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calize anomalies in surveillance video. The main novelty

is the idea of using a Siamese convolutional neural net-

work (CNN) to learn a metric between a pair of video
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metric, which is not specific to the target video, is used

to measure the perceptual distance between each video

patch in the testing video and the video patches found

in normal training video. If a testing video patch is far

from all normal video patches then it must be anoma-
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1 Introduction

Video anomaly detection is the task of localizing

(spatially and temporally) anomalies in videos, where

anomalies refer simply to unusual activity. Unusual ac-

tivity is scene dependent; what is unusual in one scene

may be normal in another. In order to define what

is normal, video of normal activity from the scene is

provided. In the formulation of video anomaly detec-

tion that we focus on in this paper, we assume both

the normal training video as well as the testing video

come from the same single fixed camera, the most com-

mon surveillance setting. In this application, normal

video (i.e. not containing any anomalies) is simple to

gather while anomalous video is not. This is why it

makes sense to provide normal video (and only normal

video) for training. Given this formulation, the prob-

lem becomes one of building a model of normal activ-

ity from the normal training video and then detect-

ing large deviations from the model in testing video of

the same scene as anomalous. The reader is directed to

[5, 35, 39, 42, 43, 55] for surveys on anomaly detection

in videos.

Most previous methods have limitations that can be

attributed to one or more of the following, which serve

as the motivation for our approach: (1) The features

used in many methods are hand-crafted. Examples in-

clude spatio-temporal gradients [30], dynamic textures

[32, 50], histogram of gradients [14], histogram of flows

[7, 14, 42], flow fields [1–3, 33, 52] and foreground masks

[37]. (2) Almost every method requires a computation-

ally expensive model building phase requiring expert

knowledge which may not be practical for real applica-

tions. (3) Many previous works focus on detecting only

specific deviations from normality as anomalous.

To overcome these limitations, we propose an

exemplar-based nearest neighbor approach to video
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Fig. 1 An illustration of the scenario where UCSD Ped2, ShanghaiTech and CUHK Avenue are used as source datasets to
learn a distance function from. Best viewed in electronic form in color.

anomaly detection that uses a distance function learned

by a Siamese CNN to measure how similar activity in

testing video is to normal activity. Our approach builds

on the work of [37], in which normal video is used to

create a model of normal activity consisting of a set of

exemplars for each spatial region of the video. An exem-

plar is a feature vector representing a video patch, i.e.,

a spatio-temporal block of video of fixed size H×W×T
where H, W and T are the height, width and temporal

depth of a video patch [9]. The exemplars for a spa-

tial region of video represent all of the unique video

patches that occur in the normal video in that region.
Exemplars are region-specific because of the simple fact

that anomalies are region-specific. To detect anomalies,

video patches from a particular spatial region in testing

video are compared to the exemplars for that region,

and the anomaly score is the distance to the nearest

exemplar. If a testing video patch is dissimilar to ev-

ery exemplar video patch, then it is anomalous. In [37],

hand-crafted features (either foreground masks or flow

fields) were used to represent video patches and a pre-

defined distance function (either L2 or normalized L1)

was used to compute distances between feature vectors.

We propose learning a better feature vector and dis-

tance function by training a Siamese CNN to measure

the perceptual distance between pairs of video patches.

By perceptual distance, we mean a distance that corre-

sponds not to some straightforward distance between

pixel values but rather to a human-like perception of

whether two video patches are similar or not. In par-

ticular, two video patches with the same number and

types of objects and similar motion should have a small

distance. Our CNN is not specific to a particular scene,

but is trained from video patches from several different

source video anomaly detection datasets. This idea is

also similar in spirit to past work on learning a CNN for

matching patches [13, 54], except extended to video. In

our approach, the training split consists of video patch

pairs from source datasets and the test split contains

video patch pairs from the target dataset, but each of

these datasets also contains a training (normal) and test

(contains anomalies) split. In order to avoid overload of

the commonly used term “split”, we henceforth refer to

splits in the latter sense as “partitions”.

Experiments show that our method either surpasses

or performs comparably to the current state-of-the-art

on the UCSD Ped1, Ped2 [32] and CUHK Avenue [30]

test sets. We further extend this approach from op-

erating on fixed-size video patches extracted from a

fixed grid on the camera frame to arbitrary-sized video

patches from unsupervised region proposals, while re-

taining the performance gains observed.

In summary, our major contributions are:

1. Our approach transforms the problem of training

a CNN to classify video patches as normal or anoma-

lous (which cannot be done since we have no anoma-

lous training examples) to the problem of training a

CNN that computes the perceptual distance between

two video patches (a problem for which we can gener-

ate plenty of examples). We use the same parameters

for training the CNN from source datasets regardless of

the target dataset.
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2. This approach allows task-specific feature learn-

ing, allows for efficient exemplar model building from

normal video and detects a wide variety of deviations

from normality as anomalous.

3. By shifting the complexity of the problem to

the distance function learning task, the simple 1-NN

distance-to-exemplar anomaly detection becomes highly

interpretable. To the best of our knowledge, our work

is the first to take this approach to anomaly detection.

4. In order to remove the dependence of choice of

source datasets for a particular target dataset, we gen-

eralize our approach to operate on arbitrary-sized re-

gion proposals without loss in performance.

2 Related Work

We focus here on video anomaly detection methods that

follow the formulation of the problem outlined previ-

ously. A number of methods such as [8, 19, 28, 46] use

other formulations of the video anomaly detection prob-

lem which we do not discuss here, although we organize

this section similar to [46].

2.1 Distance-based approaches

Distance-based approaches involve creating a model

from a training partition and measuring deviations from

this model to determine anomaly scores in the test par-

tition.

The authors in [42] use the insight that ‘optimal

decision rules to determine local anomalies are local ir-

respective of normal behavior exhibiting statistical de-

pendencies at the global scale’ to collapse the large am-

bient data dimension. They propose local nearest neigh-

bor based statistics to approximate these optimal deci-

sion rules to detect anomalies.

In [53], stacked denoising auto-encoders are used to

learn both appearance and motion representations of

video patches which are used with one-class SVMs to

perform anomaly detection.

The authors in [41] derive an anomaly score map

by consolidating the change in image features from a

pre-trained CNN over the length of a video block.

[20] also uses object-centric processing by extracting

proposals from a single-shot detector, but in a pipeline

involving latent code learning using convolutional auto-

encoders followed by one-versus-rest SVM anomaly scor-

ing scheme.

