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oped reduced-rank formulation of GP-SSMs to enable efficient, online learning. The unknown
dynamical system is expressed as a basis-function expansion, where a connection to the GP
makes it possible to systematically assign priors to the basis-function weights. The approach
is formulated within the sequential Monte-Carlo framework, wherein each particle retains its
own weights of the basis functions, which are updated recursively as measurements arrive.
We report competitive results when compared to a state-of-the art offline Bayesian learning
method. We also apply the method to a case study concerning tire-friction estimation. The
results indicate that our method can accurately learn the tire friction using automotive-grade
sensors in an online setting, and quickly detect sudden changes of the road surface.
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1 Introduction

System identification [20] concerns learning models of
dynamical systems from data, oftentimes with an a pri-
ori assumed model structure to facilitate learning. Gaus-
sian processes (GPs) by now have a long history in non-
linear function learning, with numerous successful appli-
cations [31]. Unlike some of the more traditional system-
identification methods, GPs are nonparametric model-
ing tools, which imply flexibility in the ability to model
general nonlinear functions without a priori enforcing an
explicit parametric structure. In recent years there have
been several contributions enabling GPs for learning in
nonlinear dynamical systems (e.g., [1, 21,29]).

Modeling the state-transition f and observation func-
tion h as GPs, leading to GP state-space models (GP-
SSMs) [15, 23, 37], has shown to be an efficient mod-
eling approach to learn systems from uncertain data.
GPs make it possible to reason about uncertainty in the
learning process, both uncertainty in the data used in
the learning and uncertainty of the learned model. For
example, as noted in [22], GP-based models can propa-
gate uncertainty information such that the estimates do
not become overly confident in regions in the state space
where data are limited, while avoiding the common issue
of overfitting to data [35].

Since system identification needs data, most methods are
offline methods; that is, they process a sufficiently long
batch of data to learn the system that is observed. While
this approach is the sensible one for systems where the
dynamics is constant over time, or at least very slowly
time varying, many systems have nonstationary uncer-
tainties such that recursive approaches are most appro-
priate. Two examples are in automotive [6] and target
tracking [26]. While there has been much effort in on-
line parametric learning, for example, in learning slowly
time varying parameters for both linear [24] and nonlin-
ear [27] systems, the research on recursive learning us-
ing GPs for nonparametric uncertainties is limited, al-
though there have been some efforts, for example, using
sparse representations of the GP [8].

To address this, we consider learning of GP-SSMs in an
online setting. GP-SSMs encompass dynamical systems
that can be written in the form

xk+1 = f(xk) +wk, (1a)

yk = h(xk) + ek, (1b)

where the (latent) state xk ∈ Rnx at each time step k is
observed through the measurement yk ∈ Rny . The non-
linear functions f : Rnx → Rnx and h : Rnx → Rny are
assumed to be realizations from GPs. The process noise
wk and measurement noise ek are Gaussian distributed



with covariance Q and R according to wk ∼ N (0,Q)
and ek ∼ N (0,R), respectively.

Learning in GP-SSMs amounts to estimating the poste-
rior distributions of f , h, Q, R, and the hyperparame-
ters associated with the GPs, and is hard for several rea-
sons. First, the state is only implicitly observed through
the measurement model (1b), and the quality of the state
estimates affects the model identification, and vice versa,
which necessitates including state inference in the learn-
ing process. Second, since the SSM (1) is nonlinear and
at least partially unknown, the state inference problem
is nonlinear and cannot be solved with analytic meth-
ods. In the offline (batch) setting, this can be solved
by iterative procedures, such as particle Markov-chain
Monte-Carlo (PMCMC) [14,35], where state estimation
over the data set and subsequent model updates are it-
erated until convergence. However, in the online setting
the inference and learning problem must be addressed
simultaneously, at each time step.

