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Abstract
Diagnosis of static eccentricity (SE) faultfor induction motors (IMs) is essential for the qual-
ity control of the machines, especially during their manufacturing process. Principal slot
harmonic (PSH) type IMs have special combinations of rotor bar number and pole pair num-
ber, and it has been shown in previous works that conventional methods cannot effectively
detect SE fault for these machines. Aiming at finding an effective approach for the SE fault
detection for PSHtype IMs, this paper presents an analysis of SE-induced line currents in IMs
with the higher-order harmonics of the air gap permeance considered. The analysis reveals
that the second-order harmonic in the air gap permeance can induce SE-level-related signals
in the line current of PSH-type three-phase IMs. The generation mechanism of the signature
current signal is validated by simulations with an analytical IM model and a timestepping
finite element model. The signature signal in the motor’s current discussed in this paper
provides a new method for quantitative detection of SE fault for PSH-type IMs.
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Abstract—Diagnosis of static eccentricity (SE) fault
for induction motors (IMs) is essential for the quality
control of the machines, especially during their manu-
facturing process. Principal slot harmonic (PSH) type
IMs have special combinations of rotor bar number and
pole pair number, and it has been shown in previous
works that conventional methods cannot effectively
detect SE fault for these machines. Aiming at finding an
effective approach for the SE fault detection for PSH-
type IMs, this paper presents an analysis of SE-induced
line currents in IMs with the higher-order harmonics of
the air gap permeance considered. The analysis reveals
that the second-order harmonic in the air gap per-
meance can induce SE-level-related signals in the line
current of PSH-type three-phase IMs. The generation
mechanism of the signature current signal is validated
by simulations with an analytical IM model and a time-
stepping finite element model. The signature signal in
the motor’s current discussed in this paper provides a
new method for quantitative detection of SE fault for
PSH-type IMs.

Index Terms—Induction motor, fault detection,
static eccentricity, motor current signature analysis

I. Introduction

Eccentricity is a type of motor fault caused by non-
uniform air gap between the stator bore and the rotor.
There are three types of motor eccentricity fault: the static
eccentricity (SE), the dynamic eccentricity (DE), and the
mixed eccentricity (ME). Figure 1 shows a diagram for the
three types of eccentricity. Here, the point Ow is the center
of rotation, Os is the center of the stator bore, and Or is
the center of rotor. When the three points coincide, the
motor is healthy with no eccentricity fault, as shown in
Fig. 1a. In the case of SE, the points Or and Ow coincide,
but are having an offset from the center of the stator bore
Os, as shown in Fig. 1b. When under DE fault, the rotor’s
center of rotation Ow is aligned with the stator center
Os, but the rotor center Or is orbiting around the point

(a) (b) (c) (d)

Fig. 1. Diagram of different types of eccentricity fault. Os: stator cen-
ter. Or: rotor center. Ow: center of rotation. (a) Healthy motor. (b)
Static eccentricity. (c) Dynamic eccentricity. (d) Mixed eccentricity.

Ow, as shown in Fig. 1c. A mixture of both static and
dynamic eccentricity is called ME, where the points Or,
Os, and Ow are not aligned with one another, as shown in
Fig. 1d. Typically the SE fault of motors is created during
the manufacturing process due to the ovality of the stator
bore and the misalignment of bearings. The detection of
SE fault of machines at an early stage is essential, as it can
evolve into severe ME over the motor’s operation due to
the unbalanced magnetic pull, and lead to the breakdown
of the machine.
Throughout the years, a number of methods have been

proposed for the SE fault detection [2], [5]–[8]. The motor
current signature analysis (MCSA) is one of the most
widely used method due to its advantages of low-cost,
reliability and simplicity, and the fact that no additional
sensor is required to attach to the motor. For most IMs
with SE or DE fault, the signature frequency in the current
signal is [1]

fh =
(
(kR± nd)

1− s
p
± ν
)
f, (1)

where f is the fundamental frequency, R is the number of
rotor slots, s is the slip, p is number of pole pairs, k is any
positive integer, nd is the eccentricity order, and ν is the
order of stator time harmonics. Note that the frequency
in (1) coincide with the motor’s principal slot harmonic



TABLE I
Static eccentricity detection based on existing theory and the proposed theory.

