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Fail-Safe Spacecraft Rendezvous on Near-Rectilinear Halo Orbits

Daniel Aguilar Marsillach1, Stefano Di Cairano2, Uroš Kalabić3, Avishai Weiss4

Abstract— Future spacecraft missions require novel guidance
and control policies that reduce fuel consumption, yield sparse
thrust signals, and maintain mission safety even in the presence
of faults. This paper presents an approach for rendezvous
with a target in a near-rectilinear halo orbit that exploits
the natural dynamics to reduce propellant consumption, and
ensures passive safety in the presence of thruster failure. A
chaser spacecraft that aims to rendezvous with a target is
steered into coasting sets while simultaneously maintaining
passive safety by avoiding the states that naturally collide
with the target. Upon entering the coasting sets, the chaser’s
thrusters are disengaged, as the natural dynamics lead it
into a goal set. Abort-safety is then demonstrated during
final approach from the goal set to the target. The target is
modeled in a full-ephemeris, high-fidelity, and quasi-periodic
near-rectilinear halo orbit. Simulations demonstrate a reduction
in maneuver fuel consumption, measured by delta-v, of up to
72.5% and a significant reduction of thruster on-time compared
to prior work.

I. INTRODUCTION
Improved online trajectory generation and control is nec-

essary for increased spacecraft autonomy in increasingly
complex mission scenarios [1]. Motivated by NASA’s Lunar
Orbital Platform-Gateway concept [2], this work considers
rendezvous with a target body in a high fidelity quasi-
periodic near-rectilinear halo orbit (NRHO). During ren-
dezvous, the approaching vehicle must avoid collision with
the target, even under thruster failure. Initially, the approach-
ing spacecraft, called the chaser, must remain passively-safe
with respect to the target for a pre-defined time duration [3].
That is, free-drift trajectories along its approach do not enter
an avoidance region around the target. Upon closer proximity
to the target, abort-safety must be maintained such that in the
event of a partial loss of control, the chaser is able to perform
a powered-abort maneuver to avoid colliding with the target
[3]–[5].

Fail-safe spacecraft rendezvous can be cast as a trajectory
generation and control problem that avoids unsafe regions
of state space in which collision is guaranteed under total or
partial thrust failure. The unsafe regions can be characterized
using reachability theory [5]–[7]. Additionally, spacecraft
missions often seek to minimize delta-v, which provides a
measure of the total propellant consumed throughout a ma-
neuver [8]. When introducing non-convex safety constraints,
it becomes difficult to solve for the optimal delta-v maneuver
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in a computationally efficient manner [9]. As such, the
non-convex constraints are often locally approximated as
convex constraints, yielding a feasible sub-optimal solution
that remains fuel efficient. These convexified constraints have
been exploited to maintain passive safety using MPC [4], [5],
[10], [11]. Moreover, thruster on-time may be reduced by
incorporating thruster on-off integer decision variables in the
optimization [12]. Combining safety and thruster on-off de-
cision variables requires solving a non-convex mixed-integer
program, which is challenging for on-board implementation.
Thus, a computationally tractable approach that satisfies the
safety constraints while improving performance in terms of
delta-v and reduced thruster on-time is desirable.

We propose a solution to this problem by leveraging
natural orbital dynamics using passive backwards reachable
sets (PBRS). The resulting methodology allows the chaser
to enter a coasting-arc where no control is required to safely
coast toward a goal region of interest. This expands on our
prior work on passive and abort-safe spacecraft rendezvous
about time-varying reference trajectories [5], [11] by im-
proving delta-v performance and reducing thruster usage
through coasting-arcs. The results in this paper focus on a
rendezvous mission concept for a target in an NRHO. Prior
work for NRHO rendezvous has considered the design of
safe approach trajectories in an offline manner [13], [14].
These works however do not consider safety with respect to
general failure modes.