For these reasons, we develop a particle-filter (PF, [11])
based approach for jointly estimating recursively the
state trajectory and the SSM (1) interpreted as a GP-
SSM. 1 To enable online learning with GPs, we lever-
age a recently developed reduced-rank model formula-
tion [33, 35] of the GP-SSM, in which connections be-
tween GPs and a finite basis-function expansion of the
unknown system dynamics is made by introducing pri-
ors on the basis-function coefficients. We adapt the work
in [35], which treated offline learning in a PMCMC set-
ting, to the online setting, by tailoring a PF to GP-SSMs.
A key enabler for the approach is that each particle car-
ries its own set of statistics associated with the system
dynamics. By adopting the interpretation of a GP as a
basis-function expansion [35], with a proper implemen-
tation of the PF and suitable approximations, learning
of GP-SSMs can indeed be done online.

Notation: Throughout, for a vector x, x ∼ N (µ,Σ)
indicates that x ∈ Rnx is Gaussian distributed with
mean µ and covariance Σ and xn denotes the nth
component of x. Matrices are indicated in capital
bold font as X, and the element on row i and col-
umn j of X is denoted with Xij . The determinant of
X is |X|, the trace of X is Tr(X), and the Cholesky
decomposition of X is chol(X). We use the nota-
tion θk|k to denote the estimate of a set of parame-
ters θ at time step k given {x0:k+1,y0:k}, and θk|k−1

denotes the one-step prediction of θk−1|k−1. With
p(x0:k|y0:k), we mean the posterior density function of
the state trajectory x0:k from time step 0 to time step k

1 This work extends previous preliminary work in [4,5]. The
current version contains a detailed explanation of the algo-
rithm developments, an extension to online adaptation of
the GP hyperparameters, a significantly extended evalua-
tion, and an experimental section relating to tire-friction es-
timation.

given the measurement sequence y0:k := {y0, . . . ,yk},
and xi0:k is the ith realization of x0:k. The notation
f ∼ GP(0, κ(x, x′)) means that the function f(x) is
a realization from a GP prior with a given covariance
function κ(x, x′) subject to some hyperparameters ϑ,
and IW(ν,Λ) is the inverse-Wishart distribution with
degree of freedom ν and scale matrix Λ. We write
T (ν,M ,Λ) to denote the multivariate Student-t dis-
tribution, and MN (M ,Q,V ), MT (ν,M ,Q,V ) are
the Matrix-Normal and Matrix-variate Student-t dis-
tribution, respectively, with mean M , right covariance
(scale) Q, and left covariance (scale) V Finally, the
compund distribution MNIW(A,Q|M ,V ,Λ, ν) =
MN (A|M ,Q,V )IW(Q|ν,Λ).

Outline: Sec. 2 connects the current paper to previous,
related research. Sec. 3 outlines the modeling framework
and the problem formulation based on the reduced-rank
GP-SSM. In Sec. 4 we present the proposed method.
Sec. 5 presents a numerical evaluation of the proposed
method. Application of the algorithm to the problem of
real-time tire-friction estimation for autonomous vehi-
cles is presented in Sec. 6, with both synthetic and ex-
perimental data. Finally, Sec. 7 concludes the paper.

2 Related Work

Interesting work related to GP-based system identifica-
tion includes impulse response estimation [29], nonlinear
ordinary differential equations [21], and force model-
ing [1]. Modeling the system as a GP-SSM has been done
in several previous papers—for example, [13], where a
sparse GP representation is used for learning, and [22],
in which a variational inference approach is taken.
An early example related to basis-function expansions
is [16], which uses radial basis functions and extended
Kalman filtering in an expectation-maximization (EM)
algorithm. A more recent method, more closely aligned
with the approach in this paper, is presented in [36],
in which both an offline and an online method are
detailed, similar to us leveraging particle filtering for
the state inference and parameter learning. However, a
major difference compared to our method is that [36]
uses a Gaussian kernel basis-function expansion whose
weights are learned using an MCMC approach, based
on the maximum-likelihood state estimate from the PF.
Our approach also differs to that taken in [8], which
uses a sparse approximation of the GP instead of a
basis-function expansion.

Approaches based on PMCMC methods [2] related to
the work in this paper have been developed in a series of
papers. The work in [14] is fully Bayesian and introduces
PMCMC with the GP-SSM framework, and [13] extends
this to a variational inference scheme using inducing
points and sparse GPs. Another fully Bayesian learn-
ing approach was presented in [35], where the reduced-
rank GP approximation introduced in [33] was used in



combination with a tailored PMCMC scheme to enable
efficient nonparametric fully Bayesian learning. More-
over, [35] also includes an alternative EM cheme based
on the same framework. The present paper adapts the
reduced-rank formulation for learning of GP-SSMs to
the online setting, by providing a recursive implementa-
tion using a tailored marginalized PF.

