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Abstract— Human computer interaction (HCI) involves a
multidisciplinary fusion of technologies, through which the
control of external devices could be achieved by moni-
toring physiological status of users. However, physiologi-
cal biosignals often vary across users and recording ses-
sions due to unstable physical/mental conditions and task-
irrelevant activities. To deal with this challenge, we propose
a method of adversarial feature encoding with the con-
cept of a Rateless Autoencoder (RAE), in order to exploit
disentangled, nuisance-robust, and universal representa-
tions. We achieve a good trade-off between user-specific
and task-relevant features by making use of the stochastic
disentanglement of the latent representations by adopting
additional adversarial networks. The proposed model is
applicable to a wider range of unknown users and tasks
as well as different classifiers. Results on cross-subject
transfer evaluations show the advantages of the proposed
framework, with up to an 11.6% improvement in the average
subject-transfer classification accuracy.

Index Terms— stochastic bottleneck, soft disentangle-
ment, disentangled representation, deep learning, autoen-
coders, adversarial learning, physiological biosignals

I. INTRODUCTION

HUMAN computer interaction (HCI) [1] is a fundamental
technology enabling machines to monitor physiological

disorders, to comprehend human emotions, and to execute
proper actions, so that users can control external devices
through their physiological status in a safe and reliable fash-
ion. To measure traditional physiological biosignals such as
electrocardiogram (ECG) [2], electromyography (EMG) [3],
[4] and electroencephalography (EEG) [5–8], either implanted
or surface electrodes and their frequent calibration are nec-
essary, reducing user comfort while increasing the overall
expense. Recently, novel wearable sensors such as wrist-worn
devices were developed for accurately measuring physiological
signals [9–13] (e.g., arterial oxygen level, heart rate, skin
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temperature, etc.) in comfortable and effective manners. Uti-
lizing these non-EEG physiological biosignals can effectively
increase the system convenience during data collection with
less expense.

One major challenge of physiological status assessment
lies in reducing the variability in biosignals across users or
recording sessions due to the unstable mental/physical con-
ditions and task-irrelevant disturbances. Addressing biosignal
datasets collected from a narrow amount of subjects, transfer
learning methods [14–17] are applied to build strong feature
learning machines to extract robust and invariant features
across various tasks and/or unknown subjects. Particularly,
adversarial transfer learning [18–24] demonstrated impressive
results in constructing such discriminative feature extractors.

Traditional adversarial transfer learning works [20–24]
aim to extract latent representations universally shared by
a group of attributes using adversarial inference, where a
discriminative network is trained adversarially towards the
feature extractor in order to differentiate universal features
from various attributes. For example, in [21], the authors
use an adversarial method to learn modality-shared features
for cross-modal retrieval, with an adversarial discriminative
model distinguishing the modalities to the generative model.
Similarly, Sun et al. [22] explore cross-project defect rep-
resentations by adversarially training the feature transformer
and project discriminator. In [23] an adversarial classifier
was also trained when attached to the feature encoder for
making subject-invariant decisions. However, in those existing
approaches, the adversarial training scheme is usually applied
indiscriminately on the whole feature group with only one
discriminative network, which inevitably leads to the loss
of attribute-discriminative information. Therefore, rather than
using only one adversarial discriminator to merely preserve
shared cross-attribute features, we train two additional ad-
versarial discriminators jointly with the feature extractor, so
that the physiological features could be disentangled into
two counterparts representative of subject and task associated
information respectively. In this way, the variability in both
subject and task space can be better accounted for.

As a commonly used feature extractor framework for trans-
fer learning, autoencoders (AE) [25–27] can learn latent rep-
resentations with a dimensionality typically much smaller than
the input data, which is known as a “bottleneck” architecture,
while capturing key data features to enable data reconstruction
from the latent representation. A challenging problem in
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(a) Conditional autoencoder (cAE)
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(b) Conditional rateless autoencoder (cRAE)

Fig. 1: (a) Conditional autoencoder (cAE): an encoder-decoder pair where the encoder estimates latent z = g(X; θ) with
parameters θ, and the decoder estimates reconstructed input signals X̂ = h(z, s; η) with parameters η, using the latent z
and conditioning variable s. When decoder is h(z; η), it reduces to a traditional autoencoder (AE). (b) Conditional rateless
autoencoder (cRAE): a probabilistic cAE model with a stochastic bottleneck where dth latent representation node is assigned
with dropout probability rates p(d), such that the conditional decoder takes a subset of the latent units as input.

dimensionality reduction is to determine an optimal feature
dimensionality which sufficiently captures latent information
that is essential for particular tasks. To address this issue,
the Rateless Autoencoder (RAE) [28] was proposed to enable
the AE to seamlessly adjust feature dimensionality through
its rateless property, while not requiring a fixed structure
of bottleneck. To realize such flexibility in the latent space,
RAE implements a probabilistic latent dimensionality which
is stochastically decreased through dropout during training,
where a non-uniform dropout rate distribution is imposed to
the bottleneck structure.