2.2 Probabilistic approaches

Probabilistic approaches are similar to distance-based

approaches, except that the model has a probabilistic

interpretation, for example as a probabilistic graphical

model or a high-dimensional probability distribution.

The authors in [1] use multiple fixed-location moni-

tors to extract optical flow fields and compute the like-

lihood of an observation given the distribution stored

in that monitor’s buffer.

In [32], the authors propose a representation com-

prising a mixture of dynamic textures (MDT), mod-

eling a generative process for MDTs and discriminant

saliency hypothesis test for anomaly detection. In [50],

they build off the MDT representation to detect anoma-

lies at multiple scales in a conditional random field

framework.

Authors in [2] contend that anomaly detection should

try to “explain away” the normality in the test data us-

ing information learned from the training data. To this

end, they use foreground object hypotheses and take a

video parsing approach, treating those object hypothe-

ses at test time which are necessary to explain the fore-

ground but not explained by the exemplar training hy-

potheses are anomalous. In [3], they further build on

this idea by extending the atomic unit of processing

from an image patch to a video pipe.

2.3 Reconstruction approaches

Reconstruction approaches aim to break down inputs

into their common constituent pieces and put them

back together to reconstruct the input, minimizing “re-

construction error”.

[6, 14, 27, 40] are examples of methods that use this

approach. In our experience, reconstruction based ap-

proaches seem to be naively biased against reconstruct-

ing faster motion, for the simple reason that absence of

motion is much more common and easier to reconstruct.

A subset of reconstruction approaches, sparse re-

construction approaches have an additional con-

straint in that the reconstruction must be minimialistic,

that is, using only a few essential features from a dic-

tionary to perform the reconstruction. [7, 30, 31] are

examples of methods that use this approach.

Many of the methods mentioned above use deep net-

works. All of the previous papers that use deep net-

works for video anomaly detection that we are aware of

use them in one of two techniques: (1) either to provide

higher level features to represent video frames or (2) to

learn to reconstruct only normal video frames. Much of

the previous work builds on the basic idea of using a

CNN, either pre-trained on image classification or other
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Fig. 2 An illustration of using the learned distance function to perform exemplar extraction and anomaly scoring on the
target UCSD Ped1 dataset. Best viewed in electronic form in color.

tasks [16, 31, 41, 44] or trained on the training parti-

tions of each video anomaly detection dataset [53], to

provide a feature vector for representing video frames.

The CNN feature maps provide higher level features

than raw pixels. The other major theme of deep net-

work approaches is to learn an auto-encoder [6, 14] or

generative adversarial network [27, 40] to learn to recon-

struct or predict only normal video frames. Reconstruc-

tion error is then used as an anomaly score. Our method

follows neither of these previous techniques and instead

presents a new way to take advantage of the power of

deep networks for video anomaly detection. Namely, we

use a CNN to learn a distance function between pairs

of video patches. Thus, ours is a novel distance-based

approach.

3 Method

By building on the exemplar-based nearest neighbor

approach of [37], our main problem is to learn a dis-

tance function for comparing video patches from test-

ing video to exemplar video patches that represent all

of the unique video patches found in the normal video.

To do this we use a Siamese network (see Figure 1) sim-

ilar to the one first introduced by Bromley and LeCun

[4]. In essence, by making the anomaly detection task

itself a rather simple nearest neighbor distance compu-

tation (see Figure 2), we seek to offload the burden of

modeling the complexity in this problem to the task of

learning a distance function. This learning problem can

be done offline and has a large amount of training data

available from source datasets. Ideally this can be done

once and the resulting feature representation and dis-

tance function used on a wide variety of different target

datasets.

Of course, the more the statistics of the target

dataset match the source datasets, the more suitable

the learned distance function becomes for the anomaly

detection task. This problem is called dataset shift and

[36] is a comprehensive resource on the dataset shift

problem and how to minimize its effects. We use some

simple steps such as data augmentation and estimating

class priors to deal with the problem here.

In this section, we go into more detail in each of the

steps shown in Figures 1 and 2, provide justifications for

our design decisions and setup some language essential

for the Experiments section.

3.1 Generating training video patch pairs

The main difficulty with training a Siamese network to

estimate the distance between a pair of video patches is

determining how to generate the training set of similar

and dissimilar video patch pairs. One training exam-

ple consists of a pair of video patches plus a binary

label indicating whether the two video patches are sim-

ilar or dissimilar (see Figure 1 part 1). Video patch

pairs should be selected to correctly correspond to their

ground truth labels of “similar” or “dissimilar”. Pairs

should also be picked such that coverage of the possible

domain of inputs to the CNN during test time is high.

This is to ensure that the CNN is not asked to operate

on out-of-domain inputs at test time.

How can we determine whether two video patches

are similar or dissimilar and how can we select a var-

ied set of video patch pairs that are relevant to video

anomaly detection? An important insight is that we

can use existing video anomaly detection datasets to

do this. We use a source set of labeled video anomaly

detection datasets to generate similar and dissimilar

video patch pairs. The labeled datasets used to gener-

ate training examples should of course be disjoint from

the target video anomaly detection dataset on which

testing will eventually be done. The basic insight is as

follows: for each source dataset,

(1) A non-anomalous video patch from the test par-

tition is similar to at least one video patch from the

same spatial region in the train partition. If it were not
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Fig. 3 Architecture of the Siamese neural network that learns a distance function between video patches. Best viewed in
electronic form in color; color coding denotes unique structure.

similar to any normal video patches it would be anoma-

lous.

(2) An anomalous video patch from the test parti-

tion is dissimilar to all possible patches from the same

spatial region in the train partition. Moreover, it is dis-

similar to even the most similar video patch.

The first rule generates a single pair for each nor-

mal video patch in a test video, although since there are

many normal video patches in any test video, this rule

can generate many similar pairs. The second rule gener-

ates many different dissimilar pairs for each anomalous

video patch in a test video. The first rule requires a

distance function to find the most similar train video

patch to a test video patch. It is also useful in the sec-

ond rule to have a distance function to know which

dissimilar pairs are the most difficult (i.e. similar) since

these are the most useful for training. We use a simple

normalized L1 distance as our distance function along

with the representation of video patches described in

Section 3.2.

A reasonable concern about using a predefined dis-
tance function to help select training examples is that

the Siamese network might simply learn this distance

function. This does not happen for a few reasons. One

is that the label for each example pair is not the L1 dis-

tance, but rather a 0 or 1 indicating whether the pair

is similar or dissimilar, respectively. Secondly, it is pos-

sible for the L1 distance between two similar pairs to

be larger than the L1 distance between two dissimilar

pairs.

