inertial system, expressed in the coordinate
system of the wheel. The tire forces are computed with the
Magic Formula model [18], and combined loading is based
on the friction ellipse as follows

Fx
i = µxi F
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i arctan(Bx
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µxi F
z
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)2

,

(4)
where µji , B

j
i , Dj

i and Eji , for i ∈ {f, r}, j ∈ {x, y}, are
the friction coefficients and stiffness, shape, and curvature
factors. In (4), the longitudinal force does not explicitly
depend on the lateral slip, and it is possible to use more
accurate models to represent the combined slip [17], [18].
Pacejka’s magic formula (4) exhibits the typical saturation
behavior in the tire forces as illustrated in Figure 1.

III. CORNERING STIFFNESS ESTIMATION

The tire-stiffness estimator is based on a recently devel-
oped adaptive particle-filter approach, see [16]. An important
feature of the estimator is that it only relies on sensors
commonly available in production vehicles. The method
employs the single-track vehicle model (1) and a linear
approximation of the front and rear tire forces,

F xi ≈ Cxi λi, F yi ≈ C
y
i αi, (5)

where Cxi and Cyi are the longitudinal and lateral stiffness,
respectively. As seen in Figure 1, the linear approximation
is valid at low slip values. In this work, we only estimate
the lateral cornering stiffness and assume Cxi ≈ 2Cyi . This
approximation provides a coarse update of the longitudinal
stiffness without introducing additional parameters into the
tire-force estimator. The linear relationship was chosen based
on the models used in simulation and could alternatively be
fit with experimental data. Since the maneuvers in this work
will not require large longitudinal accelerations, accurately
modelling the longitudinal stiffness is not critical to the
controller performance. However, the estimation algorithm
could estimate both the lateral and longitudinal forces, if
desired.

The stiffness values in (5) are decomposed into a nominal
and unknown part,

Cyi = Cyi,n + wi,k, (6)

where Cyi,n is the nominal value of the cornering stiffness,
for example, a priori determined on a nominal surface,
and wi,k is a time-varying, unknown part. We model the
unknown stiffness components as random process noise
wk ∈ Rnw acting on the otherwise deterministic system.
The noise is assumed Gaussian distributed according to
wk ∼ N (∆Ck,Σk), where ∆Ck and Σk are the unknown,
usually time varying, mean and covariance. Inserting (5)–(6)
into (1) and discretizing using forward-Euler with a sampling
period ts gives the discrete-time dynamics of the form

xk+1 = xk + tsf(xk,uk) + tsg(xk,uk)wk, (7)

f(x,u) =

[
C

y
f,n

m
(2λf sin δ + αf cos δ) +

Cy
r,n

m
αr − vxψ̇

C
y
f,n

lf

I
(2λf sin δ + αf cos δ)−

Cy
r,nlr

I
αr

]
, (8)

g(x,u) =

[ 1
m (2λf sin δ + αf cos δ) 1

mαr
lf
I (2λf sin δ + αf cos δ) −lr

I αr

]
, (9)

where the subscript k refers to the current timestep. The
estimator uses the lateral (and optionally longitudinal) ac-
celeration and yaw-rate measurements and models the bias
bk of the inertial measurements as a random walk, which
results in a measurement model

yk = h(xk,uk) + bk + d(xk,uk)wk + ek, (10)

h(x,u) =

[
C

y
f,n

m
(2λf sin δ + αf cos δ) +

Cy
r,n

m
αr

ψ̇

]
, (11)

d(x,u) =

[
1
m (2λf sin δ + αf cos δ) 1

mαr
0 0

]
. (12)
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Fig. 2. Stiffness estimates for a surface switching from dry asphalt to snow
and back. The black line is the true stiffness, the slope of the nonlinear tire-
force curve at αi = 0. The blue solid and dashed lines are the mean and
95% confidence interval from the stiffness estimator. The true stiffness is
underestimated when the tires saturate.