In this work, we propose an adversarial learning method
with the RAE concept newly introduced, extended from [18]
and [19]. In [18] and [19], the entire latent feature group
were hard-split into task-related and subject-relevant parts and
attached to two adversarial classifiers respectively, where the
selection of split ratio is challenging when the underlying
nature of the bottleneck is still vague, and the trade-off and
smooth transition in between task- relevant and irrelevant
counterparts could be lost. In the proposed method, we exploit
rateless soft-disentangled representations by connecting all
features to two discriminators with different dropout rates
instead of a hard split. More specifically, existing adversarial
methods [18–24] are all special cases of the proposed method
with different dropout rate distributions when connecting
adversarial classifiers to the encoder. Our contributions are
summarized as follows:

• We complementarily use two additional adversarial net-
works, i.e., adversary and nuisance blocks, to disentangle
and re-organize the latent representations.

• The rateless trade-off between subject-specific and task-
relevant features is exploited by stochastically attaching
adversary and nuisance blocks to the encoder.

• Different dropout strategies of the disentangled adversar-
ial RAE are discussed.

• Empirical assessments were performed on a publicly
available dataset of physiological biosignals for measur-
ing human stress level through cross-subject evaluations
with various classifiers.

• Comparative experiments on multiple models including
traditional AE and adversarial methods are evaluated.

• We demonstrate the remarkable advantage of the pro-
posed framework, achieving up to an 11.6% improvement
in subject-transfer classification accuracy.

II. METHODOLOGY

A. Notation and Problem Description

We define {(Xi, yi, si)}ni=1 as a labeled data set, where
Xi ∈ RC is the input data vector recorded from C channels
of trial i, yi ∈ {0, 1, . . . , L− 1} is the class label of user
task/status among L classes, and si ∈ {1, 2, . . . , S} is the user
identification (ID) index among S subjects. The task/status y is
assumed to be marginally independent with respect to subject
ID s, and the physiological signal is generated dependently on
y and s, i.e., X ∼ p(X|y, s). The aim is to construct a model
to estimate the task/status label y given an observation X ,
where the model is generalized across the variability of subject
s, which is considered as a nuisance variable associated with
transferring the feature extraction model.

B. Rateless Autoencoder (RAE)

AE is a well-known feature learning machine which in-
cludes a network pair of encoder and decoder, as shown in
Fig. 1(a). The encoder packs data features into a latent repre-
sentation z, while the decoder intends to re-construct the input
data X based on the latent representation z. AE structures are
typically bottleneck architectures, where the dimensionality
D of representation z is lower than the dimensionality of
input data X , and the latent variables should contain adequate
features capable of reconstructing the original data through
its corresponding decoder network. A challenging problem in
such a dimensionality reduction is to decide an optimal feature
dimensionality which captures sufficient latent representations
that are essential for specific tasks.

RAE [28] is an AE family providing a rateless property that
enables the AE to seamlessly adjust feature dimensionality.
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(a) Disentangled adversarial autoencoder (DA-cAE)

Input: X

E
n
co
d
er
:
g
(X

;θ
)

..
..

D
ec
od
er
:
h
(z
,s
;η
)

X̂

Adversary
qφ(s|z, pa)

Nuisance
qψ(s|z, pn)

ŝa
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(b) Disentangled adversarial rateless autoencoder (DA-cRAE)

Fig. 2: Disentanlgled adversarial autoencoder for nuisance-robust transfer learning. (a) Disentangled adversarial conditional
autoencoder (DA-cAE) with hard split: a deterministic disentangled universal latent representation learning model where z is
partitioned into sub-parts za and zn which are adversarially trained to be s-invariant (i.e., za used as an input to an adversary
network) and s-variant (i.e., zn used as an input to a nuisance network) respectively. (b) Disentangled conditional rateless
autoencoder (DA-cRAE) with soft split: a cRAE model with soft disentanglement, where the adversary and nuisance network
inputs are determined through the stochastic bottleneck architecture with probabilities pa(d) and pn(d) = 1−pa(d) respectively
for the dth latent node.

Unlike a conventional AE with a deterministic bottleneck ar-
chitecture, the RAE employs a probabilistic bottleneck feature
z whose dimensionality D is stochastically reduced through
dropout. Particularly, RAE imposes a specific dropout rate
distribution that varies across the D nodes of representation
z. For example, as depicted in Fig. 1(b), the RAE encoder
generates latent variables z of dimension D which are ran-
domly dropped out at a probability of p(d) for node d ∈
{1, 2, . . . , D}, resulting in an effective latent dimensionality
of D̄ =

∑D
d=1 (1− p(d)). RAE is regarded as an ensemble

method which jointly exploits all different AEs having a latent
dimension of d from 1 to D. It is hence more insensitive to
the choice of the dimensionality parameter.