One important point to note is that normalized

L1 distance is far from ideal to measure distance be-

tween video patches. For example, this distance does

not take into account many variations in natural images

such as scale, illumination and pose of objects. Because

these variations mostly exist across different regions in

the camera’s field of view, we determine an adaptive

threshold on normalized L1 distance below which to

perform these pairings. The threshold for a region is

determined by taking into account the above rules in

combination with inspecting the distribution of near-

est neighbor distances in a given region. Specifically,

an adaptive threshold for a given region in the cam-

era frame is determined simply as µ + α ∗ σ where µ

is the mean of nearest neighbor distances between test-

ing video patches and training video patches, σ is the

corresponding standard deviation and α is determined

by identifying an elbow in the distribution of nearest

neighbor distances (we set it to 0.2 consistently in ex-

periments). The adaptive threshold is common across

the source datasets but different for similar and dis-

similar pairs. Notice that dissimilar pairs that have

large distances are more likely to be easy to discrim-

inate for the Siamese network; on the other hand, we

require some of these pairings despite this property to

achieve high domain converage. Thus, we include can-

didate pairs with probability inversely proportional to

the distance between them, achieving high domain cov-

erage, but also a sufficient number of examples close to

the decision boundary. We also include as similar pairs

random video patches paired with slightly augmented

(random translation and/or central scaling) versions of

them. Our final video patch pair dataset consists of an

equal number of similar and dissimilar pairs from each

source dataset. For all experiments, we fix this number

to 25,000.

3.2 Learning a distance function

Choice of representation: At this point, it is impor-

tant to choose how video patches are represented, such

that the learned distance function will perform well in

the anomaly detection task. Our choice of representa-

tion consists of a H × W × C cuboid. In light of all

anomalies being appearance or motion based, we adopt

a multi-modal representation. In all our experiments

that follow, the first channel is a grayscale image patch

and the next 12 channels are image patches from ab-

solute values of x and y directional gradients of dense

optical flow fields (we use [25]) between the subsequent

6 pairs of image patches. This sets C = 13 and we set
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H = 20 and W = 20 for all experiments. See Figure 1

(part 2) for an illustration.

Pre-processing: Data augmentation of a random

amount is performed on every video patch pair x1, x2
during training in order to improve the robustness of

the learned distance function to these variations. The

data augmentation involves randomly flipping left to

right, centrally scaling in [0.7, 1] and brightness jittering

of the first channel in [-0.2, 0.2] in a stochastic manner

on both video patches in a pair. Pre-processing also

involves linearly scaling intensity values of each video

patch from [0, 255] to [-1, 1].

Network architecture and training: Figure 3

outlines our network architecture. Each video patch

in a pair is first processed independently using conv-

relu-batchnorm operations with 2 × 2 max-pooling af-

ter every other convolution in what we call convolu-

tional twin “tails”. Weight tying between the tails guar-

antees that two extremely similar video patches could

not possibly have very different intermediate represen-

tations because each tail computes the same function.

Finally, flattened feature vectors from the two twin tails

(conv5, conv5 5) are subtracted element-wise and pro-

cessed consequently in a typical classification pipeline

minimizing a cross-entropy loss. All convolutions use

3× 3 filters with a stride of 1. We find that subtracting

the feature maps at conv5 produces faster optimiza-

tion when compared to concatenation. We think this

is because element-wise subtraction induces a stronger

structural prior on the network architecture. Let B rep-

resent minibatch size, where i indexes the minibatch

and y(x
(i)
1 , x

(i)
2 ) be a length-B vector which contains the

labels for the mini-batch, where we assume y(x
(i)
1 , x

(i)
2 ) =

0 whenever x1 and x2 are similar video patches and

y(x
(i)
1 , x

(i)
2 ) = 1 otherwise. The cross-entropy loss is of

the form:

L(x
(i)
1 , x

(i)
2 ) = −γ ∗ y(x

(i)
1 , x

(i)
2 ) log p(x

(i)
1 , x

(i)
2 )

−(1− y(x
(i)
1 , x

(i)
2 )) log (1− p(x

(i)
1 , x

(i)
2 ))

(1)

where p(x
(i)
1 , x

(i)
2 ) is the probability of the patches be-

ing dissimilar as output by the softmax function. Note

that in the loss, we set class weight for the dissimilar

class γ as 0.2 to penalize incorrectly classified dissimilar

pairs less than incorrectly classified similar pairs. This

further serves our objective at the anomaly detection

phase to have low false positive rates at high true posi-

tive rates (where anomalies are denoted positive class).

For training, the objective is combined with the stan-

dard backpropagation algorithm with the Adam opti-

mizer [23], saving the best network weights by testing

on the validation set (a set of held-out training exam-

ples) periodically. The gradient is additive across the

twin tails due to tied weights. We use a batch size

of 128 with an initial learning rate of 0.001 and train

for a maximum of 500 iterations. Xavier-Glorot weight

initialization [12] sampling from a normal distribution

is used in tandem with ReLU activations in all lay-

ers. One important point to note is that, rather than

save the network weights that maximize validation ac-

curacy or minimize validation loss, we save that which

maximizes validation area under the receiver operating

characteristic curve (AUC) for false positive rates up

to 0.3. This ROC curve is obtained by plotting true

positive rate as a function of false positive rate, where

the dissimilar class is denoted positive. By maximiz-

ing this AUC, the network that orders distances in a

way that achieves high true positive rate at low false

positive rates is preferred, the behavior we would like

to see when it comes time for the anomaly detection

phase. We use label smoothing regularization [47] set

to 0.1 to aid generalization. We find that adding label

smoothing regularization is helpful for two reasons. The

first is that the video patch pairing process has to in a

sense guess what a future learned function should call

similar and different in order to achieve good perfor-

mance on anomaly detection, so it produces a dataset

with noisy labels. The second arises from the observa-

tion that minimizing the cross entropy is equivalent to

maximizing the log-likelihood of the correct label, which

makes the network try to increase the logit correspond-

ing to the correct label and make it much larger than

the other logits, causing it to overfit to the training data

and become too confident about its predictions. Label

smoothing helps with both of these by making the net-

work less confident about its predictions. We also use

dropout [45] of 0.3 on the activations of the second to

last fully connected layer (fc1).