Static eccentricity detection
method

Non-PSH IM PSH IM
Case A: Case B: Case C:
R = 2p[3(m± q)± r]± 1 R = 2p[3(m± q)± r]± 2 R = 2p[3(m± q)± r]

Existing methods consider-
ing only fundamental har-
monic of air gap permeance
[1]–[4]

Large SE signature signal Small SE signature signal Irreverent to SE: Not
Detectable

Proposed method consider-
ing 2nd-order harmonic air
gap permeance

Large SE signature signal Small SE signature signal
Small SE signature sig-
nal at secondary PSH fre-
quency: Detectable

(PSH) signals under k = ν = 1.
The signature current signals at frequencies in (1) are

effective for most three-phase IMs for eccentricity fault
detection. However, it has been shown in Ref. [1] that when
an IM has a combination of pole pair number p and rotor
slot number R that satisfies

R = 2p[3(m± q)± r], (2)

where m±q = 0, 1, 2, ..., and r = 0 or 1, the current at the
signature frequencies (1) has been reported to be irrelevant
to the machine’s SE faults. IMs satisfying (2) are called
PSH-type motors. For this group of IMs, the PSH current
signals are generated under both healthy and eccentric
conditions, and their amplitudes do not show significant
dependency on eccentricity level. This statement has been
validated via model-based simulations in Ref. [1], and it is
widely believed that there is no effective MCSA-based SE
fault detection method for PSH-type IMs [2]–[4].

The objective of this paper is to thoroughly investigate
the PSH-type induction machines, as a means to provide
a new and effective MCSA-based method for SE fault de-
tection for three-phase PSH-type induction motors. Prior
work Ref. [1] considers only the constant and the funda-
mental harmonic terms of the air gap permeance, which
does not capture the eccentricity-related signals generated
due to the higher-order air gap permeance harmonics.
In this paper, we first present a detailed analysis for
three-phase IMs with the high-order harmonics of air
gap permeance considered. Our analysis reveals that the
second-order harmonic of the air gap permeance generates
a signature current signal for SE fault in the PSH-type
IM’s stator current, which potentially can be used for
the SE fault detection for these motors. Table I presents
the categorization of the IMs and its impact on the SE
fault detection, as well as the major differences between
the existing theory [1]–[4] and the proposed analysis. An
analytical IM model based on the modified winding func-
tion method (MWFM) is used to validate the theoretical
analysis, and time-stepping finite element simulations are
used to show the effectiveness of the proposed SE fault
detection method.

The rest of this paper is organized as follows. Section

II presents an analysis for the motor flux harmonics and
the motor line current signals caused by SE fault in three-
phase IM motors. The higher-order harmonics of the air
gap permeance are considered in this analysis. The new
MCSA-based SE fault detection method for PSH-type IMs
is also proposed in Section II. Section III presents an
analytical IM model and its simulation results, and time-
stepping finite element simulation is used to validate the
proposed method. Conclusions and the suggested future
work are presented in Section IV.

II. Analysis of Static-Eccentricity-Related
Current Signals

This section presents an analysis for the IM’s air gap
flux and line current signals generated by SE fault. This
analysis contrasts reference [1] in that we consider the
high-order harmonics of the air gap permeance in the
derivation. These air gap permeance harmonics can gen-
erate SE-related signature signals in the line current of
the PSH-type IMs, which provides a new method for the
SE fault detection for these machines. We next present
an analysis for the air gap flux harmonics induced by the
rotor’s slotting effect, which are the source of the PSH
current signals. After this we discuss the generation of
induced stator line current due to these air gap fluxes.

A. Slots-induced Air Gap Flux Harmonics
In an IM, the fundamental harmonic of the stator-

generated magnetomotive-force (MMF) is

Fs = A cos(pφ− ωt), (3)

where p is the number of pole pairs, ω is the supply angular
frequency, φ is the angular coordinate in a stator-fixed
reference frame, and A is the amplitude of the fundamental
harmonic of stator MMF.
When the motor is having a SE fault, the air gap length

distribution is

g(φ) = g0(Kcs − δSE cosφ), (4)

where g0 is the nominal air gap length, Kcs is the Carter’s
coefficient to correct the air gap length for the slotting
effects, and δSE ∈ [0, 1] is the SE level. The air gap
permeance of the motor is defined as Pg = µ0/g. In many
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Fig. 2. (a) Air gap length g and air gap permeance Pg as functions of
mechanical angle φ under varying δSE . (b) Values of first four Fourier
coefficients of air gap permeance under varying static eccentricity
levels.