Each particle of the estimator contains, in addition to the
state vector, an estimated mean value ∆Ck of the stiffness
noise and the corresponding covariance estimate Σk. In this
work, we use the weighted average of the mean and covari-
ance among all particles, but different types of risk metrics
could be considered in future work. Note that because of
the inertial sensor measurements, the stiffness components
enter both in the vehicle model and the measurement model
through wk, which implies that the estimation model has a
dependence between the process and measurement noise.

Remark 1: Due to the approximation in (5), the stiffness
estimator operates under the assumption of moderate steering
angles and driving/braking torques. In the implementation,
the estimator is activated only when the wheel angle and
slip ratios are within a predefined threshold. Additionally,
the estimator is deactivated when the wheel angle is near
zero since the system becomes unobservable [16].

Figure 2 shows the output from the stiffness estimator on
a surface switching from dry asphalt to snow and back. The
estimator uses a sampling period of ts = 0.01 s.

The “true stiffness” is defined as the slope of the tire-force
curve at αi = 0. In Figure 2, we can see that the true stiffness
is underestimated at times on both surfaces, as a result of
tire saturation. Figure 3 provides a simple illustration of
why this occurs for an asphalt tire model. When the vehicle
is operating at nonzero slip angles, the estimated tire-force
model can be thought of as a line between the origin and the
true tire force. The slope of this line (the estimated stiffness)
decreases as the slip angle increases and the tire-force curve
flattens.

IV. STOCHASTIC NMPC FORMULATION

Let us consider nonlinear systems of the form

xk+1 = f(xk,uk,wk), (13)

where xk ∈ Rnx denotes the state, uk ∈ Rnu the control
inputs, wk ∈ Rnw the process noise, and f : Rnx × Rnu ×
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Fig. 3. Linear approximation of the tire forces at slip angles of 0, 4, 8 deg
for an asphalt tire model. The solid line is the true tire-force curve, while
dashed lines are the linear approximations. The stiffness (slope of the line)
decreases as the slip angle increases.

Rnw → Rnx the system dynamics. In this context, the
system dynamics are given by (1), appended with differential
equations for the position, heading, and front-wheel angle.
The tire-force equations are linear, as in (5), with the stiffness
updated online from the estimator described in Section III.
The disturbance wk ∼ N (∆C,Σ) is assumed to be normally
distributed with mean ∆C, covariance matrix Σ updated
from the stiffness estimator.

At each sampling time, based on the current state estimate
x̂t and covariance P t, the SNMPC solves

min
x,u,P

N−1∑
k=0

l(xk,uk)

s.t.



∀k ∈ {0, . . . , N − 1},
0 = xk+1 − f(xk, ũk,∆Ct),

0 = x0 − x̂t,

P k+1 = AkP kA
>
k + BkΣtB

>
k , P 0 = P t,

P r (c(xk,uk) ≤ 0) ≥ 1− ε,
(14)

where the overall control action is in the feedforward-
feedback form ũk = ucte + Kxk + uk due to a presta-
bilizing controller, and the Jacobian matrices read as Ak =
∂f
∂x (xk, ũk,∆Ct) and Bk = ∂f

∂w (xk, ũk,∆Ct). The state
covariance propagation equations correspond to the extended
Kalman filtering (EKF) approach, similar to [20].

A. Objective Function and Inequality Constraints

We consider the stage cost in (14) to be

l(·) =
1

2
‖xk(·)− xref,k‖2Q +

1

2
‖ũk(·)− ũref,k‖2R. (15)

We enforce the following constraints c(xk,uk) ≤ 0 in the
optimal-control problem of (14):

ymin,k ≤ yk ≤ ymax,k, (16a)

|δk| ≤ δmax, |δ̇k| ≤ δ̇max, (16b)
|λi,k| ≤ λmax, i ∈ {f, r}, (16c)

|ψ̇kvxk | ≤ 0.85µg,

∣∣∣∣vykvxk
∣∣∣∣ ≤ tan−1(0.02µg). (16d)

Eq. (16a) bounds the lateral position, and is used to ensure
that the vehicle stays on the road. Obstacle avoidance con-
straints could be considered in future work. Eqs. (16b)-(16c)



bound the wheel angle, wheel angle rate, and slip ratios. The
constraints in (16d) prevent the vehicle from entering regions
of high lateral acceleration and side slip, and can be found
in [19, Chapter 8]. We refer to (16d) as stability constraints.