The target NRHO used in this work is constructed using a
full ephemeris model and dominant perturbations [15]. The
equations of motion of the target in the resulting near-stable
quasi-periodic orbit are linearized, resulting in a linear-time
varying (LTV) system from which the PBRS, passive-unsafe,
and abort-unsafe sets are computed. Initially, when far from
the target, passive-safety is maintained and coasting arcs are
exploited. Once the chaser enters a final approach corridor
given by a line-of-sight (LOS) cone, abort-safety with respect
to an assumed failure mode is considered.

A. Preliminaries and Notation
Vectors are shown in boldface. Rn denotes the n-

dimensional Euclidean space. In denotes the n-dimensional
identity matrix. We denote the value of a signal at a discrete
time k as xk, and xk|t denotes the value of x predicted k

steps ahead from t. The complement of a set X is given by
X c. The hyperplane representation of the polyhedron P ✓
Rn is P(H,k) = {x 2 Rn : Hx  k} with H 2 Rp⇥n,
k 2 Rp. An ellipsoid centered at d 2 Rn with shape matrix
D, is E(d, D) , {x 2 Rn : (x � d)>D�1(x � d)  1}.
Given a matrix H , [H]i denotes the i

th row of the matrix.



II. SPACECRAFT MODEL

Consider a target and a chaser in orbit around two primary
bodies, e.g. Earth and the Moon. The spacecraft are assumed
to be rigid bodies such that all exogenous forces act on their
centers of mass and the target spacecraft is assumed to be
uncontrolled.

A. Translational Dynamics
The dynamics of the chaser relative to the target are

obtained by considering the Earth and Moon’s gravitational
forces and dominant perturbations [14], [15].

Since linearized dynamics dominate around some nominal
trajectory, we can describe the relative motion of a chaser
with respect to the target by linearizing the nonlinear dynam-
ics about the target’s nominal trajectory xn(t). The variation
�x = xc � xn, provides the relative state of the chaser
with respect to the target’s nominal trajectory. We define
x , �x, and u as the chaser’s control input. In this work
we consider a discrete time formulation of the continuous
LTV equations with sampling period �t, which is assumed
to be small enough not to lose significant behavior between
samples, yielding

xt+1 = f(t,xt,ut) = Ad(t)xt +Bd(t)ut. (1)

B. Thruster Configuration
As shown in [5], for given a thruster configuration, we

can construct a general polytopic and compact admissible
control set

U = {u 2 R3 : Huu  ku}, (2)

where 0 2 U . For simplicity, in this work the control vector
is constrained only by lower and upper bounds, ul and uu,
respectively. Hence, ku in (2) is completely determined by
ul and uu. Let ku,i correspond to the admissible control
set Ui. For accounting for safety with respect to partial or
total loss of thrust, it is sufficient to consider distinct ku,i for
the different failure modes. The set of possible failure modes,
FM is therefore given by FM = {ku,1, . . . ,ku,nF}, where
nF = |FM| is the total number of failure modes under
consideration. We let Ui denote the admissible control set
corresponding to failure mode FMi 2 FM. These failure
modes are used to construct the set of states for which all
control actions lead to collision with a polytopic terminal set
[5].

III. REACHABLE SETS AND SAFETY

The RBRS is the set of all states for which the terminal set
is entered regardless of the control actions. Thus, if a failure
were to occur when the state is in the complement of the
RBRS, then there exists an admissible abort sequence such
that the chaser avoids colliding with the target. The PBRS is
a special case of the RBRS where the system evolves only
according the natural dynamics, i.e., U = {0}. Additional
details on PBRS and RBRS for passive and abort safety are
in [5], [11].

Definition III.1. Given xt+1 = f(t,xt,ut), a convex
admissible control set U where u 2 U , and final time tf , the

N -steps robust backward reachable set Rb(N ;Sf ,U , tf ) of
target region Sf ✓ Rn is

Rb(0;Sf ,U , tf ) = Sf , (3)
Rb(j;Sf ,U , tf ) = {x 2 Rn :

f(tf � j�t,x,u) 2 Rb(j � 1;Sf ,U , tf ), 8u 2 U},
j 2 {1, . . . , N}.