references on IM eccentricity fault detection [1], [6], [9],
the air gap permeance is typically described as

Model I: Pg ≈ Pg0 + Pg1 cosφ, (5)

where only the constant term and the fundamental har-
monic of the air gap permanence are considered. However,
the full Fourier series representing Pg is

Model II: Pg = Pg0 +
∞∑
k=1

Pgk cos(kφ). (6)

We will refer (5) and (6) as permeance Model I and II
respectively in the paper. Figure 2 shows the air gap
length, permeance, and the value of first five terms of
Pgk for a typical IM under varying SE level. It can be
observed in Fig. 2b that Pg0, Pg1, and Pg2 have relatively
strong dependency with respect to δSE . This observation
shows that the conventionally assumed permeance Model
I in prior works may not be accurate enough to capture
all signature signals caused by SE faults.
The stator MMF in (3) acting on the air gap permeance

(6) and produces an air gap flux distribution as

Φsg1 = FsPg = A cos(pφ− ωt)
(
Pg0 +

∞∑
k=1

Pgk cos(kφ)
)

(7)

= APg0 cos(pφ− ωt) +
∞∑
k=1

APgk
2 cos

(
(p± k)φ− ωt

)
.

Transforming this stator-generated flux (7) into the rotor-

fixed coordinate via φ = φ′ + ωrt, where φ′ is the angular
coordinate in the rotor-fixed frame, we have

Φrg1 =APg0 cos(pφ′ + pωrt− ωt)

+
∞∑
k=1

APgk
2 cos

(
(p± k)φ′ + (p± k)ωrt− ωt

)
.
(8)

The stator-generated air gap flux (8) induces currents
in the rotor bars, which generates a rotor MMF. Aside
from the harmonics that have the same wavelength as the
stator-generated air gap flux in (8), additional rotor slot
harmonics are generated. Such rotor slot harmonics can
be visualized as the original waveforms sampled by the
discrete rotor bars, i.e. a cos(Rφ′) term is multiplied to
the original flux harmonic. Such rotor slot harmonic MMF
can be written as

Frnslot =Aslot0 Pg0 cos
(
Rφ′ + ν0(pφ′ + pωrt− ωt) + φ0

)
+
∞∑
k=1

Aslotk Pgk cos
(
Rφ′ + νk

(
(p± k)φ′ (9)

+ (p± k)ωrt− ωt
)

+ φk

)
,

where ν0 = ±1, and νk = ±1. Transforming (9) back to
the stator-fixed coordinate via φ′ = φ− ωrt yields

Fsnslot =Aslot0 Pg0 cos
(
(R+ ν0p)φ−Rωrt− ν0ωt+ φ0

)
+
∞∑
k=1

Aslotk Pgk cos
((
R+ νk(p± k)

)
φ (10)

−Rωrt− νkωt+ φk

)
.

The rotor slot harmonic MMF (10) acts across the gap
again and generates an air gap flux as

Φsg2 = FsnslotPg. (11)

Substituting (6) and (10) into (11), we can calculate the
rotor-generated air gap flux that has several different
harmonics, particularly including the following terms:

Φsg2,00 =Aslot0 P 2
g0· (12)

cos
(
(R+ ν0p)φ−Rωrt− ν0ωt+ φ00

)
,

Φsg2,0j =
∞∑
j=1

Aslot0 Pg0Pgj
2 · (13)

cos
(
(R+ ν0p+ νjj)φ−Rωrt− ν0ωt+ φ0j

)
,

Φsg2,k0 =
∞∑
j=1

Aslotk PgkPg0· (14)

cos
(
(R+ νkp+ νk1k)φ−Rωrt− νkωt+ φk0

)
,

Φsg2,jk =
∞∑
j=1

∞∑
k=1

Aslotk PgjPgk
2 ·

cos
(
(R+ νkp+ νk1k + νjj)φ (15)
−Rωrt− νkωt+ φjk

)
,



where νj = ±1, νk1 = ±1. Note that all these air gap flux
harmonics have the same frequency of

fPSH = 1
2π (Rωr − νiω) = (R1− s

p
− νi)f, (16)

where νi = ±1 represents ν0 or νk. Also note that the
(12) term exists no matter the motor is healthy or under
eccentricity fault; terms (13)-(15) exist only when the
motor is having SE faults. When only considering the
terms with k = j = 1, this result matches with the analysis
assuming sinusoidal air gap permeance in [1].
B. Current Signature Signal Generation
This section discusses the generation of SE-related cur-

rent signature signals due to the air gap fluxes (12)-(15).
Note that the frequency of the SE-generated current signal
is always at PSH frequency shown in (16).
In order to generate line current signals in the motor

windings, the air gap flux needs to induce none-zero-
sequence voltage in the stator windings. Such induced
voltage can be calculated via

vsi(t) =− d
dtλi(t)