The stability constraints depend on the road friction µ, a
parameter whose estimation is widely studied [21]. Experi-
mental studies suggest that using a monotonic relationship is
sufficient to differentiate between asphalt and snow [2], [5].
In this work, we use a linear relationship to approximate the
road friction as a function of the cornering stiffness estimate,

µ ≈ min

(
a(Cyf,n + ∆Cyf + Cyr,n + ∆Cyr )

2
, 1

)
, (17)

where a is a constant that was fit from Pacejka models for
asphalt and snow. This relationship proved to be effective in
our simulations; finding an optimal relationship to use could
be the subject of future work. The central idea of (17) is that
the bounds on the acceleration and sideslip should tighten as
the road friction, and consequently the cornering stiffness,
decreases. For surfaces such as wet asphalt, which may have
a high cornering stiffness but lower road friction, (17) is
conservative because the stiffness estimator underestimates
the true stiffness as the tires saturate (as in Figure 3).

B. Probabilistic Chance Constraints

To enforce the probabilistic chance constraints in (14),
we reformulate them as deterministic constraints as in [20],
where the jth constraint is written as

cj(xk,uk) + ν

√
∂cj
∂xk

P k
∂cj
∂xk

T

≤ 0, (18)

where ν is referred to as the back-off coefficient and de-
pends on the desired probability threshold ε and assumptions
about the resulting state distribution. The backoff coefficient
for Cantelli’s inequality, ν =

√
1−ε
ε , holds regardless

of the underlying distribution but is conservative. We as-
sume normally-distributed state trajectories and set ν =√

2erf−1(1−2ε), where erf−1(·) is the inverse error function.

C. Software Implementation Aspects

We use the SNMPC implementation that was proposed
recently in [12], based on an SQP optimization algorithm
in which a series of QP approximations are solved using
the PRESAS QP solver [11]. The algorithm uses a tailored
Jacobian approximation along with an adjoint-based SQP
method that allows for the numerical elimination of the
covariance matrices from the SQP subproblem, which re-
duces the computation time when compared to standard SQP
formulations for SNMPC [12]. Note that one SQP iteration
per control time step is typically performed for real-time
implementations of NMPC, as discussed in [10].

D. Illustrative Example for SNMPC Formulation

We set up a control reference that intentionally violates the
lower constraint on the lateral position, to illustrate how the
chance constraint is respected when we solve the SNMPC
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Fig. 4. Illustration of a chance constraint enforced on the lateral position.
In the top plot, the green dashed line is the reference trajectory. The red
dashed line is the lateral constraint, and the red solid line is the tightened,
chance constraint. The blue line is the mean trajectory from solving (14).
The gray shaded region indicates the upper and lower bounds for 1e5 random
disturbance realizations. The lower plot shows the probability of constraint
satisfaction of the 1e5 simulations (black) and the desired threshold (red).
The chance constraint for ε = 0.05 is approximated to within 1%

optimization problem in (14). The mean cornering stiffness
values correspond to a snow surface. We set the standard
deviation to be roughly 10% of the mean values. The least-
squares cost (15) prioritizes the lateral position and wheel
speed inputs. A timestep of ts = 0.05 s with a prediction
horizon of 2 s is used. The solution trajectory is shown in
Figure 4. We integrate the dynamic model forward for 1e5
disturbance realizations, and see that the chance constraint
for ε = 0.05 is approximated to within 1%.

