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Abstract
In several applications, including imaging of deformable objects while in motion, simultaneous
localization and mapping, and unlabeled sensing, we encounter the problem of recovering a
signal that is measured subject to unknown permutations. In this paper we take a fresh
look at this problem through the lens of optimal transport (OT). In particular, we recognize
that in most practical applications the unknown permutations are not arbitrary but some are
more likely to occur than others. We exploit this by introducing a regularization function
that promotes the more likely permutations in the solution. We show that, even though the
general problem is not convex, an appropriate relaxation of the resulting regularized problem
allows us to exploit the well-developed machinery of OT and develop a tractable algorithm.
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ABSTRACT

In several applications, including imaging of deformable objects
while in motion, simultaneous localization and mapping, and unla-
beled sensing, we encounter the problem of recovering a signal that
is measured subject to unknown permutations. In this paper we take
a fresh look at this problem through the lens of optimal transport
(OT). In particular, we recognize that in most practical applications
the unknown permutations are not arbitrary but some are more likely
to occur than others. We exploit this by introducing a regularization
function that promotes the more likely permutations in the solution.
We show that, even though the general problem is not convex, an
appropriate relaxation of the resulting regularized problem allows
us to exploit the well-developed machinery of OT and develop a
tractable algorithm.

Index Terms— Multiview Sensing, Unlabeled Sensing, Opti-
mal Transport

1. INTRODUCTION AND MOTIVATION

In this paper, we explore the problem of recovering a signal mea-
sured through a linear system while undergoing a partially known
permutation. The problem arises in many contexts, including coher-
ent imaging, simultaneous localization and mapping (SLAM) and
partially labeled sensing, among others. Our motivation is coherent
imaging of moving deformable targets under partially known or par-
tially observable deformations. This has a number of applications,
including radar imaging of humans in motion, and in-vivo coherent
imaging of moving cells, organisms and live organs, such as beating
hearts and breathing lungs.

A common feature in these applications is that, under mild
assumptions, the motion can be described as a transformation—
typically a permutation of pixels with respect to a reference view—
of the reflectivity of the object in front of the measurement system.
We assume that the motion is partially known up to a small error,
modeled as an unknown permutation from the true position to the
assumed known position. In practice, motion is typically estimated
using an auxiliary measurement system or a motion model [1–5].

This problem has strong connections to the general problem of
unlabeled sensing or shuffled linear regression [6–13], in which the
labels or indices of the data are not available during the data acqui-
sition process. In other words, the data has undergone a completely
unknown random permutation (shuffling) that also needs to be re-
covered during reconstruction. The motivating example for this cat-
egory of problems is typically SLAM [6, 8]. However, the unknown
shuffling is rarely completely unknown in practice, even in the case
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Fig. 1. Illustrative example of our set up. Left: Signal x. Middle
and Right: (top) estimates Fix of two different permutations of x,
(bottom) actual permutations xi = PiFix of x observed by the
acquisition system.

of SLAM. Typically, there is prior knowledge of the permutation,
maybe up to small errors, e.g., [14].

Our paper makes the following contributions:

1. A formulation that explicitly regularizes the permutation to be
estimated. This incorporates prior knowledge of the permuta-
tion, reducing the search space, and, in principle, making the
problem easier to solve.

2. A relaxation that allows us to use the well-developed theoreti-
cal and algorithmic machinery of optimal transport (OT) [15]
in obtaining a solution.

3. A generalization of the unlabeled sensing problem, introduc-
ing an optional linear operator measuring the permuted data.
This model is more appropriate for coherent imaging under
motion, our motivating application.

In the next section we introduce the problem and key assump-
tions. Section 3 describes prior work on unlabeled sensing, in the
context of this paper. In Section 4 we outline our approach to solv-
ing the problem, drawing insights from the theory and methods of
OT [15–18]. In Section 6 we present results on synthetic data vali-
dating our approach. Section 7 discusses our findings and concludes.

