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Abstract
Recent advances in solving imaging inverse problems have witnessed the combination of deep
learning models with classical image models for better signal representation. One such ap-
proach, DeepRED, combines the deep image prior (DIP) with the regularization by denoising
(RED) framework to boost the performance of image deblurring and super resolution tasks.
In this paper, we formulate DeepRED as a consensus equilibrium problem and set up a fixed-
point algorithm for solving the equilibrium equations. We also derive sufficient conditions
that the DIP generative prior should satisfy to ensure that the corresponding fixed-point
operator is nonexpansive. We then demonstrate that the fixed-point algorithm that solves
the CE equations results in improved image reconstruction quality in a deblurring setting
compared to state-of-the-art methods
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ABSTRACT

Recent advances in solving imaging inverse problems have wit-
nessed the combination of deep learning models with classical
image models for better signal representation. One such approach,
DeepRED, combines the deep image prior (DIP) with the regular-
ization by denoising (RED) framework to boost the performance
of image deblurring and super resolution tasks. In this paper, we
formulate DeepRED as a consensus equilibrium problem and set up
a fixed-point algorithm for solving the equilibrium equations. We
also derive sufficient conditions that the DIP generative prior should
satisfy to ensure that the corresponding fixed-point operator is non-
expansive. We then demonstrate that the fixed-point algorithm that
solves the CE equations results in improved image reconstruction
quality in a deblurring setting compared to state-of-the-art methods.

Index Terms— Inverse problem, image deblurring, consensus
equilibrium, deep image prior, RED

1. INTRODUCTION

Image blurring is a common artifact that arises due to a variety of
problems during the image capturing stage, such as, motion/shaking
of the camera, out-of-focus acquisition, atmospheric aberrations, and
low-light conditions. Image deblurring is the task of resolving the
blurring artifacts when the source of the blur is known. The prob-
lem can be formalized as the task of recovering a true signal x from
blurred measurements y and given the blurring operator A, such
that,

y = Ax+ η, (1)

where η is the noise introduced during measurement acquisition
process, which is assumed to be additive white Gaussian noise
(AWGN). The blurring operator A convolves a blurring kernel with
the true signal in the measurement model.

Image deblurring is an ill-posed problem when the operator A
is rank deficient and in the presence of noise. Therefore, there can
be infinitely many solutions x that satisfy equation (1). A general
approach to solving ill-posed problems is to add a regularizer that
constrains the solution set to a small subset of the feasible space. We
can write a general regularized inverse problem as

min
x
‖y −Ax‖22 + λρ(x), (2)

where ρ(x) is the regularizing penalty function, and λ is a regular-
ization parameter. The choice of regularizer is specific to the type
of signals x that are desired. In the case of images, a wide variety
of regularizers have been proposed to regularize reconstruction in
the denoising setting, i.e., when A is the identity operator. These
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Fig. 1. Consensus Equilibrium of model mismatch, RED, and DIP.
The top images result from the action of different agents that are
combined to produce the CE solution.

include “classical” prior models [1, 2, 3, 4, 5, 6, 7, 8], and deep
learning models [9, 10]. Moreover, sophisticated denoiser models
that leverage nonlocal self-similarity in images are popular in state-
of-the-art methods, such as, block-matching with 3D transform de-
noising (BM3D) [2], nonlocal means (NLM) [1], and NCSR [11].

In the context of general inverse problems with rank deficient
A, a relatively new line of work has opted to replace explicit regu-
larizing penalty functions ρ(x) with the deep network-based models
or the sophisticated denoisers. Of note, are the plug-and-play (PnP)
framework [12], and regularization by denoising (RED) [13]. The
PnP framework tackles problem (2) using proximal gradient descent
and replaces the proximal mapping with respect to ρ(·) with a signal
denoiserD(x). In a related manner, the RED technique assumes that
the regularizing penalty function is given by

ρ(x) = xT (x−D(x)). (3)

Note that the penalty function above is only valid when the denoiser
is locally homogeneous with a symmetric Jacobian [14]. Otherwise,
RED assumes that∇ρ(x) = x−D(x). We will focus in this paper
on the RED approach although our formulation also extends to the
PnP framework.