The RBRS is the set of states at time tj = tf � j�t from
which the chaser will not be able to avoid collision at time
tf , regardless of the admissible control sequence applied.

Definition III.2. The robust backwards reachable set over
the time interval [t0, tf ] (RBRSI), where t0 = tf � N�t, is
the union of the j-steps RBRS,

R(N ;Sf ,U , tf ) =
N[

j=0

Rb(j;Sf ,U , tf ). (4)

The RBRSI denotes the set of states x̄ for which there
exists t 2 [t0, tf ], such that from x(t) = x̄, the chaser
will not be able to avoid collision at time tf , no matter the
admissible control sequence applied.

Next, we account for changing final time since the target
orbit is not periodic. To this end the LTV-RBRSI is the union
of various RBRSI over [t0, tf ], with tf � t0 = N�t

R̄(N ;Sf ,U) =
N[

j=0

R(j;Sf ,U , t0 + j�t), (5)

which provides the union for increasing final times so
that safety is maintained with respect to the LTV system.
Therefore, N�t uniquely defines the safety-horizon duration
under consideration.

To be safe with respect to various failure modes, the union
of the LTV-RBRSI has to be taken over various input sets.
The unsafe sets are constructed from q  nF input sets as

R̄unsafe(N ;Sf ) =
q[

i=1

R̄(N ;Sf ,Ui). (6)

In (6), it is enough to consider all input sets that are not
supersets of others, i.e., {Ui : i, j 2 {1, . . . q}, @j 
i, Ui ◆ Uj}, so that we can ignore the input set for nominal
conditions. Hence the safe set with respect to q failure modes
is given by

X N,q
safe = R̄unsafe(N ;Sf )

c
. (7)

The above expressions for unsafe sets are general and rely
only on compactness of the terminal set. In this work, we fur-
ther require that the terminal set be polytopic or ellipsoidal,
which is not a significant restriction, and which significantly
improves the speed of computation of unsafe sets and leads
to a more efficient representation of constraints.

A. Polytopic Robust Backwards Reachable Sets
When the dynamics are linear and the target set Sf is a

polytope, the RBRS is also a polytope and is computed by
solving linear programs [6]. Hence the unsafe set is a union



of polytopes that are computed to take into account the LTV
nature of the equations of relative motion as well as well as
the different admissible control sets associated to the possible
failure modes. Consider the target set Pf = P(Hf ,kf ). Let
the j-steps RBRS from final time tf be Rb(j;Pf ,U , tf ) =
P(Hj ,kj), the j + 1-steps RBRS is Rb(j + 1;Pf ,U , tf ) =
{x 2 Rn : Hj+1x  kj+1} [5].

1) Polytopic Passive Backwards Reachable Sets: Simi-
larly, the passive BRS (PBRS) are also polytopic, since
polytopes are closed under affine transformations. They can
be derived by using the above sets and letting Ui = {0}. If
tj = tf � j�t, and the state transition matrix from tj to tf

is �(tf , tj), then the j-steps PBRS polytope is

Rb(j;Pf , {0}, tf ) =
{x 2 Rn : Hf�(tf , tf � j�t)x  kf}, (8)

which can be computed recursively or by iterating on tj .
Note that taking their union leads the PBRS over an interval
(PBRSI).

B. Ellipsoidal Passive Backwards Reachable Sets
In the case the target set is an ellipsoid Ef , the resulting

PBRS will also be ellipsoidal since ellipsoids are closed
under affine transformations. The j-steps ellipsoidal passive
backwards reachable set is given by

Rb(j; Ef , {0}, tf ) = {x 2 Rn :

x>�(tf , tf � j)> P
�1 �(tf , tf � j) x  1}. (9)

We only use ellipsoidal sets to compute the sets for passive
safety i.e. when U = {0}.