2. ACQUISITION MODEL

We assume multiple shots yi of a reference reflectivity image x ∈
RN are acquired through

yi = AiPiFix + ni, i = 1, 2, ...K (1)

where,

1. Ai are known linear measurement operators, modeling the
acquisition system,

2. Fi are known operators that partly predict the deformation of
x, into xi, before it is acquired, and



3. Pi are unknown permutation matrices modeling the uncer-
tainty in our knowledge of Fi.

In the context of our motivating example, Ai describes the coherent
imaging system, such as radar, magnetic resonance, or ultrasound.
The operators Fi describe the object motion, e.g., of the heart or the
lung, and are typically estimated using auxiliary information, such as
a motion model or an alternative sensing modality; we do not explore
how these are estimated in this paper. The unknown permutations Pi

model the correction to the estimation error of Fi, and may be esti-
mated either implicitly or explicitly. Our ultimate goal is to recover
x from the measurements yi. Estimating the Pi is incidental, and
we are not interested in the quality of this estimation.

Figure 1 provides an illustrative stylized example of our set up.
The letter “E” is observed under motion of each of its components.
The top left shows the image in the reference pose. The top middle
and right show the image under the estimated transformation, i.e.,
Fix, and the bottom middle and right show the actual image xi that
the acquisition system acquires through Ai. The assumption is that
the latter is an unknown limited permutation of the former, i.e., xi =
PiFix, as shown in the figure. The goal is to recover the reference
image in the top left of the figure.

To this end we make the following mild assumptions.

(a) The support of x is known;

(b) Perturbations Pi that move pixels far from their estimated
position in the 2D image domain are less likely.

In the next section we will briefly review some of the related
work and contrast our problem formulation. Although related, there
are some salient aspects of our set up that makes it unique and that
renders itself to novel solution approaches.

3. RELATED WORK

Our model relates to certain signal estimation problems with un-
known permutations known as unlabeled sensing or shuffled linear
regression [6–13]. The unlabeled sensing problem can be defined as
finding a signal x and a general permutation P, such that

y = PBx + n, (2)

where B is an M ×N matrix with column rank N, and N < M .
These problems are instances of well-studied data association

and assignment problems [19], [15, Ch. 2]. OT, a key component of
our solution, is one approach to handling the 2-D assignment prob-
lem. The problem we address is an instance of an N-D (N> 2)
assignment problem [20, 21], which is harder to solve in general.
Our approach solves smaller 2-D assignment problems, effectively,
computing a barycenter, an approach that is again inspired by and is
related to the OT barycenter problem [22]. Thus we avoid computa-
tionally expensive methods that solve the N-D problem [20, 21].

In addition, our formulation has a key difference that necessi-
tates our approach: we target a more general form of the unlabeled
sensing problem which includes the (possibly underdetermined) lin-
ear measurement operator A. This precludes the aforementioned
approaches. Still, if we specify A as the identity operator, we solve
a regularized form of the problem, incorporating additional knowl-
edge that some permutations are more likely to occur.

Specifically, we observe multiple permuted transformations of
our signal, wherein permutations for each view are less likely to oc-
cur the farther they diverge from the identity operator. Here, we may
consider having an equivalent operator to the matrix B which can
be composed by stacking the multi-view transformation matrices Fi

into a single matrix. We also note that, we are only interested in
recovering the reflectivity, not necessarily the permutation.

The variation of the unlabeled sensing problem we consider, al-
lows us to develop a computationally efficient algorithm, described
in Section 4. Experimentally, our approach performs well under our
assumptions, even in the presence of noise, overcoming existing pes-
simistic computational results for (2).

4. RECOVERY USING PERMUTATION
REGULARIZATION

Considering that all permutations are not equally likely in invert-
ing (1), it becomes natural to consider formulations in which the
permutation estimation is regularized. In particular, to estimate Pi

and x from (1), the following is a reasonable formulation:

min
Pi∈P,x

K∑
i=1

(
1

2
‖yi −AiPiFix‖22 + βR(Pi)

)
, (3)

where P is a set ofN×N permutation matrices andR(Pi) is a reg-
ularization for Pi, which incorporates the prior knowledge that Pi

is more likely to move elements to nearby pixels rather than distant
ones, following by Assumption (b).