=− d
dt

∫ 2π

0
Ni(φ)Φsg2(φ, t)dφ, (17)

where Ni is the stator winding distribution function, and
i = 0, 1, 2 for phases u, v, and w, respectively. For a three-
phase IM with pole-pair number p, the stator winding
distribution function Ni is

Ni(φ) =
∞∑
j=1

N j
i cos

(
j(pφ− 2πi

3 )
)
, (18)

where N j
i is the amplitude of the j-th harmonic of the

stator winding function Ni, and j is an odd number. Note
that the triplen harmonics of the winding distribution
functions are having the same phase due to the three-phase
symmetry.

Assume a certain air gap flux harmonic is having a pole
pair number pΦ, for this flux to generate non-zero-sequence
induced voltage, we require that pΦ is not divisible by 2p
or 3p, i.e.

pΦ/p = 6m± 1, (19)

where m = 0, 1, 2, ... Equation (19) is the condition for an
air gap flux to induce line current in the motor windings.

We next discuss the air gap fluxes (12)-(15) and the
induced SE-related line currents.
(I) Air gap flux (12): The air gap flux term Φsg2,00 in

(12) exists under both healthy and eccentric conditions,
and it can generate PSH signals when the motor has

(
R+

ν0p
)
/p = 6m± 1, i.e.

R = p(6m± 1)− ν0p, (20)

where m = 0, 1, 2, .... Considering ν0 = ±1, this condition
is equivalent to (2) in [1]. For a specific motor, only one

PSH signal can be generated. For example, a motor with
R = 28 and p = 2 satisfies (20) when ν0 = −1, and the
corresponding PSH signal frequency is at ωPSH = Rωr −
ω, or fPSH = (R 1−s

p − 1)f . The condition (20) cannot
be satisfied with ν0 = 1, and there is no PSH signal at
(R 1−s

p + 1)f .
(II) Air gap fluxes (13) and (14): The air gap flux

terms (13) and (14) are having similar forms. Here we
discuss the air gap flux Φsg2,0j in (13); the air gap flux
(14) can be analyzed in a similar manner. The air gap flux
(13) can generate induced line current when the motor’s
parameters satisfy (R+ ν0p+ νjj)/p = 6m± 1, i.e.

R = p(6m± 1)− ν0p− νjj, (21)

where m = 0, 1, 2, .... When j = 1, the induced current
signal demonstrates a relatively strong static-eccentricity-
dependent signal at frequency (16), and the current am-
plitude is proportional to Pg0Pg1. When j = 2, an
eccentricity-related line current can also be induced, with
the signal’s amplitude largely proportional to Pg0Pg2. For
a PSH-type motor, no SE signature signals can be gen-
erated by this air gap flux component (13). For example,
for an IM with R = 28 and p = 2, selecting different
combinations of ν0, νj , and j = 1 or 2 cannot satisfy the
condition in (21). This conclusion is consistent with the
previous analysis in [1].
(III) Air gap flux (15): The flux Φsg2,jk in (15) can

generate induced line current for the motor when (R +
νkp+ νkk + νjj)/p = 6m± 1, i.e.

R = p(6m± 1)− νkp− νkk − νjj, (22)

where m = 0, 1, 2, ..., νk = ±1, νj = ±1. When j = 1, k =
1, the induced current signal amplitude is proportional to
P 2
g1, which is largely quadratic with respect to δSE . When
j = 2, k = 2, the induced line current is proportional
to P 2

g2. Although the induced signal under this condition
is not as strong as the other cases, this flux produces an
opportunity of the usage of MCSA for SE detection for
PSH-type machines. For example, for an IM with R = 28
and p = 2, the condition (22) can be satisfied with k =
j = 2 and νk = νj = 1, and the generated SE-related line
current signal at the frequency (R 1−s

p + 1)f . This signal
can be used for the detection of SE level for PSH-type
induction machines.