IV. COASTING ARCS

Minimizing the delta-v used and getting sparser control
signals fundamentally requires leveraging the natural dynam-
ics efficiently. We define a goal set, Gf that is near the
original avoidance set Sf . Computing the N-steps PBRSI of
the goal set results in the sets of all states that naturally drift
into Gf in N -steps or less. We denote the PBRSI of the goal
set as the coasting sets. By construction, the avoidance and
goal set are “close” to each other in Rn. Given the dynamics
of the problem, the PBRSI of Gf and Sf for each set tend
to have non-empty intersections with respect to each other,
which makes trying to enter the coasting sets, while avoiding
the unsafe PBRSI, challenging. Figure 1 shows some of the
projected PBRS coasting sets for Gf in blue, and projected
PBRS unsafe set for Sf in red, where Gf is a polytope, and
Sf is an ellipsoid.

The goal set is designed to constrain the final approach
location and velocity. Since passive-safety is required during
the coasting arc, no union over the considered failure modes
is necessary. As such we use the LTV-RBRSI (4) to construct
the PBRSI, and neglect (6). The PBRSI from Gf are given
by R(Nc;Gf , {0}, tf ), which defines the set of all states that
enter Gf in at most Nc steps at the final time tf . The goal
set is defined such that its intersection with Sf is empty, i.e.,
Gf \Sf = ;. Naturally, the states in R(N ;Gf , {0}, tf ) need

Ef
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Fig. 1: Projection of the coasting sets (blue) and the passively
unsafe sets (red) onto the 3D position subspace for an NRHO
target.

not be passively-safe. That is, for some �t > 0, there may
exist a state x(t) 2 Gf such that x(t+�t) 2 Sf or vice-versa,
there may exist a state x(t) 2 Sf such that x(t+ �t) 2 Gf .
Given the former scenario, we note that

Gf \ R(N ;Sf , {0}, tf ) 6= ; (10)
=) R(N ;Gf , {0}, tf ) \ R(N ;Sf , {0}, tf ) 6= ;, (11)

where the complexity of the intersection computation will
depend on the geometric properties of the sets used.

From a coasting-arc and passive safety perspective, if
R(Nc;Gf , {0}, tf ) \ R(N ;Sf , {0}, tf ) = ;, then one can
drive the chaser into R(Nc;Gf , {0}, tf ) without passive
safety constraints. Since this is not the case for rendezvous
problems, as (11) is in general non-empty, we formulate a
method for the chaser spacecraft to enter the passively-safe
portion of R(Nc;Gf , {0}, tf ),

C = R(Nc;Gf , {0}, tf ) \ R̄N (Sf , {0}), (12)

without explicitly computing the set difference. The set C
is the union of passively-safe coasting sets that enter Gf

at tf in Nc steps or less. If the approach is constrained to
be passively-safe for N steps, we require Nc  N for the
resulting coasting-arc to have a safety-horizon N�t.

Since we consider an LTV system (1), entering Gf is
a time-depedent problem where the relative state of the
chaser x has to be an element of the correct Rb(·) ⇢
R(Nc;Gf , {0}, tf ) to ensure a coasting arc from an initial (or
current) time tj to a final time tf . That is, if tj = tf � j�t,
and x(tj) 2 Rb(Nc � k;Gf , {0}, tf ) where j 6= k, there are
no guarantees that x(tf ) 2 Gf due to the LTV nature of
the system. To obtain a successful coasting arc, we specify
a fixed final coasting time tc at which we seek to enter the
goal set. Given an initial maneuver time t0, the maximum
maneuver duration is thus tm = tc � t0. The resulting
maximum number of coasting steps is Nc = tm

�t , and in
addition tc  tf to ensure safety for the allotted time-
horizon. To enforce a coasting arc, the following constraints



have to be satisfied

x(tj) 2 Rb(Nc � j;Gf , {0}, tc), j 2 {0, . . . , Nc}. (13)

Since initially x(t0) 62 R(Nc;Gf , {0}, tc), (13) has to be im-
plemented as soft constraint to avoid infeasibility. Once (13)
is satisfied, the chaser has entered a coasting set for step j

and hence it will passively coast to Gf in Nc � j steps.