In another line of work, untrained convolutional network archi-
tectures have been used as image prior. Deep image prior (DIP) [15]
and its variants [16, 17] utilize the structural bias of convolutional
networks towards producing natural images [18] in fewer update it-
erations compared to modeling noise. Using x = G(z,θ) where
G(z,θ) is a generator network using latent code, z and network
weights θ, we can write the DIP prior as

min
θ
‖y −AG(θ)‖22. (4)



These untrained models, however, are susceptible to modeling mea-
surement noise as well [15, 18] given enough optimization iterations.

In this paper, we focus on an ensemble regularization frame-
work, called DeepRED [19], that combines the RED approach with
a nonlocal means denoiser and the deep image prior architecture.
We recast the DeepRED problem in the context of Consensus Equi-
librium (CE) [20] and specify the set of equilibrium equations for
each of the model mismatch function, the RED denoiser, and the DIP
denoiser that need to be satisfied by the target reconstructed image,
as illustrated in Fig. 1. Contrary to the DeepRED solution that re-
lies on an alternating direction method of multipliers (ADMM) algo-
rithm, we use a fixed-point algorithm to solve the set of equilibrium
equations. We demonstrate that the versatility provided by the CE
framework leads to improved deblurring image quality compared to
DeepRED, especially under high noise and high blurring situations.
We also derive sufficient conditions for the generative prior network
of DIP to guarantee convergence of the fixed-point iteration.

In the next section, we provide further details on the two re-
lated works, namely, DeepRED and consensus equilibrium. We then
develop the CE formulation of the DeepRED problem in Section 3
and set up the corresponding fixed-point problem that is solved us-
ing the Mann iterations. A sufficient condition that guarantees con-
vergence of the Mann iterations is that the fixed-point operator be
nonexpansive. To that end, we derive sufficient conditions on the
generative prior that guarantee that the corresponding fixed-point op-
erator is nonexpansive. Finally, we validate the performance of our
proposed approach in Section 4 and demonstrate improved recon-
struction quality over DeepRED, DIP, RED, and NCSR.

2. RELATED WORK

The deep image prior powered by the RED framework, or DeepRED
[19], combines the representation power of the deep image priors
with the superior denoising capabilities of a nonlocal means de-
noiser. [19] proposed an ADMM algorithm for solving the aug-
mented Lagrangian of the DeepRED problem given by:

min
θ,x

1
2
‖AG(θ)− y||22 + λ

2
xT (x−D(x))

+µ
2
||x− G(θ)− u||22 − 1

2
‖ u‖22,

(5)
where u denotes the scaled dual multiplier, and µ is a step size pa-
rameter. The above formulation ties the inaccuracies of the measure-
ment process to the rich parameterization of the generative prior. Al-
though this formulation works well for low noise and low blurring
scenarios, it suffers in the high noise setting as it tends to overfit the
noisy measurements, a behavior that has also been seen in DIP.

Consensus equilibrium [20] presents a multi-agent satisfaction
framework that generalizes consensus optimization to cover mod-
els and operators that are not associated with explicit optimization
problems. The CE framework extends the consensus optimization
objective

min
xi,z

N∑
i=1

µifi(xi) s.t. xi = z,

N∑
i=1

µi = 1, (6)

to defining a set of N vector-valued maps Fi : Rn → Rn. The CE
of these maps is then defined as any solution (x∗,u∗) ∈ Rn×nN
that satisfies the equations

Fi(x
∗ + u∗i ) = x∗, i = 1, . . . N

N∑
i=1

µiu
∗
i = 0,

(7)

where u∗ :=
[
u∗T1 , . . .u∗TN

]T
. In the following sections, we de-

rive the CE equations for the DeepRED problem, setting up the cor-
responding fixed-point equations, and demonstrating the improved
performance over DeepRED’s ADMM implementation.