III. Simulation Validations
This section presents the simulation for the proposed

SE detection method for PSH-type IMs. A 0.75 kW,
three-phase, 2-pole-pair squirrel-cage IM is evaluated in
this work. The motor has 36 stator slots and 28 rotor
slots. The three-phase stator windings are having a Y-
connection. The RMS line-to-line voltage and frequency
are 196 V and 60 Hz, respectively. Table II shows the
motor design parameters. This motor belongs to the PSH-
type IM category, since its number of rotor bars and
number of pole pairs satisfy the relationship shown in



TABLE II
Parameters of the Evaluated PSH-type Induction Motor

Parameter Value
Number of pole pairs 2
Number of bars 28
Number of stator slots 36
Number of turns per slot 37
Nominal air gap length 0.28 mm
Air gap radius 41.6 mm
Stack length 80 mm
Carter’s coefficient 1.38

(2). Conventional MCSA-based methods cannot detect SE
fault for this machine. We next discuss the simulation
with an analytical model based on the modified winding
function method (MWFM) in Section III-A and III-B.
After that we present the evaluation using time-stepping
FEM simulation in Section III-C.

A. Analytical Induction Motor Model

This section presents the analytical model and simu-
lation results for IM. We first briefly present the multiple
coupled circuit model for the Y-connected three-phase IM.
The stator voltage dynamics and the stator flux linkage
are

Vs = RsIs + d
dtΛs, (23)

Λs = LssIs + LsrIr, (24)

where Vs = [vs1, vs2, vs3]> is the stator voltage, Λs is
the stator flux linkage, Is = [is1, is2, is3]> is the stator
current, Ir = [ir1, ir2, ..., irR, ie]> is the vector for rotor
loop currents and the end ring current. Rs is a 3×3 is the
stator resistance matrix, Lss is a 3 × 3 stator inductance
matrix, and Lsr is a 3 × (R + 1) matrix of the mutual
inductance between stator phases and rotor loops. The
voltage dynamics of the rotor loops and the rotor flux are

Vr = RrIr + d
dtΛr, (25)

Λr = LrsIs + LrrIr, (26)

where Vr = [0, 0, ..., 0]> for squirrel cage rotors, Lrs = L>sr,
and Lrr is an (R + 1) × (R + 1) matrix of the rotor self
inductance.

For a three-phase IM with Y-connection, the input sig-
nals are the line-to-line voltages. Transforming the stator
voltage equation (23) into line-to-line voltage input we
have

Vsl−l =

vs1 − vs2vs2 − vs1
vs3 − vs1

 =

 rs −rs 0
0 rs −rs
−rs 0 rs

 Is + d
dtΛsl−l, (27)

where Λsl−l = [λs1 − λs2, λs2 − λs3, λs3 − λs1]>.
The motor’s stator has Y-connected winding and no

neutral line, forcing the summation of three line currents

to be zero. Hence we have[
λs1 − λs2
λs2 − λs3

0

]
=

[
Ls11 − Ls21 Ls12 − Ls22 Ls13 − Ls23
Ls21 − Ls31 Ls22 − Ls32 Ls23 − Ls33

1 1 1

]
Is

+

[
Lsr1 − Lsr2
Lsr2 − Lsr3

0

]
Ir.

(28)
Equations (25)-(28) fully describe the line-to-line elec-
trical dynamics of the IM. This treatment of the Y-
connection follows reference [10]. The torque of the motor
is

Te = 1
2I
>
s

∂Lss
∂θr

Is + I>s
∂Lsr
∂θr

Ir + 1
2I
>
r

∂Lrr
∂θr

Ir, (29)

where θr is the rotor’s mechanical angle. The mechanical
dynamics of the motor is

d
dtωr = 1

J
(Te − TL), (30)

d
dtθr = ωr, (31)

where ωr is the mechanical speed, TL is the load torque,
and J is the rotor inertia.
The MWFM [11] is used to calculate the motor’s in-

ductance matrices. The inductance between winding i and
winding j can be calculated as

Lij(θr) = lr

∫ 2π

0
ni(θr, φ)Mj(θr, φ)Pg(θr, φ)dφ, (32)

where r and l are the air gap radius and motor axial
length, respectively, ni(θr, φ) is the winding turns function
for winding i. Mj(θr, φ) is the modified winding function
for winding j, which is calculated as

M(φ, θr) = n(φ, θr)−
〈
M(θr)

〉
, (33)

where〈
M(θr)