3.3 Exemplar learning and anomaly detection on

target dataset

Detecting anomalies on a target dataset involves two

stages: exemplar model building using the train par-

tition of the dataset and anomaly detection on the

test partition. Both stages use the previously trained

Siamese network to measure distance between video

patches. This is done by simply treating the softmax

of the logit value that corresponds to the video patches

being different as a measure of distance between the

patches. Because the softmax output can also be inter-

preted as a probability, the distance measured can also

be interpreted as the probability of patches being dif-

ferent. We emphasize that the training of the Siamese

network is independent of the exemplar model building

and anomaly detection stages. The Siamese network is
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Table 1 Traditional frame-level and pixel-level evaluation criteria on the UCSD Ped1, UCSD Ped2 and CUHK Avenue bench-
mark datasets from related literature, ordered chronologically, complied from this same list. Our approach either surpasses or
performs comparably on these evaluation criteria when compared to previous methods. *Some of the earlier works unfortunately
use only a partially annotated subset available at the time to report performance.

Method
UCSD Ped1
frame AUC/EER

UCSD Ped1
pixel AUC*

UCSD Ped2
frame AUC/EER

UCSD Ped2
pixel AUC

CUHK Avenue
frame AUC/EER

Adam [1] 65.0%/38.0% 46.1% 63.0%/42.0% 18.0% -/-
Social force [33] 67.5%/31.0% 19.7% 63.0%/42.0% 21.0% -/-
MPPCA [32] 59.0%/40.0% 20.5% 77.0%/30.0% 14.0% -/-
Social force + MPPCA [32] 67.0%/32.0% 21.3% 71.0%/36.0% 21.0% -/-
MDT [32] 81.8%/25.0% 44.1% 85.0%/25.0% 44.0% -/-
AMDN [53] 92.1%/16.0% 67.2% 90.8%/17.0% - -/-
Video parsing [2] 91.0%/18.0% 83.6% 92.0%/14.0% 76.0% -/-
Local statistical aggregates [42] 92.7%/16.0% - -/- - -/-
Detection at 150 FPS [30] 91.8%/15.0% 63.8% -/- - -/-
Sparse reconstruction [7] 86.0%/19.0% 45.3% -/- - -/-
HMDT CRF [50] -/17.8% 82.7% -/18.5% - -/-
ST video parsing [3] 93.9%/12.9% 84.2% 94.6%/10.6% 81.1% -/-
Conv-AE [14] 81.0%27.9% - 90.0%/21.7% - 70.2%/25.1%
Deep event models [10] 92.5%/15.1% 69.9% -/- - -/-
Compact feature sets [24] 82.0%/21.1% 57.0% 84.0%/19.2% - -/-
Convex polytope ensembles [48] 78.2%/24.0% 62.2% 80.7%/19.0% - -/-
Joint detection and recounting [16] -/- - 92.2%/13.9% 89.1% -/-
Sparse coding revisit [31] -/- - 92.2%/- - 81.7%/-
GAN [40] 97.4%/8.0% 70.3% 93.5%/14.0% - -/-
Future frame prediction [27] 83.1%/- - 95.4%/- - 85.1%/-
Plug and play CNN [41] 95.7%/8.0% 64.5% 88.4%/18.0% - -/-
Narrowed normality clusters [21] -/- - -/- - 88.9%/-
Object-centric auto-encoders [20] -/- - 97.8%/- - 90.4%/-
NN on video patch FG masks [37] 77.3%/25.9% 69.3% 88.3%/18.9% 83.9% 72.0%/33.0%

Ours 86.0%/23.3% 80.4% 94.0%/14.1% 93.0% 87.2%/18.8%

trained on a different set of source datasets than the

target video anomaly detection dataset.

Exemplar learning on train partition of tar-

get dataset: Since videos contain a large amount of

temporal redundancies, we use the exemplar learning

approach of [22] to build a model of normal activ-

ity in the target dataset. The exemplar model consists

of sets of region-specific exemplar video patches from

the videos in the train partition using a sliding spatio-

temporal window with spatial stride (H/2, W/2) and

temporal stride of 1. The point of exemplar learning is

to represent the set of all video patches in the train par-

tition using a smaller set of unique, representative video

patches. The feature vector learned by the Siamese net-

work is used to represent a video patch and the distance

function learned by the Siamese network measures the

distance between two feature vectors. A video patch is

added to the exemplar set for a particular spatial region

if its distance to the nearest exemplar for that region

is above a threshold, which we set to 0.3 for all exper-

iments. Figure 2 illustrates a subset of exemplar video

patches extracted from one region of the camera’s field

of view in the UCSD Ped1 dataset by our CNN. One

big advantage of the exemplar learning approach is that

updating the exemplar set in a streaming fashion is pos-

sible. This makes the approach scalable and adaptable

to environmental changes over time.

Anomaly detection on test partition of tar-

get dataset: At test time, overlapping patches with

spatial stride (H/2, W/2) and temporal stride of 1 are

extracted from the test partition and distances to near-

est exemplars produce anomaly scores (see Figure 2).

In both the exemplar learning and anomaly scoring

phases, we achieve additional speedup by ignoring video

patches that contain little or no motion. Specifically, a

video patch is ignored if under 20% of its pixels across

the channel dimension do not satisfy a threshold on

flow magnitude or a threshold on the raw pixel value

difference between the current and the previous frame.

Furthermore, the brute-force nearest neighbor search

used in the experiments could be replaced by a fast ap-

proximate nearest neighbors algorithm [34] for further

speed-up. Anomaly scores are stored and aggregated in

a pixel map and the final anomaly score of a pixel is

simply the mean of all anomaly scores it received as

part of patches it participated in (due to overlap of

patches in space and time). The anomaly detection is

region-specific, so a patch is only compared to exem-

plars extracted from the same region.
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4 Experiments

4.1 Experimental setup - Datasets and evaluation

measures

Datasets: We perform experiments on 3 benchmark

datasets: UCSD Ped1, UCSD Ped2 [32] and CUHK Av-

enue [30]. Each of these datasets includes predefined

train and test partitions from a single static camera

where train partitions contain sequences of normal ac-

tivity only and test partitions contain sequences with

both normal and anomalous activity, and with spatial

anomaly annotations per frame.

Evaluation measures: To compare against other

works we use the widely-used frame-level and pixel-

level area under the curve (AUC) and equal error rate

(EER) criteria proposed in [32].