In particular, R(Pi) should penalize permutations that move
pixels very far from the original position, as measured in the un-
derlying grid of the signal. Using l[n] to denote the true position of
coefficient n in the underlying gridL, we assume the cost of permut-
ing coefficient n to position n′ to be the squared Euclidean distance
in the underlying grid, ‖l[n]− l[n′]‖22. For example, if the underly-
ing grid is 2-dimensional, as in the examples in Section 6, l[n] would
be the 2-dimensional position of the nth coefficient of x. Thus, the
total regularization cost of permutation matrix Pi is

R(Pi) :=

N∑
n,n′=1

‖l[n]− l[n′]‖22 Pi[n, n
′]. (4)

This cost promotes permutations with small deviations from the
identity, i.e., controlled errors. Of course, when appropriate for the
application, other distance metrics, such as the `1-norm can be used
instead of the squared Euclidean distance.

Solving (3) is hard in general, as it requires a combinatorial
search. Thus, we consider a relaxation that allows us to use the well-
established algorithmic machinery of OT [15–17]. To do so, note
that (3) is equivalent to

min
Pi∈P,x,xi

K∑
i=1

(
1

2
‖yi −Aixi‖22 + βR(Pi)

)
,

subject to xi −PiFix = 0, ∀i.

(5)

Next, we relax the equality constraint to

min
Pi∈P,x,xi

K∑
i=1

(
1

2
‖yi −Aixi‖22 + βR(Pi)

)
,

subject to ‖xi −PiFix‖22 ≤ t, ∀i.

(6)

Writing the above in Lagrangian form, we have

min
Pi∈P,x,xi

K∑
i=1

(
1

2
‖yi −Aixi‖22 + βR(Pi) +

λ

2
‖xi −PiFix‖22

)
.

(7)



Algorithm 1 Estimate single view image x̂i = F1(Ai,yi,x)

Compute: , zi = Fix and vi = a(z).
1: for t = 1 to tMax do
2: ut

i = a(xt
i)

3: P∗i = arg min
Pi∈Π(ut

i,vi)

〈C(xt
i, zi),Pi〉

4: xt+1
i = xt

i − γt∇xif(x,xt
i)

5: end for
Output: x̂i = xtMaxi

Algorithm 2 Estimate prototype image x̂ = F2(x1, . . . ,xK)

Compute: ui = b(xi), i = 1, . . . ,K.
1: for t = 1 to tMax do
2: for i=1 to K do
3: vt

i = a(Fix
t)

4: P∗i = arg min
P∈Π(ui,v

t
i)

〈C(xi,Fix
t),P〉

5: end for
6: xt+1 = xt − γt

∑K
i=1∇xf(xt,xi)

7: end for
Output: x̂ = xtMax

where t and λ are inversely related. Since Pi is a permutation ma-
trix, the final term in (7) can be expressed as

‖xi −PiFix‖22 =

N∑
n,n′=1

(
xi[n]− (Fix)[n′]

)2
P[n, n′]. (8)

The first term in (7) is independent of Pi and the last two terms
are linear in Pi. Therefore, we can incorporate (4) and consolidate
them by defining the cost matrix C(xi,Fix) as

C(xi,Fix)[n, n′] := ‖l[n]− l[n′]‖22 +
λ

2β

(
xi[n]− (Fix)[n′]

)2
,

and rewriting (7) as

min
x,xi

K∑
i=1

(
‖yi −Aixi‖22 + β min

Pi∈P
〈C(xi,Fix),Pi〉

)
. (9)

The minimization over Pi in (9) is known as the 2-D assignment
problem, which is equivalent to solving a linear program [15].
Specifically, this linear programming relaxation can be interpreted
as determining an optimal probabilistic coupling, i.e., a joint distri-
bution P ∈ Π(u,v), where Π(u,v) = {P : 0 ≤ Pi,j ≤ 1,P1 =
ui,P

T1 = vi}, between two probability distributions ui ∈ [0, 1]N

and vi ∈ [0, 1]N defined on the grid L, where 1 is a vector of all
ones. Then with ui = vi = 1/N , (9) is equivalent to

min
x,xi

K∑
i=1

(
‖yi −Aixi‖22+β min

Pi∈Π(ui,vi)
〈C(xi,Fix),Pi〉

)
(10)

Next, we revisit (10) based on the theory of OT [15, 17] and
outline an efficient algorithm to solve the resulting formulation.