〉
= 1

2π〈g−1(θr, φ)〉

∫ 2π

0
n(φ, θr)g−1(θr, φ)dφ,

(34)〈
g−1(θr, φ)

〉
= 1

2π

∫ 2π

0
g−1(θr, φ)dφ. (35)

B. Analytical Model Simulation Results
The motor’s dynamics are simulated using an analytical

coupled circuit model with the MWFM [6], [9]. The load
torque TL is set to zero, and the supply frequency is 60 Hz.
Under these conditions, the PSH frequency is 780 Hz, and
the expected signature signal of SE fault due to the second-
order harmonic of the air gap permeance is at 900 Hz. In
this work, the two air gap permeance Model I (equation
(5)) and Model II (equation (6)) are used to evaluate the
effect of the higher-order terms of Pg.
Figure 3a and 3b show the simulated current spectrum

around 780 Hz and 900 Hz under varying SE levels, where
Fig. 3a is obtained with air gap permeance Model I, and
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Fig. 3. Analytical IM model simulated motor line current spectrum
under varying static eccentricity levels. (a) Air gap permeance model
I. (a) Air gap permeance model II.
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Fig. 4. Amplitude of PSH currents simulated by analytical IM model.
(a) Air gap permeance model I. (a) Air gap permeance model II.

Fig. 3b is calculated using air gap permeance Model II.
Both current spectrum data demonstrate peak at 780 Hz,
which is the PSH frequency of the motor when f = 60 Hz
and s = 0. Figure 3b demonstrates an additional 900 Hz
signal with its amplitude positively correlated with the
level of SE fault. Figure 4 shows the amplitude of the
780 Hz and 900 Hz current signals with respect to eccen-
tricity level. The data in Fig. 4a agrees with the simulation
results presented in recent reference [12]. This comparison
shows that it is the difference in the air gap permeance
model that causes the 900 Hz signal in the line current.

C. Finite Element Simulations
The same 0.75 kW IM is also simulated via time-

stepping finite element method under different static ec-
centricity levels. Here the FEM package Ansys Maxwell
is used. The motor is simulated under no-load condition.
Here we limited the level of eccentricity up to 40% to avoid
signals generated by mesh-induced asymmetry. Figure 5
shows the spectra of the FEM-simulated single-phase and
line-to-line induced voltages, respectively.

Fig. 5 shows the FEM simulated phase u line current
around the PSH signals, where Fig. 5a shows the current
spectrum, and Fig. 5b shows the current magnitude of
the two PSH frequencies. It can be observed that FEM-
simulated motor line current has peaks appearing at both
780 Hz and 900 Hz as expected. The magnitude of the
900 Hz signal is positively correlated to the level of SE,
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Fig. 5. FEM simulated line current under varying static eccentricity
levels. (a) Current spectrum. (b) PSH current amplitude.
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Fig. 6. FEM simulated motor induced voltage signals under varying
static eccentricity levels. (a) Phase A voltage. (b) Line-to-line voltage
between phase A and phase B.

which resembles the signal shown in Fig. 4b. This obser-
vation validates the analytical model for IM considering
the higher-order harmonics of air gap permeance, and
also confirms that the secondary PSH current signal (at
900 Hz for the motor being evaluated) can be used for SE
detection.
We next evaluated the induced voltage signals in the

IM under different SE levels. Fig. 6 shows the FEA-
simulated single-phase voltage and the line-to-line voltage.
The 900 Hz voltage has a large amplitude in the single-
phase voltage in Fig. 6, and is having a relatively small
amplitude in the line-to-line voltage in Fig. 6b. This is
because the 900 Hz voltage is primarily zero-sequence due
to both slot harmonics and the 15th-harmonic of supply,
which agrees with our analysis based on analytical model.
The amplitude of the line-to-line voltage at 900 Hz varies
with the SE level, which generates the SE-dependent line
current signal shown in Fig. 5.

IV. Conclusions and Future Work

This paper presented an analysis for IM with static
eccentricity fault and showed that the second-order har-
monic of the air gap permeance can induce an SE-
dependent signal in the motor’s line current for PSH-type
IM. Analytical and finite element models validated the
analysis, showing the correlation between the amplitude of
the secondary PSH current signal and the SE level. This



provides a new method for PSH-type IM’s SE detection
based on MCSA, which has not been pointed out in
the past. Future work will experimentally evaluate the
effectiveness of the proposed method.
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