In addition, we report performance using two new

criteria presented in [37], which are more representative

of real-world performance as argued in that paper. The

first is a region-based criterion: A true positive oc-

curs if a ground truth annotated region has a minimum

intersection over union (IOU) of 0.1 with a detection re-

gion. Detected regions are formed as connected compo-

nents of detected pixels. The total number of positives is

correspondingly the total number of anomalous regions

in the test data. A false positive occurs if a detected re-

gion simply does not satisfy the minimum IOU thresh-

old of 0.1 with any ground truth region. The region-

based ROC curve plots the true positive rate (which

is the fraction of ground truth anomalous regions de-

tected) versus the false positive rate per frame. The

second is a track-based criterion: A true positive oc-

curs if at least 10% of the frames comprising a ground

truth anomaly’s track satisfy the region-based criterion.

The total number of positives is the number of ground

truth annotated tracks in the test data. False positives

are counted identically to the region-based criterion.

The track-based ROC curve plots the true positive rate

(which is the fraction of ground truth anomalous tracks

detected) versus the false positive rate per frame. AUCs

for both criteria are calculated for false positive rates

from 0.0 up to 1.0. Because the track-based criterion

requires ground truth annotations to have a track ID,

we relabeled the Ped1, Ped2, and Avenue test sets with

bounding boxes that include a track ID. These new la-

bels will be made publicly available. Old labels are used

for the frame and pixel-level criteria.

4.2 Comparison against state of the art

To evaluate our approach, we compare against results

reported on the traditional evaluation measures by pa-

Table 2 Source dataset configuration for each target dataset.

Target dataset Source datasets

UCSD Ped1

Shanghai Tech camera 06 (quarterscale),
Shanghai Tech camera 10 (quarterscale),
UCSD Ped2 (halfscale, rotated at 45 degrees),
CUHK Avenue (quarterscale)

UCSD Ped2 UCSD Ped1, CUHK Avenue (halfscale)
CUHK Avenue
(halfscale)

UCSD Ped1, UCSD Ped2

pers in the recent literature. For each of our experi-

ments, a new CNN was trained using only datasets

other than the target dataset to curate the training

data for the Siamese network (see Table 2), but each

newly trained network used the same aforementioned

regularization parameters. A simple heuristic was used

to choose which source datasets should be used for a

given target dataset - those datasets in which the scale

of objects roughly match that in the target dataset for

a H ×W image patch. In future work, we plan to use

more labeled videos to train a single Siamese network

that works well across many different target datasets.

Table 1 presents frame and pixel-level AUC mea-

sures on the UCSD Ped1, UCSD Ped2 and CUHK Av-

enue datasets. Our approach sets new state of the art on

UCSD Ped2 pixel-level AUC by around 4% as well as on

CUHK Avenue frame EER by around 6%. Upon visual-

izing the detections, we find that our approach finds it

particularly difficult to detect anomalies at very small

scales that exist in the UCSD Ped1 test set. Also, our

method, like most others in Table 1, is unable to de-

tect loitering anomalies present in the CUHK Avenue

dataset. This is mainly due to our use of a “motion

check” that ignores video patches with little or no mo-

tion for efficiency reasons. This could be replaced by a

more sophisticated background model that is slower to

absorb stationary objects.

A natural question one might ask is to do with what

might happen if we used the Train partition of the

target dataset to create additional similar video patch

pairs and train the network. We added an auxiliary set

of video patch pairs, created only from the Train par-

tition of the target dataset, to the training data for

the Siamese network and observed performance. Inter-

estingly, we noticed that performance degrades slightly

upon adding this auxiliary set for all 3 datasets. We

think this might be because adding only similar pairs

from the target dataset might send too strong of a sig-

nal such that the distance function learned judges pairs

to be similar too easily, causing many false negatives

(missed detections).

Further, we report AUC for false positive rates up

to 1.0 for the track and region based criteria in Table

3. We reimplemented the work of [37] for these results.
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Table 3 Track and region-based criteria, area under the curve for false positive rates up to 1.0.

Method track AUC region AUC
Ped1 Ped2 Avenue Ped1 Ped2 Avenue

[37] (FG masks) 84.6% 80.5% 80.9% 46.6% 62.5% 35.8%
[37] (Flow) 86.5% 83.2% 78.4% 48.3% 55.0% 27.3%
Ours 90.0% 89.3% 78.6% 59.2% 74.0% 41.2%

Clearly, our approach surpasses that of [37], meaning

we detect more anomalous events (tracks and regions)

while also producing fewer false positives per frame

overall.

UCSD Ped1 UCSD Ped2 CUHK Avenue

Fig. 4 Examples of true positives (first row) and false posi-
tives (second row) from our detector on all 3 datasets. Green
bounding box annotations denote ground truth anomalies and
red regions our model’s detections (intersections are orange-
ish). Best viewed in electronic form in color.

Frame 100: normal

Frame 500: wrong direction

Frame 900: throwing bag

Fig. 5 Anomaly score as a function of frame number for
CUHK Avenue Test sequence number 6. Green shading on
the plot denotes ground truth anomalous frames. Best viewed
in electronic form in color.

These ROC curves and AUC measures do not com-

pletely capture the behavior of video anomaly detection

approaches. In [29], the authors present an excellent

analysis of the problems with an evaluation measure

such as AUC. Thus, we present a set of qualitative re-

sults here. Figure 4 shows some detection results at a

fixed anomaly score threshold. We notice that the qual-

ity of false positives in our approach is high, and of-

ten we are able to attribute reasons for these errors.

For example, the false positive shown in the figure for

UCSD Ped1 dataset is due to the fact that a person is

never seen walking across the grass in this specific man-

ner in the train partition. A similar argument explains

the false positives shown for the other two datasets as

well. This could either indicate that the train partition

is incomplete, or highlight the subjectivity involved in

ground truth annotation processes. Figure 5 illustrates

how anomaly score per frame, computed as the maxi-

mum of anomaly scores of pixels in the frame, varies for

one test sequence of CUHK Avenue. The high variance

in anomaly scores during the “bag throwing” anomaly

even indicates how this event might intersperse normal

and anomalous frames, seeming normal when the bag

leaves the camera frame and vice versa.

Table 4 Ablation study on the choice of source datasets for
a particular target dataset. ‘Y’ denotes that the dataset was
used in the source pool.