V. RENDEZVOUS CONTROL

For the complete entire rendezvous mission, we consider
two controllers: the first one steers the spacecraft from
the initial position to the final approach corridor while
enforcing passive safety and exploiting coasting arcs. The
second controller is engaged when the spacecraft enters the
final approach corridor while enforcing abort-safety. Both
controllers are implemented using MPC, where the only
differences lie in the imposed constraints.

A. Optimal Control Problem
The non-coasting MPC policy yields a constrained trajec-

tory that is safe while driving the chaser to approach the
target. Conversely, the coasting MPC, appends the coasting
set constraints in the initial rendezvous phase to the non-
coasting MPC formulation. As such, the following optimal
control is solved

min
Ut

E(xNp|t) +

Np�1X

k=0

F (xk|t,uk|t, sk|t) (14a)

s.t. xk+1|t = Ad(t+ k)xk|t +Bd(t+ k)uk|t (14b)
gt(xk|t,uk|t, sk|t)  0 (14c)
uk|t 2 U(t) (14d)
x0|t = xt (14e)
sk|t � 0 (14f)

where Np is the prediction horizon length, usually (much)
smaller than N in (5), the prediction model (14b) is (1),
(14c) is the constraint ensuring safety (passive or abort) as
well as a desired coasting arc. Additionally, U(t) 2 {Ui}i

is the input set at time t, which depends on the propulsion
system condition according to (2). Since the control sequence
over the horizon is Ut = (u0|t . . .uNp�1|t), the following
control is applied as an input

ut = mpc(xt) = u⇤
0|t, (15)

where U⇤
t = (u⇤

0|t . . .u
⇤
Np�1|t) is the optimizer of (14).

B. Constraints
1) Passive-Safety: Passive safety is maintained with re-

spect to a terminal ellipsoidal set. As such, we implement
a local convexification approach that uses a tangent to
an ellipsoid in the PBRSI to construct a local half-space
constraint that approximates x 62 R̄(N ; Ef , tf ). Given a state
x at time t, we project the state radially onto all ellipsoids
Ei 2 R̄(N ; Ef , tf ), yielding a set of points {xsi}Ns

i=1, where
xsi 2 Ei and Ns = |R̄unsafe(N ;Sf )| is the number of sets
in the LTV-PBRSI [11].

2) Abort-Safety: Similarly, we impose constraints on the
state to remain outside of the abort-unsafe sets (RBRSI) (6)
by computing a half-space that excludes R̄unsafe(·) based
on Result 1 in [5]. Specifically, a set of nearby polyhedra
{P(Hi, ki)}`

i=1 ⇢ R̄unsafe(N ;Sf ) are used to construct
a halfspace Ph(h, 1) = {x 2 Rn : h>x  1} such
that Ph(h, 1) � {P(HR̄

i ,kR̄
i )}`

i=1. That is, a half-space
that contains a subset of R̄unsafe(·) is constructed and its
complement is used to maintain abort-safety.

For both passive and abort-safety, the hyperplanes are
computed based on the previously predicted state trajectory.
Let (x0|t�1 . . .xNp|t�1) be the trajectory computed at time
t� 1, then, we compute hk|t for both safety scenarios using
xk+1|t�1 as a prediction for xk|t.