In our method, we make use of the RAE concept to
realize a good trade-off between task-related features and
person-discriminative information by attaching new adversary
and nuisance blocks to the representation z through different
dropout strategies, with z fed into the decoder without dropout.
A soft-disentangled feature extractor is first trained based on
the rateless conception, and a task classifier is then learned for
the final discriminative model utilizing the features extracted
from the pre-trained (frozen) feature encoder.

C. Disentangled Adversarial Transfer Learning with RAE

1) Disentangled Feature Extractor: In [18] and [19], a dis-
entangled feature extraction method was proposed to improve
subject-transfer performance as shown in Fig. 2(a) (note that
in [18] a task classifier instead of a decoder was attached
to the encoder directly), where the features z are divided
into two parts of za and zn, which are intended to conceal

subject-invariant and subject-specific information, respectively.
Despite the gain of the disentangled method, determining
the hard-split sizes of za and zn is still challenging when
the relationship between task- and subject- related features
is unknown, which would also cause an additional hyperpa-
rameter that needs to be optimized. In this paper, we extend
the method with soft disentanglement motivated by RAE as
shown in Fig. 2(b), to mitigate the sensitivity of the splitting
parameter, reduce the calculation and seamlessly adjust the
smooth transition between task- and subject- relevant features.

For implementing the soft-disentangled adversarial transfer
learning, encoder output z is forwarded into two additional
units, the adversary network and nuisance network, with dif-
ferent dropout rate distributions. As illustrated in Fig. 2(b), the
dropout rate distributions of representation z to the adversary
network and nuisance network are designed as pa(d) and
pn(d) = 1−pa(d), respectively. Complete latent representation
z is further fed into the decoder h(z, s; η) without any dropout.
Through the stochastic disentangling, the representations z are
re-organized into two sub-parts related to task and subject
respectively: upper feature units with lower pa(d) (higher
pn(d)) to adversary network aim to conceal more subject
information regarding s, while lower units with lower pn(d)
(higher pa(d)) to nuisance network are designed to include
more subject-related features. By dissociating the nuisance
variable from task-related feature in a more clear way, the
model is extrapolated into a broader domain of subjects and
tasks. For the input data from an unknown user, task-related
features with lower pa(d) would be incorporated into the
final prediction; simultaneously, the biological characteristics
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which are similar to known subjects could also be projected
to representations with lower pn(d) as a reference.

In order to filter out the variation elements caused by s
from the adversary counterpart of z with lower pa(d) and
simultaneously maintain more task-relevant information in
it, the encoder is driven to minimize the adversary likeli-
hood of qφ (s|z, pa); at the same time, to embed sufficient
user-discriminative features within representations with lower
pn(d), the encoder is also forced to maximize the nuisance
likelihood of qψ (s|z, pn). The full representation z from
encoder is fed into the decoder with zero dropout, which is
conditioned on s as an additional input besides z, where the
encoder and decoder are trained to optimize the reconstruction
loss of X̂ compared to the true input X . Therefore, the final
objective function to train the proposed model structure can
be written as follows:

LossRAE(X; η, θ, ψ, φ) = −E
[

log pη
(
X̂|g(X; θ), s

)]

− λNE [log qψ (s|z, pn)] + λAE [log qφ (s|z, pa)] , (1)

where the first item is the loss of decoder X̂ = h(z, s; η)
reconstructing inputs from z = g(X; θ), and λA ≥ 0 and
λN ≥ 0 respectively represent the regularization weights for
adversary and nuisance units in order to achieve a flexible
trade-off between identification and invariance performance.
The model will reduce to a regular conditional AE (cAE)
structure when λA = λN = 0, which involves no stochastic
bottleneck or disentangling transfer learning block.

2) Adversarial Training Scheme: In addition to the training
of encoder-decoder pair, at every optimization iteration, the
weights of adversary and nuisance networks are learned to-
wards maximizing the likelihoods qφ (s|z, pa) and qψ (s|z, pn)
respectively to estimate the ID s among S subjects. The pa-
rameter updates and optimizations among the encoder-decoder
pair, adversary network and nuisance network are performed
alternatingly by stochastic gradient descent, where the two
adversarial discriminators are separately trained to minimize
their corresponding cross-entropy losses.

3) Discriminative Classifier: An independent status/task clas-
sifier is attached to the encoder with frozen network weights
pre-trained by the proposed soft-disentangled adversarial
method, and then optimized utilizing the input of latent feature
z. The purpose of the classifier is to estimate the corresponding
status/task class y among L categories given the physiological
input X , where the feature z = g(X; θ) of X would be first
extracted ahead to the task classifier. Parameterized by γ, the
classifier optimization is further executed by minimizing the
following cross-entropy loss:

LossC(z; γ) = E [− log pγ (ŷ|z)] , (2)

where ŷ is the estimate of subject status/task category y.

D. Discussion of Dropout Rate Distribution
Within the various dropout rate distributions for the rep-

resentation z input to the adversary and nuisance networks
(when λA ≥ 0 and λN ≥ 0), the proposed stochastic
bottleneck architecture shown in Fig. 2(b) includes four cases:
baseline AE, adversary unit only, hard split and soft split.