Source datasets Target = Ped2
Ped1 Avenue ShanghaiTech Frame AUC Pixel AUC

Y 90.9% 89.4%
Y 90.4% 88.7%

Y 93.7% 93.0%
Y Y 94.0% 93.0%

Y Y 91.8% 91.0%
Y Y 91.7% 90.7%
Y Y Y 93.0% 91.9%

4.3 Ablation study on source datasets used

We perform an ablation study to understand the ef-

fect of picking source datasets for a particular target

dataset. Since it is prohibitive to perform a complete

ablation study, for this study we set the target to be

UCSD Ped2 and vary all non-empty subsets of source

datasets from the set {UCSD Ped1, CUHK Avenue,

ShanghaiTech (cameras 06 and 10)}, training only once.

The results presented in Table 4 show that while there

is some sensitivity to the choice of source datasets, on

both the frame and pixel level measures, we see a vari-

ation of < 5%. This variation is from a combination of

variation due to stochasticity during training (batching,

random initialization, dropout) and choice of source

datasets.
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Fig. 6 Examples of large prediction errors made by our
model on UCSD Ped1. Classes 0 and 1 refer to similar and
dissimilar pairs respectively. Best viewed in color.

5 Understanding the distance function learned

We also tried to gain some insight into what properties

the distance function learned by the CNN possesses. To

this end, we recorded the video patch pairs on which the

CNN makes large errors, that is, either classifying simi-

lar pairs as dissimilar or vice versa, with high predicted

probability. Figure 6 is a visualization of 4 such video

patch pairs when the target dataset is UCSD Ped1. Re-

markably, the CNN seems to find it hard to correctly

classify examples that are conceivably hard for humans.

Specifically, the dissimilar pairs that have been mis-

classified seem to contain a skateboarder moving only

slightly faster than a pedestrian would, and the similar

pairs that have been misclassified exhibit some distinct

differences in their flow fields.

6 Going from fixed-size video patches from a

fixed grid to unsupervised region proposals

We notice that the property that seems to be the biggest

limitation of our previous approach ([38] denoted VAD-

Siamese henceforth) is that it operates at a single scale

by extracting video patches from a fixed grid on the

camera frame. Although we present an ablation study

on the effect of the choice of source datasets on per-

formance and observe only small variance (see Section

4.3 and Table 4), the sensitivity is a cause for concern

nonetheless. Specifically, the concern is that we still had

to scale the source datasets to match the scale of objects

for a particular target dataset (see scaling details in Ta-

ble 2). This tuning is an imperfect process, especially

when object scale within a dataset varies drastically,

such as in CUHK Avenue. To summarize, the effects of

operating at a single scale are:

1. It reduces the quality of localization, because video

patches at the fixed scale often exclude parts of ob-

jects or contain multiple objects; this also makes the

learning task harder.

2. It forces pairing of same sized patches that contain

objects of vastly different sizes, for example, when

a dataset itself has high variance in object scales.

3. It forces us to rescale and resize entire datasets (tar-

get and source) in order to make the objects inside

video patches between them “match scales” before

learning a distance function.

We assert that operating at arbitrary scales takes us

one step closer to being able to learn a general distance

function and applying it on a target dataset out-of-the-

box. In this section, we explore the feasibility of this.

One solution that has been commonly used in com-

puter vision for detection tasks is the use of image pyra-

mids and operating at many different scales. But in

VADSiamese: (i) it is not clear whether using image

pyramids at anomaly detection time on target dataset

(and not to curate training data) is sufficient; (ii) the

overhead of using image pyramids is not negligible.

We instead propose a more elegant solution - using

unsupervised region/object proposals to extract arbi-

trary sized (in spatial dimensions) video patches (de-

noted g-VADSiamese henceforth). This entails a set of

non-trivial modifications to VADSiamese that we now

discuss. Finally, we show that the generalized approach

removes the dependence of target dataset performance

on choice of (and scaling of) source datasets while also

achieving results that either surpass or are comparable

to the single-scale version.

We use the unsupervised region proposal extrac-

tion method called Selective Search [49] on background-

subtracted frames to extract arbitrary-sized bounding

boxes around objects to extract video patches from.

These new variable-sized video patches serve as our new

atomic unit of processing in Siamese distance learning.

Each dataset we use for experiments has a set of pa-

rameters for region-proposal extraction that work best

that needs to be done once and are trivial enough that

a non-expert is able to make choices that produce ob-

ject proposals with a high recall and low false positive

rate. We describe how these region proposals are fur-

ther used in the 3 steps of our approach - curating a

training dataset for a Siamese CNN, training a Siamese

CNN and testing on the target video anomaly detection

dataset.

6.1 Generating training video patch pairs

Curating a training set for the Siamese CNN follows

from similar premises as with VADSiamese:

1. Every normal testing video patch must be similar

to at least one training video patch picked from a

similar region and of similar size.
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2. Every anomalous testing video patch picked must be

dissimilar to all training video patches picked from

a similar region and of similar size.

A challenge in generating training pairs that fol-

lowed from these rules is the use of the hand-crafted

normalized L1 distance on video patches of different

size. Empirically, we chose to crop or edge-pad a video

patch to match the other’s size in every pair before com-

puting their distance. Other options such as resizing in

different ways proved to be sub-optimal and our best

guess as to why is that resizing a patch resizes the ob-

ject it contains as well (along with the flow fields) and

introduces artifacts. With region proposals, we found

that setting α to 0.15 for use in adaptive threshold se-

lection for a region works consistently well. All other

aspects of creating the training set remain identical to

those in VADSiamese.

6.2 Learning a distance function

Variable-size inputs to the network: The biggest

obstacle to operating with variable sized video patch

pairs in our approach is that VADSiamese’s network

architecture only accepted fixed-sized inputs caused by

the fully connected layers at the end (see Figure 3). Un-

fortunately, creating a fully convolutional architecture

is not straightforward. We instead propose using the

Spatial Pyramid Pooling layer [15] to convert variable-

sized feature maps to fixed-size feature maps. Spatial

pyramid pooling works by dynamically determining the

size of regions to pool over on a given input feature map

to arrive at an output feature map of given size; the

pooling operation could be either max pooling or av-

erage pooling and could be optionally done at different

levels of an input-feature pyramid. While training, since

the pooling operations are differentiable, backpropagat-

ing through the layer simply becomes an extension of

the gradient routing that takes place with implement-

ing, for example, a max pooling layer in the first place.

Figure 7 describes the use of the SPP layer in our new

network architecture. In the figure, each 2D conv op-

eration actually refers to a conv-relu-brn sequence of

operations where ‘brn’ refers to batch re-normalization

[18], and each fully connected operation actually refers

to a fc-relu sequence of operations.