5. EFFICIENT RECOVERY USING OPTIMAL
TRANSPORT BASED RELAXATION

Our primary goal is to estimate x and not necessarily the permu-
tations. Keeping in mind the relation between OT and assignment

Algorithm 3 OT Regularized Multiview Sensing
Input: Ai, Fi, yi, i = 1, . . . ,K.
Initialization for prototype image: x0.

1: for t = 1 to tMax do
2: for i = 1 to K do
3: xt

i = F1(Ai,yi,x
t−1)

4: end for
5: xt = F2(xt

1, . . . ,x
t
K)

6: end for
Output: x̂ = xtMax

problems [19] [15, Ch. 2], we further make the following relax-
ations: (a) The marginals u,v are assumed to be general, i.e. not
necessarily uniform distributions, with possibly different supports;
(b) This necessitates relaxing the the constraint on Pi being permu-
tation matrices to Pi being couplings between marginals u,v. In
this case the estimate obtained from the inner minimization corre-
sponds to what is referred to as a “plan” (i.e. a joint distribution with
the given marginals) in the OT literature [15, 17]. In other words we
seek a softer coupling instead of a hard assignment. Note that when
the supports are equal and the marginals are uniform, then the op-
timal plan and optimal assignment coincide. Thus, by mapping our
problem to an OT one, we can apply efficient algorithms developed
in that literature, such as [16, 18], to solve for the optimal plan.

Choice of marginals: Given a signal x[n], we choose the fol-
lowing marginals, which seem to provide good numerical results.
Let a : RN

+ → [0, 1]N be a function that maps reflectivity values to
a probability distribution, defined as

a(x)[n] :=
I{x[n] > T}∑N
k=1 I{x[k] > T}

, n = 1, . . . , N, (11)

where I is an indicator function and T > 0 is some predefined
threshold. Thus, a(x) is a uniform distribution over the grid
points with sufficiently large reflectivity values. We then define
the marginals as u = a(x), v = a(Fix) and an optimal transport
distance between a(xi) and a(Fix) as

OT(a(xi), a(Fix)) = min
Pi∈Π(a(xi),a(Fix))

〈C(xi,Fix),Pi〉 (12)

Given the marginals, we propose to solve for the following re-
laxed version of (9):

min
x,xi

K∑
i=1

f(x,xi), where

f(x,xi) = ‖yi −Aixi‖22 + β OT(a(xi), a(Fix)).

(13)

It is worth mentioning that OT(a(xi), a(Fix)) may be written as a
transportation-Lp distance [23,24] as d2

TL2((xi,u), (Fix,v)). The
particular case considered here is when the marginals are a function
of the signal. While this case may fall in the general set up discussed
in [23, 24], it is unclear whether the theoretical results therein still
hold when the marginals depend on the signal; we leave the study of
theoretical properties of (13) for future work.

In order to use gradient descent methods to solve (13), we need
to compute the gradient of OT(a(xi), a(Fix)) defined in (12) with
respect to xi and x. Let f and g be Lagrangian multipliers, the
Lagrangian form of (12) is

L(Pi, f ,g,xi,x) = 〈C(xi,Fix),Pi〉+ 〈f ,Pi1− a(xi)〉

+ 〈g,PT
i 1− a(Fix)〉.



Fig. 2. NMSE as a function of measurement rate at various input
SNR, where the number of views is 2. The shaded area represents
one standard deviation below and above the mean.

Let P∗i , (f∗,g∗) be the primal and dual optima, respectively. Al-
though they all depend on xi,x, the envelope theorem [25] allows
us to conveniently compute the gradient:

∇xiOT(a(xi),a(Fix)) = ∇xiL(P∗i , f
∗,g∗,xi,x)

(a)
= ∇xi〈C(xi,Fix),P∗i 〉 − ∇xi〈f

∗, a(xi)〉
(b)
= ∇xi〈C(xi,Fix),P∗i 〉, a.e.,

where in step (a), P∗i and f∗ are considered as constant with respect
to xi (by the envelope theorem), and step (b) follows by definition of
a in (11), whose gradient is zero almost everywhere with respect to
Lebesgue measure on RN . The gradient of OT(a(xi), a(Fix)) with
respect to x can be computed in a similar way. Then the gradient of
the cost function f(x,xi) can be computed as