Other recent efforts on the image deblurring have been based
on variants of the fast iterative shrinkage/thresholding algorithm
(FISTA) [21, 22], and on trained generative prior [23]. While these
methods demonstrate state-of-the-art performance on image deblur-
ring, they could be combined with our framework as additional
mapping functions in the CE formulation.

3. CONSENSUS EQUILIBRIUM FOR DIP AND RED

In this section, we describe a consensus equilibrium perspective for
combining DIP and RED to regularize linear inverse problems.

3.1. DeepRED as fixed-point CE

We begin with a reformulation of the DeepRED objective, which
disentangles the parameterization of the generative prior from the
measurement process:

min
x,θ

µ1‖y −Ax||22 + µ2x
T (x−D(x)) + µ3||x− G(θ)||22. (8)

It can be seen from the above formulation that consensus is sought
for three objectives:

f1(x,θ) = ‖y −Ax‖22
f2(x,θ) = xT (x−D(x))
f3(x,θ) = ‖x− G(θ)‖22,

where the measurement mismatch objective, f1(x,θ), and the RED
objective, f2(x,θ), are in fact independent of θ. Following the CE
framework, we can now define three agents in the form of proximal
mappings with respect to each of the objectives fi as follows:

F1(v) = argmin
x

‖y −Ax‖22 + 1
2σ2 ‖v − x‖22

F2(v) = argmin
x

‖xT (x−D(x))‖22 + 1
2σ2 ‖v − x‖22

F3(v,θ) = argmin
x,φ

‖x− G(φ)‖22

+ 1
2σ2 (‖v − x‖22 + ‖φ− θ‖22)

(9)
Consensus equilibrium for these agents is defined as in (7), where
the variables ui are slack variables that relate to the dual multipliers
in the consensus optimization setting.

The evaluation of F1 and F2 is relatively straightforward and is
given by the following equations

F1(v1) =

(
ATA+

1

2σ2
I

)−1 (
ATy +

v1

2σ2

)
F2(v2) =

2σ2D(v2) + v2

2σ2 + 1

(10)

The DIP agent, on the other hand, is a function of both the signal
x and the generative prior parameters φ. Its evaluation can be per-
formed sequentially by first computing φ∗, followed by the update
for v3 using the following equations:.

φ∗ = argmin
φ
‖v3 − G(φ)‖22 +

2σ2 + 1

2σ2
‖φ− θ‖22

F3(v3) =
v3

2σ2 + 1
+

2σ2

2σ2 + 1
G(φ∗)

(11)



Gaussian Kernel (σk = 1.6) Uniform KernelAlgorithm Butterfly Leaves Parrots Starfish Average Butterfly Leaves Parrots Starfish Average
CE-DIP+RED 32.27 32.76 33.34 33.09 32.87 31.31 31.32 32.32 31.1 31.55
DeepRED 32.19 32.27 32.84 32.74 32.51 31.44 31.21 32.03 31.06 31.43
DIP 31.21 31.51 31.91 31.83 31.62 30.26 30.38 31.00 30.42 30.51
RED 31.66 31.93 33.33 32.49 32.35 30.41 30.13 31.83 30.57 30.74
NCSR Deblur 30.84 31.57 33.39 32.27 32.02 29.68 29.98 31.95 30.28 30.47
Blurred 22.81 22.12 26.96 25.83 24.43 19.07 18.28 23.87 22.56 20.94

Table 1. Comparison of reconstruction PSNR among the different algorithms under low noise setting (σn =
√
2/255).

Notice that with the evaluation of φ∗ in (11), we solve for a regu-
larized set of generative prior parameters. This additional regulariza-
tion helps in limiting the noise overfitting behavior that is generally
observed with DIP. The regularization also relaxes the dependence
on the heuristic of assigning an arbitrary number of iterations while
updating φ to limit the noise overfitting.