Batching inputs to the network: Although this

network architecture is able to accept arbitrary-sized

video patches as input, all elements (where each ele-

ment is a pair of input video patches) within a single

batch during training must be of the same shape to

avoid jagged tensors. To clarify, this does not mean that

both inputs video patches in a pair must be of the same

shape, but that all the pairs in a batch should have

the same paired-shape. This has the implication that

our batch sizes cannot be fixed since a different num-

ber of exemplars of each shape is stored and the num-

ber of pairs of video patches of the same paired-shape

is highly variable. We found batch re-normalization to

perform better than batch normalization because with

with these changes to batching, while most of our batch

sizes are close to 128, some of our batch sizes are as

small as 1, and batch re-normalization is known to work

better with smaller batch sizes.

Margin loss optimization: We also use a more

recent state-of-the-art deep metric learning loss func-

tion called the margin loss [51]. We found empirically

that the margin loss performs better on average than

the cross-entropy loss with label smoothing that VAD-

Siamese used, especially while operating on the newly

curated training dataset. The margin loss between a

pair of inputs i and j is given by:

lmargin(i, j) := (α+ yij(Dij − β))+. (2)

where Dij is the estimated distance between the inputs,

β determines the boundary between positive and nega-

tive pairs and α controls the margin of separation, and

yij ∈ {−1, 1} denotes negative and positive pairs re-

spectively. Notice that when yij = −1, lmargin(i, j) =

0 ⇐⇒ Dij ≥ β + α and when yij = 1, lmargin(i, j) =

0 ⇐⇒ Dij ≤ β − α. In the original paper that intro-

duced the margin loss [51], the authors denote Dij to be

the Euclidean distance between the embeddings of in-

puts i and j. We found that setting Dij to be a learned

function represented by an elementwise absolute value

subtraction of embeddings followed by a simple fully

connected 2-layer decision neural network instead works

very well in practice (see Figure 7).

6.3 Exemplar learning and anomaly detection on

target dataset.

The main challenge in the testing phase with the use of

region proposals and the breaking of the fixed grid on

the camera frame is in determining for a given video

patch, which exemplar video patches to compare it

against. When fixed-size patches were extracted from a

fixed grid, patches in the same grid location on the cam-

era frame were compared to each other. Since the fixed

grid assumption is no longer valid with the arbitrary-

sized video patches extracted from arbitrary positions

of region proposals, we chose to compare video patches

to others extracted from a spatial neighborhood with

similar heights and widths, automatically determined

by a reference video patch’s size and the size of the
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Fig. 7 Architecture of our Siamese neural network that learns a distance function between arbitrary-sized video patches. Best
viewed in electronic form in color.

Fig. 8 Exemplar extraction and anomaly detection on the target dataset using region proposals. Exemplar video patches
(depth dimension not shown) are stored along with size and position metadata, which are used to determine relevancy for
comparison for each test video patch. Best viewed in electronic form in color.

camera frame for each dataset. Across all experiments

and datasets, the “spatial neighborhood” is determined

by sqrt(Ih × Iw)//5, where Ih and Iw are the dimen-

sions of the image frame; the “position buffer” is deter-

mined by (clip(rh//3, 5, 20), clip(rw//3, 5, 20)), where

rh and rw are the dimensions of the reference video

patch and the clip() function enforces reasonable mini-

mum and maximum values in pixel units. See Figure 8

for an illustration of exemplar extraction and anomaly

detection in this new setting. Other aspects of exemplar

extraction and anomaly detection are identical to that

in VADSiamese, the only trivial hyperparameter being

the exemplar threshold that governs the completeness

of the exemplar set as a representation of the variations

in the training set of the target dataset.

We use exactly the same datasets, evaluation proto-

col and hyperparameter settings as with VADSiamese

to validate our approach. Regarding the training set-

tings unique to our new generalized approach, we set

β = 10.0 and α = 5.0 for the margin loss as constant

non-trainable parameters throughout training. The ex-

emplar threshold was set to a natural choice of β − α
(see Section 6.2 for the intuition behind this). Dropout

[45] was found to be unnecessary with the margin loss.

Additionally, we empirically found that using the aver-

age pooling operation over max pooling for the spatial

pyramid pooling layer performs slightly better.

6.4 Comparison against VADSiamese

For quantitative evaluation, we compare the perfor-

mance of g-VADSiamese to VADSiamese on the same

benchmark datasets and evaluation measures. Table 5

presents frame and pixel AUCs on the 3 benchmark

datasets for both methods. It is clear from the table
that in the majority of cases, the region proposal based

method either outperforms or is comparable to the single-

scale version. Further, these results were generated with

the source dataset configuration shown in Table 6, con-

firming the removal of the dependence on the choice of

source datasets for a particular target dataset and the

need to rescale source datasets to match the scale of

objects in the target dataset. Table 7 also presents the

track and region-based AUCs for comparison. Similar

conclusions can be drawn. Specifically, the huge jump

in region-based AUC on CUHK Avenue of over 10%

can be explained by the fact that this dataset contains

objects of much larger scale than Ped1 or Ped2, which

VADSiamese did not previously handle very well.

In the qualitative sense, the detection results are

even more impressive. The new detections are almost al-

ways of higher quality and false positives almost always

carry reasonable justifications upon visualizing them. In

Figure 9, we try to summarize the improvement in de-
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Table 5 Frame-level and pixel-level AUCs on Ped1, Ped2 and CUHK Avenue.

Method
UCSD Ped1
frame AUC/EER

UCSD Ped1
pixel AUC*

UCSD Ped2
frame AUC/EER

UCSD Ped2
pixel AUC

CUHK Avenue
frame AUC/EER

VADSiamese 86.0%/23.3% 80.4% 94.0%/14.1% 93.0% 87.2%/18.8%
g-VADSiamese 82.7%/21.5% 74.9% 95.0%/14.1% 93.8% 89.4%/15.8%

Better localization

V
A

D
S

ia
m

es
e

g-
V

A
D

S
ia

m
es

e

Detection at small scales without 
seemingly random false positives Higher quality false positives

Fig. 9 Improvement in detections in moving from operating at a single fixed scale to using region proposals. Ground truth in
green and detection in red. Best viewed in electronic form in color.

Table 6 Source dataset configuration for each target dataset.

Target dataset Source datasets

UCSD Ped1
UCSD Ped2 (rotated at 45 degrees),
CUHK Avenue

UCSD Ped2 UCSD Ped1, CUHK Avenue
CUHK Avenue UCSD Ped1, UCSD Ped2

Table 7 Track and region-based AUC for false positive rates
up to 1.0.