1) Baseline AE: When the dropout rates pa(d) = pn(d) = 1
and λA = λN = 0 for all feature nodes d ∈ z, feature z is
not connected to any of the adversary and nuisance blocks.
Therefore, the model reduces to a baseline AE architecture
with a regular encoder-decoder pair for feature extraction
as presented in [25] and [26], whose decoder is h(z; η)
without adversarial disentangling units. We also denote cAE
as a conditional AE feature extractor with decoder h(z, s; η)
conditioned on s as described in [27].

2) Adversary Unit Only: While the dropout rate pa(d) = 0
with λA > 0 and simultaneously pn(d) = 1 with λN = 0 for
every node d, the entire feature group z is directly linked to the
adversary network without both feature split and connection
to a nuisance network. The same operation can be applied to
the nuisance network when pa(d) = 1, λA = 0 and pn(d) =
0, λN > 0. Here we utilize A-cAE and D-cAE to denote
the cAE models with only the adversary/nuisance network
attached. Note that the A-cAE resembles to the traditional
adversarial learning methods presented in [20–24] where only
one adversarial unit is adopted.

3) Hard Split: For the particular case when the dropout rate
pa(d) = 1 − pn(d) is either 0 or 1 for each feature node d,
i.e., when the feature output of node d is either input to the
adversary network only or the nuisance network only along
with decoder, the representation z is hard split into two sub-
parts za and zn, corresponding respectively to the adversary
and nuisance blocks, as shown in Fig. 2(a). The sub-part
feature za with pa(d) = 0 and pn(d) = 1 for d ∈ za aims
at preserving task-related feature information, while subject-
related feature would be embedded in representation zn with
pa(d) = 1 and pn(d) = 0 for d ∈ zn. In this case, it reduces
to a regular disentangled adversarial cAE structure (DA-cAE)
with adversary and nuisance networks attached but no rateless
property. This structure corresponds to the method in [18]
and [19], which is a special case of the following soft-split
method with different dropout rate distributions.

4) Soft Split: For the more generic case of soft-split repre-
sentation z, dropout rates to adversary and nuisance blocks
are arbitrary, provided that they satisfy pa(d) = 1 − pn(d) ∈
[0, 1] for each feature node d ∈ {1, 2, . . . , D}. Therefore,
the bottleneck architecture z is soft split into adversary and
nuisance counterparts stochastically according to the distribu-
tion pa(d) and pn(d) = 1 − pa(d), respectively, as depicted
in Fig. 2(b). This conditional RAE with soft-disentangled
adversarial structure (DA-cRAE) can partly resolve the issue
of hard split which requires pre-determined dimensionality for
two disentangled latent vectors, whereas the proposed method
can automatically consider different ratio of hard splits in a
non-deterministic ensemble manner.

E. Model Implementations
Motivated by recent impressive results for biosignal process-

ing using deep learning tools [29], [30], we mainly make use of
neural networks to build the feature extractor in the proposed
model. However, we note that other learning frameworks
without neural networks could also be applied to the proposed
method of soft-disentangled adversarial transfer learning.
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TABLE I: Network structures, where FC(di, do) is linear fully
connected layer of dimensions di and do for input and output,
and ReLU denotes rectified linear unit.

Encoder Network FC(C, D) → ReLU → FC(D, D)
Decoder Network FC(D, D) → ReLU → FC(D, C)

Adversary Network FC(D, S)
Nuisance Network FC(D, S)

1) Model Architecture: The utilized model structure for
experiment evaluations is presented in Table I, where represen-
tation z has a dimensionality of D. The adversary and nuisance
networks have a same input dimension D from the latent
representation and output dimension S for the classification of
subject IDs. We note that we did not observe significant im-
provements by deepening the network or altering the number
of units for our physiological biosignal dataset under test. To
assess the robustness of the proposed soft-disentangled adver-
sarial feature encoder, we implemented various classifiers for
evluating the final task classification, including MLP, nearest
neighbors, decision tree, linear discriminant analysis (LDA),
and logistic regression classifiers with L output dimensions
for task classification.

2) Rateless Parameters: Representation z with dimension
D = 15 is fed into adversary network and nuisance network
respectively with dropout rates pa(d) and pn(d). For the soft-
split case in Section II-D.4, we take pa(d) = ((d − 1)/(D −
1))α and pn(d) = 1 − pa(d) for d ∈ {1, 2, . . . , D}, where
parameter α can adjust the ascent speed of dropout rate pa(d)
along d, and we take α = 3 in the experimental assessments,
since we need relatively more weight from the task-related
features than the nuisance-variable-relevant counterpart during
the task classification. In the implementation for hard split of
Section II-D.3, we fix the ratio of dimensions between za and
zn to 2 : 1.