As in [20], we reformulate CE as a fixed-point problem. Denot-
ing vi = x+ ui, we have vµ :=

∑
i

vi = x. Further with F (v) =

[F1(v1)
T , F2(v2)

T , F3(v3)
T ]T and Hµ(v) = [vTµ ,v

T
µ ,v

T
µ ]
T ,

where v = [vT1 ,v
T
2 ,v

T
3 ]
T , the CE equations are rewritten as:

F (v) = Hµ(v). (12)

Due to the linearity of Hµ, we can use Corollary 3 of [20] to define
the following equivalent fixed-point problem:

(2Hµ − I)(2F − I)(v) = v, (13)

where I is the identity operator.
Next, define the operator T := (2Hµ − I)(2F − I). When T is

nonexpansive and has a fixed-point, the Mann iteration can be used
to solve for the fixed-point of (13) as follows:

vk+1 = (1− ρk)vk + ρkT (vk), (14)

where ρk ∈ (0, 1) is a step size parameter. Theorem 5.15 in [24]
shows that when T is nonexpansive, a step size sequence that obeys∑
k∈K ρk(1 − ρk) = +∞ allows (14) to converge weakly to a

point in the fixed-point set of T . Examples of such sequence are the
constant step size ρk = ρ ∀k, and the p-series, ρk+1 = ρkk

−c for
0 < c < 1, which enjoys faster convergence.

3.2. On the nonexpansiveness of (2F3 − I)

The regularization of the generative prior parameters in (11) helps in
specifying sufficient conditions for ensuring that the operator (2F3−
I) is nonexpansive. Proposition 1 summarizes this result, but we
exclude the proof due to space limitations.

Proposition 1. Suppose that G(φ) is differentiable and L-Lipschitz.
Let JG(φ) = ∇φG(φ) denote the Jacobian matrix of G evaluated
at φ and let φ∗v = argminφ ‖v − G(φ)‖22 + λ‖φ‖22. If

‖JG(φ)‖op ≤ τ, ∀φ
‖JG(φ1)− JG(φ2)‖op ≤ L′‖φ1 − φ2‖2, ∀φ1,φ2

‖v − G(φ∗v)‖2 ≤ B, ∀v
(15)

and choose λ such that λ ≥ 2Lτ +L′B, then the operator 2F3 − I
is nonexpansive.

(σk,
σn)

Algorithms Butterfly Leaves Parrots Starfish Average

(1.6,
8

255 )

CE 28.59 28.79 30.66 29.63 29.42
DeepRED
(2000 iters) 28.69 28.23 30.1 28.71 28.93

DeepRED
(20000 iters) 22.47 24.1 22.81 22.59 23

Blurred 22.55 21.89 26.34 25.32 24.02

(1.6,
32
255 )

CE 24.32 24.34 27.19 25.42 25.32
DeepRED
(250 iters) 25.18 23.83 27.02 25.1 25.28

DeepRED
(1000 iters) 22 22.12 23.64 21.99 22.44

Blurred 19.9 19.64 21.59 21.21 20.58

(2.4,√
2

255 )

CE 28.33 27.93 30.43 29.39 29.02
DeepRED 22.12 21.37 26.41 25.2 23.78
Blurred 20.29 19.54 24.94 23.66 22.11

(3.2,√
2

255 )

CE 25.62 24.4 28.1 27.21 26.33
DeepRED 19.47 18.76 24.4 23 21.41
Blurred 18.69 18.03 23.85 22.36 20.73

Table 2. Comparison of reconstruction PSNR for different noise
levels and blurring kernel strengths.

4. EXPERIMENTAL VALIDATION

We follow an experimental setup similar to the that developed
in [19], [13] and [25]. Given a blurred and noisy image with a
known degradation operator, the goal is to recover the sharp and
noise-free original image. We consider blurring kernels with vary-
ing blurring effect controlled by the parameter σk and add varying
levels of i.i.d. Gaussian noise with variance σn.