∇xf(x,xi) = λFT
i

(
a(Fix)� (Fix)− (P∗i )Txi

)
,

∇xif(x,xi) = AT
i (Aixi − y) + λ

(
a(xi)� xi −P∗iFix

)
,

where � denotes point-wise product.
Our proposed algorithm for estimating x from (1) solves (13) by

alternating between the estimation of xi and x. With a fixed x, we
estimate xi by Algorithm 1, and with a fixed xi, we estimate x by
Algorithm 2; the full algorithm is summarized in Algorithm 3. The
estimation of P∗i in Line 3 of Algorithm 1 and Line 4 of Algorithm 2
are solved by IPOT [18].

6. EXPERIMENTS ON SYNTHETIC DATA

To validate our proposed algorithm, we perform two different sets
of experiments on simulated data. For the first set, the number of
views is fixed to be 2 and we test the algorithm at different mea-
surement rates, defined as the measurement rate per view times the
number of views, and input signal to noise ratios (SNR), defined as
‖Aixi‖22/‖yi −Aixi‖22.

In this set of experiments, to demonstrate the effectiveness of the
proposed method, we include results for two baseline methods. The
first one, labeled Gradient, is a straightforward approach to solving
(3) directly, by alternating between estimating x and Pi and solving
each subproblem using gradient descent. The constraint Pi ∈ P is
relaxed to Pi ∈ [0, 1]N×N with an additional regularizer to promote
Pi having the same row and column sums as a permutation: ‖Pi1−
1‖22 +‖PT

i 1−1‖22. The second baseline method, labeled Ignore Pi

in the figure, solves x from (3) assuming that Pi is identity.

Fig. 3. NMSE as a function of number of views. The measurement
rate per view is 0.7 or 0.8 and the input SNR is 20dB.The shaded
area represents one standard deviation below and above the mean.

For the second set of experiments, the input SNR is fixed to be
20dB and the measurement rate per view is fixed to be 0.7 or 0.8.
We test the algorithm at different numbers of views. A key issue we
explore is that while increasing the number of views increases mea-
surements, it also increases the number of unknown permutations.
Given their poor performance of the baselines in the first set, we did
not include them in this set.

In all experiments, the reference pose x, the estimated transfor-
mation Fix, and the actual measured image xi are generated in a
similar way as the example in Figure 1, except that in the second
experiment, the letter “T” instead of “E” is used to simplify data
generation. The number of pixels in each image is N = 512. The
support of the ground truth x is known to the algorithm and thus so
is the support size K. The threshold T in (11) is set to be the Kth

largest pixel value in the corresponding vector. The measurement
matrix Ai has i.i.d. Gaussian entries with mean zero and variance
1/N . Performance is measured by the normalized mean squared
error (NMSE), defined as ‖x̂− x‖22/‖x‖22.

Figure 2 presents the results for the first experiment. The figure
shows that the two baseline methods perform poorly even without
measurement noise. For our proposed method, the reconstruction
performance improves as the measurement rate increases. More-
over, when the input SNR is 25dB or higher, the reconstruction per-
formance improves rather quickly.

Figure 3 presents the results for the second experiment. It shows
that an increased number of views improves reconstruction of the
reference pose, despite introducing more unknown permutations.
Moreover, for a given input SNR, measurement rate, and sparsity of
the reference image, performance seems to stop improving after a
certain number of views; we defer comprehensive investigation of
this effect to future work.

7. DISCUSSION AND CONCLUSIONS

Estimation of signals observed under unknown permutations is a dif-
ficult problem in general. Recognizing that in many applications
some permutations are more likely than others, we introduce a regu-
larization term which promotes certain permutations over others. By
further relaxing the problem, we are able to exploit well-developed
techniques in OT to provide tractable algorithms for this problem.
A key component in this formulation is the judicious choice of the
OT ground cost to incorporate the regularization penalty. While we
present a particular choice for this cost, there are several other op-
tions, depending on the application, the study of which we defer to
later publications.
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