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Abstract
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1. Introduction
Photonic device design often involves a high-dimensional search space and heavy simulation costs. This has

prompted widespread interest in deep neural networks (DNNs) for design automation. However, DNNs generally
require a large amount of training data, which can be quite expensive for silicon photonics problems. Our earlier
work [1] employing an adversarial conditional variational autoencoder (A-CVAE) model showed the capability to
generate the multilevel nanostructured splitters with arbitrary splitting ratios. The generative model combined with
variable sized holes enable the splitters to achieve decent performance with an overall transmission of near 90%.
In this paper, we introduce an improved DNN model which incorporates ‘cycle consistency’ [2–4]. The proposed
model can improve the device performance in both total transmission and splitting ratios.

Fig. 1: The generative deep learning model structure of cycle-consistent
A-CVAE.
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Fig. 2: Nanophotonic
power splitter.

2. A-CVAE model with cycle consistency
The concept of A-CVAE model with cycle consistency [2, 4] is that in addition to training the encoder-decoder

pair for forward reconstruction, the reversed-order decoder-encoder pipeline is also trained for latent space con-
sistency (respective DNN modules share the same weights) as shown in Fig. 1. In this case, we are not only
comparing the decoded Hole Vectors (HVs) but also the latent variables. Under the cycle-consistency idea, we
explicitly train the encoder to reduce leakage of information associated with specified factors of latent variation.
By doing this, we expect to further improve the generation performance of the original A-CVAE model. The loss
function is shown as follows:
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where the first term is the mean-square error (MSE) loss between the decoded HV1 and actual HV, the second
term is the Kullback–Leibler divergence of the CVAE, the third term is the newly added MSE between the two
latent spaces z and z′. The last two terms are the loss functions of the two adversarial blocks. The splitters are
designed on a 220 nm thick silicon-on-insulator (SOI) multimode interference (MMI) footprint with a dimension
of 2.25×2.25 µm2 having 20×20 etched holes (Fig.2).



Fig. 3: FOM comparison for two generative models: A-CVAE model with cycle consistency (blue) and without
cycle consistency (orange).

Fig. 4: FDTD results (transmission and reflection) of some generated patterns via the A-CVAE model with cycle
consistency.

In order to better measure the performance of the generated devices, we define a figure of merit (FOM) to
evaluate the performance of the designed splitters:

FOM= 1−10×
[∫
|T1(λ )−T ?

1 (λ )|2dλ +
∫
|T2(λ )−T ?

2 (λ )|2dλ +α
′
∫
|R(λ )|2dλ

]
, (2)

where T1(λ ), T2(λ ), R(λ ), and [·]? denote transmissions of output ports 1 and 2, reflection at input port at certain
wavelength, and corresponding target values, respectively. To make the direct comparison between the two models,
we use the same training data present in our previous work [1]. The training data are 16,000 binary HVs, which
contain optimized patterns for different splitting ratios with a conventional direct binary search (DBS) or randomly
generated patterns. We use the two models to generate 20 devices for four types of devices with different splitting
ratios. As shown in Fig. 3, in terms of FOM, it shows a decent average improvement 2% and 5% increase of the
worst case. The A-CVAE with cycle consistency clearly improves the overall generation performance.

3. Conclusion
We demonstrated a novel A-CVAE model with cycle consistency to design nano-structured splitters for an

arbitrary splitting ratio. For 220 nm SOI, the design patterns generated by the new DNN model have the average
total transmission (as shown in Fig. 4) of 92% across a broad bandwidth (1250 nm to 1800 nm), which is a
significant improvement over our previous model without cycle consistency. Our model is generic and will be
applicable to a wide range of photonic devices and metasurfaces.
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