To evaluate the reconstruction, we used four images from the
NCSR dataset [11] (Butterfly, Leaves, Parrot and Starfish) similar to
the selection in [19]. Each of these images has 256×256 pixels with
RGB color channels. For fair comparison with [19], we also use the
same nonlocal means (NLM) denoiser.

In the first set of experiments, we replicate the evaluation setup
from [19]. Two blurring kernels are used; one kernel is a 9 × 9
pixel uniform blur, and the other is a 25× 25 pixel Gaussian blur of
variance σk = 1.6. For both blurring cases, the measurement noise
variance is set equal σn =

√
2/255. The deblurring results are

shown in Table 1 which lists the reconstructed peak signal to noise
ratio (PSNR) values for the different deblurring algorithms, namely,
DeepRED [19], DIP [15], RED [13] and NCSR Deblur [11]. No-
tice that our proposed CE-based solution (CE-DIP+RED) achieves
the best performance in almost all cases, resulting in an average im-
provement over DeepRED of 0.36dB in PSNR for the Gaussian blur-
ring case and 0.12dB in the uniform blurring case. We can also ob-
serve that for this experimental regime, DeepRED performs nearly
as well as CE-DIP+RED and outperforms the other three competing
methods.

The above experiment is considered a low-noise and low-blur
regime. For a more extensive evaluation, we test the performance of
CE-DIP+RED and compare it to DeepRED under higher noise and
blurring regimes. The results are reported in Table 2. We can observe



Fig. 2. Image deblurring performance of DeepRED and CE formulation under (a) the presence of high noise (σn = 8/255,σk = 1.6) and (b)
the presence of high blurring (σn =

√
2/255,σk = 2.4).

Fig. 3. Reconstruction quality resulting from the combination of the three different agents.

Weights on
Agents
(Mismatch,
RED,DIP)

Butterfly Leaves Parrots Starfish Average

Mismatch
(1,0,0) 21.71 21.85 22.98 22.65 22.3

Mismatch
+ RED
(0.5,0.5,0)

21.82 21.92 23.19 22.84 22.44

Mismatch
+ DIP
(0.5,0,0.5)

23.36 22.54 26.56 25.4 24.46

Mismatch
+RED+DIP
(0.5,0.1,0.4)

24.32 24.34 27.19 25.42 25.32

Blurred 19.9 19.64 21.59 21.21 20.58

Table 3. Reconstruction PSNR for the different agents.

that under the higher noise condition, the performance of DeepRED
is less stable in that it achieve a high PSNR in early iterations but
converges to a solution with much lower PSNR. This behavior is
consistent with the analysis from [18] and [15] and is most likely a
result of the deep image prior overfitting the noise in the measure-
ments. On the other hand, our CE-DIP+RED does achieves a higher
reconstruction PSNR at convergence and does not succumb to the

noise overfitting problem. A qualitative evaluation is also shown for
medium noisy measurements regime (σn = 8/255) in Figure 2. In
the case of large blurring artifacts, Table 2, also shows that our CE-
DIP+RED significantly outperforms DeepRED. Qualitative results
are also shown for medium blurred images (σk = 2.4) in Figure 2.
Finally, we conduct an ablation study to realize the effect of each
of the different agents on the reconstruction quality. For these ex-
periments, we used a Gaussian kernel with σk = 1.6 and measure-
ment noise variance σn = 32/255. Table 3 shows the reconstruction
PSNR and demonstrates that the combination of all three agents re-
sults in the best reconstruction performance. Moreover, the table
shows that benefit of the generative prior over the NLM denoiser. A
qualitative comparison is also shown in Figure 3.

5. CONCLUSION
In conclusion, we demonstrated that the CE framework provides a
more versatile and robust algorithmic approach for combining multi-
ple signal priors in the inverse problem setting compared to ADMM.
We also presented sufficient conditions on the generative prior of
DIP that guarantee the nonexpansive property of the corresponding
fixed-point operator.
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