3) Comparison Model Definitions: We denote AE as a base-
line architecture of a regular encoder-decoder pair for feature
extraction as presented in [25] and [26], whose decoder is
h(z; η) without adversarial disentangling units, and cAE as
a conditional AE feature extractor with decoder h(z, s; η)
conditioned on s as described in [27]. A-cAE and A-cRAE
denote the cAE models with the aforementioned hard-split
and soft-split bottleneck features respectively attached to the
adversary network only. D-cAE and D-cRAE represent cAE
with hard-split and soft-split bottleneck variables respectively
linked to the nuisance network only. DA-cAE and DA-cRAE
specify hard-split and soft-split representations connected to
both adversary and nuisance networks respectively with de-
coder conditioned on s. Note that the A-cAE resembles to the
traditional adversarial learning methods presented in [20–22],
[24] where only one adversarial unit is adopted.

III. EXPERIMENTAL STUDY

A. Dataset
The proposed methodology was evaluated on a physiolog-

ical biosignal dataset for assessing human stress status [9],

which is available online1. It includes physiological biosignals
of various modalities, in order to estimate L = 4 discrete stress
levels (physical stress, cognitive stress, emotional stress, and
relaxation) based on data collected from S = 20 subjects. The
biosignals were generated from non-invasive biosensors worn
on the wrist, containing heart rate, temperature, electrodermal
activity, three-dimensional acceleration, and arterial oxygen
level, therefore resulting in C = 7 signal channels totally.
We further downsampled the signals to 1 Hz in order to
align all data channels. For each stress status, a 5-minute
long task was assigned to the subjects. In total, 7 trials were
executed by every subject, among which 4 trials were the
status of relaxation. To address the data imbalance of trials
with different categories, we only utilized the first trial of
relaxation status, leading to four trials for the four stress status
levels respectively and 24,000 data samples in total.

B. Experiment Implementation and Evaluation
We implemented all models in Python3 using the Chainer

framework, which is an open-source deep learning framework.
The regularization weights λA and λN were chosen for
the disentangled adversarial model by parameter sweep and
cross-subject validation. We trained the feature extractor with
different parameter combinations, and preferred the parameters
producing lower accuracy of the adversary discriminator and
higher accuracy of the nuisance discriminator, premised on
obtaining higher cross-validation accuracy for the discrimina-
tive task classifier trained by extracted features. We evaluated
the model with transfer analysis of cross-subjects through a
leave-one-subject-out method [6], where the cross-subject test
data came from the left-out subject.

For each held-out subject, we first learn the encoder-decoder
pair built with neural network from scratch, and then optimize
the task classifier using the trained neural-network encoder.
During the training of the encoder, 90% and 10% of the
data from the remaining 19 subjects were randomly split
as the training and validation sets for optimizing the neural
network only, where the validation set was used for early
stopping the training to prevent overfitting, i.e. the network
training would be terminated as soon as the performance on the
validation dataset decreases as compared to the performance
on the validation dataset at the prior training epoch. Then an
independent task classifier attached to the pre-trained encoder
with frozen network weight would be optimized utilizing the
latent features from the training data of the remaining subjects.
Finally, the classification accuracy would be evaluated on the
left-out subject. The described training and testing process
was repeated for each held-out subject (20 times in total),
and the overall accuracy was averaged over all cross-subjects
accuracies.

The λA and λN values were selected and optimized
based on higher averaged cross-subjects testing accuracies
over all held-out subjects, since a global accuracy could
better reflect the generalization and robustness of the model
on different individuals. To reduce the size of parameter
combinations, we first swept over λN with λA = 0; then

1https://physionet.org/content/noneeg/1.0.0/
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Fig. 3: Averaged cross-subjects accuracies of different classifiers with eight feature learning frameworks: (1) AE: baseline of
regular AE with decoder h(z; η), (2) cAE: AE with s-conditional decoder h(z, s; η), (3) A-cAE: hard-split bottleneck cAE with
adversary network, (4) D-cAE: hard-split bottleneck cAE with nuisance network, (5) DA-cAE: hard-split bottleneck cAE with
both adversary and nuisance networks, (6) A-cRAE: soft-split bottleneck cAE with adversary network, (7) D-cRAE: soft-split
bottleneck cAE with nuisance network, (8) DA-cRAE: soft-split bottleneck cAE with both adversary and nuisance networks.
For each box, the central line marks the median, upper and lower bounds represent first and third quartiles, and dashed lines
denote extreme values; the diamond-shape marker specifies the average.

TABLE II: Optimized parameter selections with averaged cross-subjects accuracies.