3) Coasting Arcs: The coasting constraints throughout the
horizon are given by (13). We let Gf = P(Hg,kg) be a
polytope such that the PBRS are given by

Rb(j,Gf , {0}, tc) = P(Hg�(tc, tc � j�t),kg). (16)

Given the current time step t, the appropriate coasting set is
targeted by enforcing

Hg�(tc, t̃0)xk|t  �kg + sk|t, (17)
t̃0 = t0 + (k + t)�t, 8k 2 {0, . . . , Np},

where the slack variable sk|t is used to avoid infeasibility
since x(t0) /2 R(N ;Gf , {0}, tc) and the scalar � 2 [0, 1)
tightens the constraint to target the interior of the coasting
set. The cost function penalty on the slack variables sk|t
minimizes the infeasibility, which results in driving the
chaser into the coasting set.

4) Line-of-sight: A LOS constraint is added to the final
abort-safety phase which maintains the chaser spacecraft
within a corridor that leads to an assumed docking port on
the target. This constraint requires the state of the chaser to
remain within a cone Alosxk|t  blos. Additionally, the goal
set is constructed to be contained within the LOS cone, i.e.,
Gf ⇢ P(Alos, blos), as shown in Figure 2.

5) Summary: Since the coasting-arc is useful when the
chaser is far relative to the target, these coasting constraints
are only used in the initial rendezvous phase where passive
safety is required. Conversely, the LOS constraints are only
necessary when the chaser is heading towards a docking port.
Thus, for the initial approach, we can write the passively-safe
path constraints, gp as

gp(xk|t, sk|t) =


�h>

k|txk|t + 1

Hg�(tc, k + t)xk|t � sk|t � �kg

�
 0.

(18)
When a coasting set is entered, control is switched off, so
the passively-safe control policy is summarized by

ut =

(
mpc(xt) 2 U , xt /2 Rb(Nc � t,Gf , {0}, tc)
0 2 R3

, xj 2 Rb(Nc � t,Gf , {0}, tc)
(19)

For active safety, we replace the passive safety con-
straints (using PBRSI) with the abort-safety constraints



(using RBRSI). Additionally, the coasting constraints are
exchanged for the LOS cone, yielding

ga(xk|t) =


�h>

k|txk|t + 1

Alosxk|t � blos

�
 0. (20)

C. Cost Function
In order to obtain in (14) a linear quadratic MPC, we

design the stage cost and the terminal cost in (14a) as

F (x,u, s) = x>
Qx+ u>

Ru+ wss, (21a)
E(x) = x>

Mx, (21b)

where the weight matrices Q = Q
> � 0, R = R

>
> 0,

M = M
>

> 0, ws > 0 are selected to achieve the desired
performance. The primary objective is to approach the target
affected by Q. A secondary objective is to minimize the total
required propellant affected by R.

VI. SIMULATION RESULTS

The simulation performs both the passive and abort-safe
rendezvous mission in a phased manner. Initially, passive
safety is maintained with respect to an ellipsoidal set Ef

while a coasting set is targeted. After coasting into the goal
set, abort-safety is maintained with respect to a polytopic set
Pf . The developed method is compared to a non-coasting
MPC policy in terms of maneuver delta-v and input signal
sparsity. The total �V of a maneuver is given by �V =PN�1

i=0 ||Bd(·)ui|| · �tMPC.
In the simulations, �tMPC = �tRBRS = 30s, and the

nominal admissible control set Un, i.e., without any loss
of thrust, is such that uu = �ul = · 30N. Passive
safety is maintained with respect to an ellipsoidal set where
P = diag(

⇥
22 · 1⇥3 0.12 · 1⇥3

⇤>
), i.e., an ellipsoid with

position and velocity of major-axes of 2km and 0.100km/s,
respectively. The goal set Gf is a box with ±1.5km in
the positions and ±5m/s in velocities. The coasting time is
tc = 6 hours.

The initial condition is randomly sampled such that
x(t0) /2 R(N ; Ef , {0}, tf ) and x(t0) /2 R(Nc;Gf , {0}, tf ).
With reference to Figures 2-3, the initial condition is shown
in red. In the former, the projection of the goal set Gf onto
the position subspace is shown as a green polytope, while
the LOS cone, which is a superset of the goal set Gf , is
shown in light blue. When coasting set constraints are used,
the chaser aims to enter a nearby coasting set.