V. SIMULATION RESULTS

The first case study requires the vehicle to track nine
double lane-change and return maneuvers, with the middle
three on snow and the rest on dry asphalt. To investigate the
learning behavior of the controller, the surface change occurs
during a straight portion, where the stiffness is unobservable.
The spacing of the asphalt maneuvers is similar to IS0
3888-2 [22]; whereas the snow maneuvers are elongated
for feasibility. The reference velocity is fixed to 17 m/s.
The reference is generated with Bezier polynomials and
the position, heading, longitudinal velocity, and yaw rate
are given to the controllers to track. The lateral constraints
we enforce are that the vehicle is not allowed to leave the
road boundaries. The simulation model uses the Pacejka tire
model described in Section II. The Pacejka parameters for
each road surface are randomly perturbed at each controller
timestep, with samples drawn from a uniform distribution up
to ± 5% for asphalt and 10% for snow.

We compare the following 5 NMPC controllers:
1) STOCHASTIC: proposed SNMPC controller with on-

line adaptation to stiffness-estimation results.
2) ADAPTIVE: nominal NMPC controller with online

adaptation to the mean cornering stiffness.
3) SNOW: nominal NMPC with cornering stiffness fixed

to snow parameter values.



4) ASPHALT: nominal NMPC with cornering stiffness
fixed to dry asphalt parameter values.

5) ORACLE: NMPC with true nonlinear tire-force model.
We include the ORACLE controller to provide a lower bound
on cost and constraint violations for the simulations. Its
performance cannot be achieved in practice because it is
given the exact tire force curve used by the simulation model;
in reality there will be model mismatch due to inaccuracies
in both the tire force and single-track vehicle models.

All controllers perform 1 SQP iteration per time step [10]
and the nominal NMPC controllers 2-5 do not have stochastic
constraints. For the stability constraints in (16d), the AS-
PHALT and SNOW controllers assume road friction values of
µ = 1.0 and 0.35, respectively. Since the ORACLE utilizes a
nonlinear tire model, the stability constraints (16d) are not
enforced. The least-squares cost (15) prioritizes the lateral
position and wheel speed inputs. A timestep of ts = 0.05
with a prediction horizon of 2 s is used. The stiffness esti-
mator is run at 100 Hz. The constraint satisfaction probability
for the STOCHASTIC controller is set to 95%, i.e., ε = 0.05.
The metrics we use to evaluate the controllers are cost and
score, and are computed as follows:

Cost =
∑
k

l(xk,uk), (19)

Score =
∑
k

((yk − ymax)+ + (ymin − yk)+) ts, (20)

where (·)+ = max(·, 0). The results of 200 trials are shown
in Table I. In most trials, the ASPHALT controller destabilizes
the vehicle and the trials were terminated early; the reported
cost and score is summed up to the point of termination.

Figure 5 shows the trajectories, and Figure 6 shows the sta-
bility constraints in (16d) for an example trial. The ASPHALT
controller is unable to safely navigate the maneuvers on
snow; whereas the SNOW controller behaves conservatively
on asphalt. The STOCHASTIC and ADAPTIVE controllers
overshoot the first maneuver on snow, but are able to match
the performance of the SNOW and ORACLE controllers once
they have learned about the surface change. The average cost
for the STOCHASTIC controller is 1% less than the ADAPTIVE
controller, 86% less than the SNOW controller, and only 29%
more than the ORACLE. The STOCHASTIC controller does not
violate the lateral constraints in this example, and performs
better on the score metric than the ADAPTIVE controller.