MLP Nearest Neighbors Decision Tree LDA Logistic Regression

λA λN avg acc λA λN avg acc λA λN avg acc λA λN avg acc λA λN avg acc

AE [25], [26] 0 0 72.2% 0 0 71.1% 0 0 71.2% 0 0 76.5% 0 0 78.7%
cAE [27] 0 0 72.9% 0 0 72.2% 0 0 72.4% 0 0 77.8% 0 0 79.7%

A-cAE [20–22], [24] 0.005 0 75.0% 0.1 0 73.9% 0.1 0 73.4% 0.05 0 79.8% 0.05 0 80.8%
D-cAE 0 0.005 75.2% 0 0.01 74.9% 0 0.01 75.8% 0 0.2 80.2% 0 0.2 81.8%

DA-cAE [18], [19] 0.01 0.005 81.0% 0.1 0.01 77.0% 0.2 0.01 77.3% 0.2 0.2 84.3% 0.2 0.2 85.3%

A-cRAE 0.02 0 76.8% 0.05 0 75.2% 0.05 0 74.1% 0.1 0 80.4% 0.02 0 81.9%
D-cRAE 0 0.05 77.2% 0 0.05 76.1% 0 0.1 75.2% 0 0.05 82.0% 0 0.05 83.7%

DA-cRAE 0.5 0.05 83.8% 0.5 0.05 79.6% 0.01 0.1 81.5% 0.5 0.05 84.5% 0.5 0.05 85.5%

λN was fixed at its optimized value from the previous
step to optimize λA value. The adopted ranges of λA
and λN are λA ∈ {0, 0.01, 0.05, 0.1, 0.2, 0.5} and λN ∈
{0, 0.005, 0.01, 0.05, 0.2, 0.5}. Note that the selected param-
eter values can be even optimized more within larger scopes
by cross-validating the same model learning process.

C. Results and Discussions
1) Comparative Experiments: Averaged accuracies of trans-

fer analysis across 20 held-out subjects based on different
feature encoders and classifiers are presented in Fig. 3, where
AE, cAE, A-cAE, D-cAE, DA-cAE, A-cRAE, D-cRAE, and
DA-cRAE as defined in Section II-E.3 were trained and
compared. Corresponding parameter settings for each case in
Fig. 3 are displayed in Table II, which were selected and
optimized through the aforementioned parameter optimization
procedure. The model architecture is as shown in Table I,
where feature dimension is D = 15.

As shown in Fig. 3 and Table II, first we observe that simply
feeding the decoder an extra conditional input s could yield
slightly better classification performance when comparing cAE
with AE. Furthermore, we notice accuracy improvements
from A-cAE and D-cAE to cAE, demonstrating that more
cross-subject features observed in the hard-split representation

TABLE III: Parameter optimization of MLP classifier. Accura-
cies for the adversary, nuisance and classifier are presented.

MLP Adversary Nuisance
λA λN Classifier Network Network

AE 0 0 72.2% 7.8% 5.6%

cAE 0 0 72.9% 8.5% 5.8%

0 0.005 74.8% 7.7% 8.5%

D-cRAE 0 0.01 73.5% 12.5% 15.2%
0 0.05 77.2% 10.7% 19.7%
0 0.2 75.6% 13.6% 16.5%
0 0.5 74.1% 12.6% 35.5%

DA-cRAE

0.01 0.05 78.3% 9.4% 13.6%
0.05 0.05 77.3% 6.7% 14.6%
0.1 0.05 77.9% 5.9% 13.3%
0.2 0.05 81.5% 5.5% 12.7%
0.5 0.05 83.8% 4.9% 13.9%

za lead to better identification of y. In addition, DA-cAE
realizes further accuracy improvements with both adversary
and nuisance networks compared to individual regularization
approaches A-cAE and D-cAE. Under the disentangled adver-
sarial transfer learning framework, our feature extractor results
in lower variation of performances across all task classifiers
and all subjects universally. More importantly, the soft-split
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Fig. 4: MLP classification accuracies of DA-cRAE model
(λA = 0.5, λN = 0.05) for 20 held-out subjects with different
dimension D of representation z, compared with baseline AE.

RAE structures of A-cRAE, D-cRAE and DA-cRAE bring
even more accuracy gain compared to the hard-split cases of
A-cAE, D-cAE and DA-cAE. For the hard-split case, deter-
mining the split ratio of dimensions between subject-related
and task-specified features is difficult since the representation
nature is still unkown. However, the rateless property enables
the encoder-decoder pair to seamlessly adjust dimensionalities
of subject-related and task-specified features, and employs
a smooth transition between the two stochastic counterparts
by a probabilistic bottleneck representation, even though the
underlying nature of the bottleneck is still vague.

In general, the disentangled adversarial models of DA-cRAE
with both adversary and nuisance networks attached to con-
ditional decoder lead to significant improvements in average
accuracy up to 11.6% (e.g., the MLP classifier in Table II)
with respect to the non-adversarial baseline AE. Note that the
statistical significance of our DA-cRAE superiority over the
baseline AE (and DA-cAE with the exception of LDA and
Logistic Regression) is confirmed through the independent-
sample t-test with a significance level of p < 10−13. Further-
more, as observed in Fig. 3, the cross-validation accuracies
of the worst cases are also significantly improved, indicating
that the proposed transfer learning architecture presents higher
stability to a wider range of unknown individuals through
reorganizing the subject- and task-relevant representations
from the end of feature extractor. It is worth noting that,
for different classifiers, the selection of the optimized λA
and λN combination could be different due to the distinct
characteristics of classifiers when classifying input data, for
example the Logistic Regression is a linear method whereas
the Decision Tree is based on a tree structure. Thus com-
prehensive experiments for a wide range of parameters are
necessary under different application scenarios.