Method track AUC region AUC
Ped1 Ped2 Avenue Ped1 Ped2 Avenue

VADSiamese 90.0% 89.3% 78.6% 59.2% 74.0% 41.2%
g-VADSiamese 89.4% 92.6% 78.2% 56.3% 76.7% 55.2%

tections obtained by g-VADSiamese. Specifically, im-

provements are observed in 3 aspects:

1. Since extracting video patches from a fixed grid on

the camera frame often produced patches that had

multiple objects or parts of objects, the region pro-

posal localization which does not suffer from this

drawback displays much better localization. Figure

9 (left) shows an example of how better localization

is achieved by using region proposals.

2. Since the variation in scale of objects across the

camera frame does not affect g-VADSiamese ad-

versely, again the quality of localization is much

better and the number of false positives at smaller

scales is reduced. Figure 9 (center) shows an exam-

ple of detections at smaller scales do not cause false

positives at the large scales within a testing frame.

3. Finally, in our observation, the quality of false pos-

itives is much higher in g-VADSiamese. We believe

that this is mainly because of improved localization

as well. Also, we believe the ground truth annota-

tion task by the dataset creators being inherently

ambiguous has resulted in a conservative annota-

tion approach. Figure 9 (right) shows an example

of how a group of persons surveying a building is

flagged as anomalous by g-VADSiamese because the

region proposal captured the whole group. A differ-

ent set of annotators might have called this anoma-

lous since no such behavior exists in the training set.

VADSiamese does not deem this region anomalous

because it never sees a patch of the whole group

due to the lack of an object proposal scheme. On

the other hand, VADSiamese displays many more

“seemingly random” false positives of patches that

contain “parts of objects”.

6.5 Ablation study on choice of exemplar threshold

We felt it was important to show that the main pa-

rameter choice for deploying a trained network on a

target camera, being the choice of exemplar threshold,
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is trivial to select. To this end, we performed an abla-

tion study on exemplar threshold while fixing the target

dataset as UCSD Ped1. Table 8 shows the result of this

experiment. It is clear that as the exemplar threshold is

increased, the number of exemplars stored rapidly de-

creases and unless the exemplar threshold is very large,

a wide range of exemplar thresholds produce similar ex-

cellent anomaly detection performance. This is because

a large exemplar threshold renders the exemplar model

to be an undercomplete representation of the variations

in the training split of the target dataset, causing many

video patches at test time to have distant nearest neigh-

bors, resulting in rapid accumulation of false positives

as the anomaly score threshold is decreased in compu-

tation of the AUCs.

6.6 Nearest neighbor visualizations

Another popular proof-of-concept experiment in image

retrieval and patch matching tasks is to visualize for

some test instances, their nearest neighbors as deter-

mined by the trained model. We show in Figure 10,

for a subset of region proposals extracted from a single

random testing frame from UCSD Ped2, their nearest

neighbor exemplar video patches as determined by our

best model along with the real-valued distance deter-

mined by the model. From the figure, it is clear that

large distances are assigned to the ground truth anoma-

lous patches. Moreover, the nearest neighbors are of

high quality visually and the real-valued distances pre-

dicted are arguably plausible to human perception in

terms of ordering.

6.7 A note on computational requirements

The most expensive step of our approach is video patch

pair dataset creation, but this only needs to be done

once and offline. At inference time, anomaly detection

the computational complexity per frame of this ap-

proach is heavily dependent on a few factors: i) reso-

lution of the test dataset ii) size of region proposals iii)

amount of variation in the normal data (or by proxy,

the size of the exemplar set). This makes a discussion

of inference time and memory requirements in a general

manner difficult. Additionally, we acknowledge that in

practice, one could realistically employ a single-shot ob-

ject detector such as SSD [26] fine-tuned to the object

categories of interest to vastly speed up object proposal

extraction. In this work, our focus was to address the

issue of operating at a fixed scale, while attempting

to improve localization performance of VADSiamese.

We leave further discussion and optimization for future

work as it is out of the scope of what this paper is trying

to accomplish.

7 Conclusion

We have presented a novel approach to video anomaly

detection that introduces a new paradigm to use a deep

network for this problem. We substitute the problem

of classifying a video patch as anomalous or not for

the problem of estimating distance between two video

patches, for which we can generate plenty of labeled

training data. The learned metric (which also learns

a feature vector to represent a video patch) can then

be used in a straightforward video anomaly detection

method that measures the perceptual distance from

each testing video patch to the nearest exemplar video

patch for that region.

We further generalized the approach from operating

on fixed-size video patches extracted from a fixed grid

overlaid on the camera frame to arbitrary-sized video

patches extracted from unsupervised region proposals.

We showed with extensive experiments that operating

at arbitrary scale brings us a step closer to learning

a generic distance function from random surveillance

video to use in an out-of-the-box fashion for a target

video anomaly detection task.

We have shown that our approaches either surpass

or perform comparably to the previous state-of-the-

art without any training of the Siamese network on

data from the target dataset. Our approaches also pos-

sess some favorable properties in being a plug-and-play

method (learned distance function can be used out-of-

the-box on target dataset), and in being scalable and

resistant to environmental changes (updating the ex-

emplar set is easy).

We think this work lays a foundation in metric learn-

ing based video anomaly detection research for several

future directions such as: (1) the use of more sophisti-

cated deep metric learning losses such as a triplet loss

[17], (2) the use of dynamic sampling strategies [51] dur-

ing metric learning, (3) using single-shot detectors [26]

for fast region proposal extraction with high-resolution

RGB datasets such as Street Scene [37] and (4) domain

adaptation between source and target domains such as

with domain-adversarial learning [11].
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Table 8 Ablation study on exemplar threshold.

Exemplar threshold Size of exemplar set Track AUC Region AUC Frame AUC Pixel AUC
5 19.5k 89.4% 56.3% 82.7% 74.9%
10 3.8k 89.3% 56.6% 82.2% 74.0%
15 1.6k 87.3% 56.6% 82.9% 73.7%
25 900 85.1% 50.9% 81.2% 70.2%
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2.5

5.4

Test patch:

NN exemplar:

Test patch:

NN exemplar:

Test patch:

NN exemplar:

Normal test patches Anomalous test patches

Fig. 10 Nearest neighbor exemplars for some video patches extracted from a test frame along with their estimated distances.
Best viewed in electronic form in color.
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