A. Lunar Gateway Rendezvous at Perilune
At perilune, the dynamics along the NRHO are the fastest

and coupled in all three Cartesian directions, resulting in
non-intuitive coasting trajectories. The chaser begins approx-
imately 16km away from the target.

1) Passively-safe approach: The resulting approach tra-
jectories are shown in Figure 2, the solution without coasting
in red, and the solution with coasting arc in blue. The
corresponding control signals are shown in Figures 4a-4b.
For the case with coasting arc, only two input steps are
required to enter a nearby coasting set. This results in an

impulse-like input as shown in Figure 4a, leading the chaser
into a coasting arc after two discrete-time steps.

Fig. 2: In red, the MPC solution without a coasting arc while,
in blue, MPC with a coasting arc. Both are passively-safe.

The resulting trajectory is almost entirely driven by the
natural dynamics and the chaser enters Gf with an approach
velocity well below the designed approach velocity limits.
Moreover, Figure 3 shows samples along the controlled-
arc of the maneuver, which are propagated naturally for the
considered safety-horizon, to show that the chaser is indeed
passively-safe. Once the chaser has entered a coasting-arc
in a safe manner, the coasting-arc will also be safe, see the
trajectory of Figure 3 that enters Gf , shown in green.

Fig. 3: Demonstration of passive safety by sampling states
along the controlled portion (pre-coasting) and propagating
them forward. None enter the red avoidance set.

The benefit of the design introduced here is clear as
the coasting-arc safe MPC gives �V = 2.657m/s, while
the standard safe MPC approach gives �V = 9.6914m/s,
yielding a 72.5% reduction in fuel consumption. In addition,
the coasting-arc solution has a control signal that is much
sparser in time, which is preferable for spacecraft thruster
management to reduce propulsion system failures.

For the standard MPC to obtain a trajectory similar to the
one with coasting arc, an extremely large prediction-horizon
Np would have to be considered. This would come at the cost
of computation as the entire QP-MPC would be much larger
and the safety constraints convexification will also involve
many more steps. Thus, the coasting-arc MPC that can utilize
much shorter Np seems much more practical for on-board
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(a) Safe control signal with coasting arcs; only 0.2 hours shown out
of the almost 6 hour arc. Resulting �V = 2.657 m/s.
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(b) Safe control signal without coasting arcs. Resulting �V = 9.6914
m/s.

Fig. 4: Safe control histories: coasting vs. non-coasting MPC.

use.
2) Abort safety: Once the spacecraft enters Gf , the abort-

safety phase is initiated. Here, the chaser has to remain
outside of the RBRS, constructed with a hypothesized failure
mode (additional failures can be easily included), such that
in the event of a failure, a feasible abort maneuver exists.
The incorporation of the LOS constraints severely limits
the feasible abort maneuvers and approaches. As seen in
Figure 5a, the LOS extends towards ��y. The assumed
failure mode is such that ux = 0, 0  uy  30N,
0  uz  30N, i.e., only positive y and z thrusts are
available after a failure time tfail. The chaser is able to avoid
entering the RBRS while getting close to the target as seen
in Figure 5a and as such, a viable abort-maneuver exists
from tfail onwards. The resulting control signal is shown in
Figure 5b. A small impulse is applied to avoid collision.

VII. CONCLUSIONS
A safe rendezvous strategy that increasingly exploits the

natural dynamics is presented. The work considers a target
in a high-fidelity NRHO. A chaser spacecraft is steered
into the constructed coasting sets, which contain the set
of all states that naturally coast into a specified goal set,
while maintaining passive-safety. Once the chaser is in
close-proximity to the target, abort-safety is maintained. The
developed coasting arc approach reduces both the amount of
propellant used and the required thruster on-time, important
for thruster management and thruster fault mitigation.
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