2) Impact of Disentangled Adversarial Parameters: We take
the MLP classifier as an example to particularly illustrate
the impact of disentangled adversarial RAE. As presented
in Table III, the baseline models of AE and cAE were first
assessed with λA = λN = 0 while training the MLP
discriminative classifier. Then the D-cRAE was evaluated with
λN ∈ {0, 0.005, 0.01, 0.05, 0.2, 0.5} and λA = 0. Finally,
we froze λN = 0.05 to observe the representation learning
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Fig. 5: MLP classification accuracies of optimized parameter
choices in Table II with different training dataset sizes.

capability of the complete soft-disentangled adversarial trans-
fer learning model DA-cRAE with different choices of λA ∈
{0, 0.01, 0.05, 0.1, 0.2, 0.5}. For each parameter selection, the
average accuracy of the MLP task classifier for identifying 4
stress levels is shown in Table III, along with the discriminator
accuracies of the adversary and nuisance blocks for decoding
20-class ID. With an increasing accuracy of MLP task clas-
sifier, stress levels are better discriminated; with a growing
accuracy of nuisance network, more person-discriminative
features are preserved in the nuisance counterpart; and with a
decreasing accuracy of adversary network, more task-specific
information are inherent in the adversary counterpart. We
observe that the nuisance network produces higher accuracy
with increasing λN , where λN = 0.05 particularly results
in the better performance on task classification. Furthermore,
with fixed λN = 0.05, growing λA leads to lower accuracy of
adversary network, and thus imposes less extraction of subject
features but more task-related information on the adversary
counterpart.

3) Impact of Feature Dimension: Other than the adversarial
parameters λA and λN , we further inspect the impact of
different feature dimensions D on the performance of the
proposed DA-cRAE model. We trained MLP classifiers with
the DA-cRAE feature extractor and its optimized parameters
as given in Table II (λA = 0.5 and λN = 0.05), using various
feature dimensions D ∈ {3, 5, · · · , 25}. Corresponding cross-
validation accuracies for 20 held-out subjects are shown as a
function of D in Fig. 4, where the average accuracy for each D
is also marked. The same assessments on D were also applied
to baseline AE feature extractor, and we present its curve of av-
erage accuracies in Fig. 4 as a reference to compare with DA-
cRAE. It is verified that the proposed DA-cRAE consistently
outperforms the baseline AE and D = 15 latent dimensionality
was sufficient for the problem. We observe that after a specific
value of dimension D, the performance of DA-cRAE remains
relatively stable with varying D value compared to AE. On
one hand, when the feature dimension is large enough to carry
necessary information for the classification task, higher D
value might not be able to bring more benefits when extracting
features; on the other hand, the rateless property of DA-cRAE
resolves the entanglement between task-related and subject-
discriminative information and exploits the latent features in
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(a) DA-cRAE convergence curves with 100% data size.
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(b) DA-cRAE convergence curves with 25% data size.

Fig. 6: Convergence of DA-cRAE (λA = 0.5 and λN = 0.05) with different training data sizes.

a more efficient manner, thus leading to a stronger robustness
on the variance of latent representation dimensionality.

4) Impact of Data Size: In order to evaluate the robustness
of our transfer learning method on data with smaller sizes,
we investigated the performance of the proposed model when
we reduced the available training data size from 100% to
50%, 25%, or 10%. Corresponding classification accuracies
as a function of training data size are shown in Fig. 5.
Here we consider the MLP classifier as the same example of
Table II, to make comparisons among DA-cRAE (λA = 0.5
and λN = 0.05), DA-cAE (λA = 0.01 and λN = 0.005),
cAE and AE (λA = λN = 0). From Fig. 5 we observe
that DA-cRAE still performs best regardless of the amount of
available training data. Even with 10% data only, there is no
significant drawback of DA-cRAE and DA-cAE compared to
non-adversarial methods, showing the transfer learning ability
of our method to the size deficiency of physiological data. Note
that with more available training data, even better performance
is expected to be implemented by the model.

5) Convergence Analysis: In addition, training convergence
curves for a specific DA-cRAE (λA = 0.5 and λN = 0.05)
case with different training data sizes are presented in Fig. 6.
When using the full 100% set of available training data,
i.e., in Fig. 6(a), the total training loss value of DA-cRAE
converges within 15 epochs, while the nuisance loss decreases
steadily with more training iterations and the loss value of the
adversary unit keeps steady due to its antagonistic relation-
ship with DA-cRAE, where the adversary unit continues to
conceal subject-specific representations without undermining
the discriminative performance of the entire network. With less
data, as illustrated in Fig. 6(b), convergences are achieved after
more training epochs, while the convergences of the DA-cRAE
loss, adversary loss and nuisance loss are observed in a similar
pattern with the full 100% data case, indicating the capability
of the proposed model to learn universal features from data
with even smaller sizes. Overall, we observe that with both
adversary and nuisance networks attached to the encoder, the
classifier improves the accuracy substantially and shows more
stable performance across different left-out subjects.