TABLE I
RESULTS FOR 200 RANDOM TRIALS ON DRY ASPHALT/SNOW AT 17 M/S

NMPC Controller Cost Score
mean max mean max

STOCHASTIC 0.339 0.448 0 0

ADAPTIVE 0.342 0.480 1.4e-4 0.013

SNOW 2.463 2.500 0 0

ASPHALT 136.0 562.8 3.254 20.70

ORACLE 0.263 0.268 0 0
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Fig. 5. Position trajectories for a sample trial at 17 m/s where the middle 3
maneuvers are on snow and the others on dry asphalt. Red and green dashed
lines are the constraints and reference. The gray dashed lines indicate the
surface changes. The blue, cyan, magenta, black, and gold lines indicate
the trajectories for the STOCHASTIC, ADAPTIVE, SNOW, ASPHALT, and
ORACLE controllers. The STOCHASTIC controller is able to satisfy the lateral
constraints and closely match the performance of the ORACLE controller
after it learns about the surface change.
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Fig. 6. Stability constraints for the sample trial in Figure 5, where the
middle portion is on snow. Red dashed lines are the constraint boundaries,
where the road friction is calculated with (17) using the estimator output
from the STOCHASTIC controller. The constraints tighten during the snow
portion. Coloring for the controllers is the same as in Figure 5. The ASPHALT
controller destabilizes the vehicle and is omitted for clarity.

The second case study uses the same setup, except we
increase the vehicle speed to 19 m/s. The results of 100
trials are shown in Table II.

Figure 7 shows the trajectories for a sample trial. Com-
pared to the previous case study, all of the controllers have an
increased cost and, aside from the ORACLE, some constraint
violations. The SNOW controller frequently violates the lat-
eral constraints due to the fact that it is using a linear tire
model with fixed stiffness parameters and the tires saturate
at the faster velocity. The ADAPTIVE controller violates the
lateral constraints frequently during the first snow maneuver,
since it does not take uncertainty in the stiffness estimate
into account while it is learning the surface change. The
average score for the STOCHASTIC controller is 94% less
than the ADAPTIVE controller and 96% less than the SNOW
controller. The average cost for the STOCHASTIC controller
is 34% less than the ADAPTIVE controller, 64% less than the
SNOW controller, but now 68% more than the ORACLE. The
maximum cost for the ADAPTIVE controller also increases



TABLE II
RESULTS FOR 200 RANDOM TRIALS ON DRY ASPHALT/SNOW AT 19 M/S

NMPC Controller Cost Score
mean max mean max

STOCHASTIC 1.193 1.733 1.2e-3 0.037

ADAPTIVE 1.814 3.881 0.021 0.086

SNOW 3.329 3.442 0.034 0.102

ASPHALT 219.7 834.8 5.96 16.15

ORACLE 0.710 0.725 0 0
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Fig. 7. Position trajectories for a sample trial at 19 m/s where the middle 3
maneuvers are on snow and the others on dry asphalt. Red and green dashed
lines are the constraints and reference. The gray dashed lines indicate the
surface change. Coloring for the controllers is the same as in Figure 5. The
STOCHASTIC controller satisfies the lateral constraints and closely match
the performance of the ORACLE after it learns the surface change.

significantly, relative to the STOCHASTIC.
Overall, the results show that the STOCHASTIC controller

is able to closely match the performance of the ORACLE
controller once it has learned about the road surface. The
constraint violations and cost for the STOCHASTIC controller
are incurred mainly during the first snow maneuver, as the
surface change occurs during a straight portion where the
cornering stiffness is not observable. Improving the design
of the reference trajectory to encourage persistent excitation,
modulating the forgetting factor in the estimator, or incor-
porating a road friction forecast based on external sensors
could greatly improve the performance of the STOCHASTIC
and ADAPTIVE controllers.

VI. CONCLUSION

This paper presents an adaptive SNMPC formulation for
vehicle control, that uses a linear tire-force model, where
the mean and covariance of the cornering stiffnesses are
estimated online with a particle-filter based approach. We
enforce chance constraints on the inputs, lateral position,
lateral acceleration and side slip; the bounds for the latter
are varied based on the stiffness estimate. Simulation results
show that on moderately aggressive maneuvers, with surfaces
varying between dry asphalt and snow, the proposed formula-
tion outperforms controllers with fixed stiffness parameters.
Additionally, the proposed approach has fewer constraint
violations and lower cost when compared to an adaptive
controller that does not incorporate the estimation uncer-
tainty, and it achieves comparable performance to an oracle

controller that is given the true nonlinear tire models of the
simulated surface.
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