6) Feature Visualization and Analysis: In order to inspect
the features extracted by the DA-cRAE encoder, we use the
t-distributed stochastic neighbor embedding (t-SNE) [31] for
visualizing the high-dimensional latent features in a two-

dimensional map. The t-SNE is a popular method to map a
high-dimensional data into a low-dimensional data in favor
of minimizing the Kullback–Leibler divergence, so that the
input data could be visualized in a more intuitive space for
clustering. In Fig. 7, the t-SNE map with respect to a four-
class task category y is shown, for the raw multi-channel
physiological data, the features extracted by baseline AE
model, and the features extracted by DA-cRAE model. From
Fig. 7, we can observe that the features generated by our DA-
cRAE model can be distinguished by different tasks relatively
better than the raw data and baseline AE features, indicating
an improved discriminating ability of the proposed model.

We next demonstrate the soft disentanglement of the adver-
sarial framework for nuisance-robust learning. The DA-cRAE
latent features (dimension D = 15) were soft-disentangled
into subject-invariant and subject-dependent counterparts dur-
ing the adversarial training, where the two counterparts are
connected seamlessly. Based on the dropout rate distribution
used in Section II-E.2, we consider the first ten latent features
(d = 1, 2, . . . , 10) as subject-invariant counterpart since it
has relatively lower dropout rate to the adversary network,
while regard the rest five features (d = 11, 12, . . . , 15) as
subject-relevant counterpart which is connected to the nuisance
network with lower dropout rates. In Fig. 8, the t-SNE maps
of those two counterparts of DA-cRAE features regarding to
the nuisance variable s (subject IDs) are presented, along with
the baseline AE features.

As presented in Fig. 8(a), the features extracted from the
baseline AE still retain the same spatial distribution as shown
in Fig. 7(b), whereas in Fig. 8 the samples are annotated
by subject IDs instead of task labels. In Fig. 8(b) and (c),
the 10-dimensional task-related counterpart and 5-dimensional
subject-relevant counterpart of the entire 15-dimensional DA-
cRAE features are respectively displayed and marked by
different subject IDs. From Fig. 8(b) we observe that the
sample layout (despite the distinct annotation colors) of the
task-related feature map is highly similar to the entire DA-
cRAE representations as shown in Fig. 7(c), illustrating the
neat selection and disentanglement of the nuisance-invariant
features which also turn to be more contributing to the task
classification. Furthermore, compared to Fig. 8(a) and (b),
the map of the subject-related features in Fig. 8(c) shows a
distinct characteristics which is more separable in regards to
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(a) Raw data (b) Features from baseline AE (c) Features from DA-cRAE

Fig. 7: The t-SNE visualization with respect to the four-class task category y: (a) raw multi-channel physiological data; (b)
features extracted by baseline AE model; and (c) features extracted by DA-cRAE model (λA = 0.5, λN = 0.05).

(a) Features from baseline AE (b) Task-related features of DA-cRAE (c) Subject-related features of DA-cRAE

Fig. 8: The t-SNE visualization of the baseline AE features, and the task-/subject-related counterparts of 15-dimensional DA-
cRAE features (with λA = 0.5, λN = 0.05) with respect to the nuisance variable s (subject IDs): (a) the entire 15-dimensional
features extracted by baseline AE model; (b) the 10-dimensional task-related counterpart of DA-cRAE features, which has
lower dropout rate to adversary network; and (c) the 5-dimensional subject-related counterpart of DA-cRAE features, which
has lower dropout rate to nuisance network.

subject IDs and thus can provide more information about the
users. The subject-specific representations will eventually help
the task-dependent counterpart to stand out from all features
through their adversarial relationship, while maintaining the
robustness for transfer learning in a seamless manner instead
of distracting the system.

IV. CONCLUSION

A transfer learning framework was proposed based on a
soft-disentangled adversarial model utilizing the concept of
RAE to extract universal and nuisance-robust physiological
features. In order to implement the rateless property and
manipulate the trade-off between subject-specific features and
task-relevant information, additional blocks of adversary and
nuisance networks were complementarily attached and jointly
trained with different dropout strategies, and therefore the
transfer learning framework is capable of handling a wider
range of tasks and users. Cross-subject transfer evaluations
were performed with a physiological biosignal dataset for

monitoring human stress levels. Significant benefits of the
proposed framework were shown by improved worst-case
accuracy and average classification accuracy, demonstrating
the robustness to unknown users. The adaptability of the
feature extractor over several task-discriminative linear and
non-linear classifiers was also shown, and the transfer-learning
ability of our method to data size deficiency was analysed.
Note that our methodology is applicable to various different
systems requiring nuisance-robust analysis beyond HCI.
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