For recursive joint state inference and learning, particu-
larly related approaches are those based on particle fil-
tering. Notable contributions include [34], which is based
on augmentation of the state with the parameters to
be estimated, and [10], which considers static parame-
ter estimation using the marginalized PF. To overcome
the path degeneracy of estimating static quantities in
PFs, [27] considers the role of exponential forgetting in
an adaptive marginalized PF. This work has later been
extended to dependent process and measurement noise
in [6]. These recursive joint inference and learning meth-
ods all consider parametric uncertainties and do not in-
troduce GPs in the estimation process. However, since
we rely on a reduced-rank formulation, the proposed
learning scheme in the end estimates weights of basis
functions, effectively making it parametric for any realis-
tic implementation. Hence, the methodology and under-
lying idea of the method is similar to, for example, [6,27].

3 Modeling and Problem Formulation

We rely on GPs to encode prior information for learn-
ing of the SSM. We focus on learning of f and Q, and
treat h andR as known. There are two main reasons for
having a known observation model. First, introducing
too many unknowns might have implications on observ-
ability of the system, and simultaneous learning of the
state-transition function and measurement function can
be a daunting task. Second, h usually corresponds to a
sensor model that typically is known, at least up to some
parametric uncertainty that can be determined a priori.
Note, however, that interchanging f with h (i.e., instead
assuming a known f) is conceptually straightforward.
Similarly, we ignore any known inputs uk ∈ Rnu but
those can also be added to the learning process, which
we illustrate with a numerical example in Sec. 5.

3.1 Modeling the State-Transition Function

We express f = [f1 · · · fnx ]> by a basis-function ex-
pansion according to

f̂i(x) =

M∑
j=1

γijφj(x) (2)

for each i = 1, 2, . . . , nx, for a known set of basis func-
tions, where the weights γij are to be determined. To en-
able tractability in the learning problem and not intro-
duce too much flexibility, we assume that the order nx

of f is known and that the number of basis functions M
is set a priori. By employing a basis-function expansion
(2), we can formulate a joint inference and learning ap-
proach that is linear in the parameters (i.e., the weights
γij). Together with the reduced-rank formulation of a
GP-SSM, this will enable computationally tractable on-
line inference and learning.

Remark 1 SettingM small will limit the expressiveness
of the basis-function expansion and therefore restrict the
set of functions f we can model. Since we use GPs for
formulating priors on f , a viable option is to set M as
large as the implementation permits, as also noted in [35],
and let the estimator determine which γij to use.

3.1.1 Setting the GP-Priors

While there are a number of choices for how to choose
basis functions, to make connections to GPs, we choose
the eigenfunctions with associated eigenvalues to the
Laplace operator, which for nx = 1 defined on a closed
interval [−L,L] ∈ R equal

φj(x) =
1√
L

sin

(
πj(x+ L)

2L

)
, (3a)

λj =

(
πj

2L

)2

. (3b)

In the multi-dimensional case (nx > 1), the correspond-
ing eigenfunctions and eigenvalues defined on the do-
main [−L1, L1]× · · · × [−Lnx , Lnx ] ∈ Rnx are

φj1,...,jnx =

nx∏
n=1

1√
Ln

sin

(
πjn(xn + Ln)

2Ln

)
, (4a)

λj1,...,jnx =

nx∑
n=1

(
πjn
2Ln

)2

. (4b)

Note that for nx = 1, (3) equals (4). From (4a), it is
clear that the number of weights to learn nominally in-
creases exponentially with the state dimension as M =
mnx , where m is the number of parameters for nx = 1.
While this is a common unwanted feature for many basis-
function expansions, it is possible to alleviate. In [35],
two possibilities are pointed out. First, to assume inde-
pendence between the different dimensions. Second, to
choose another set of basis function. More detailed treat-
ment of the dimensionality aspects is beyond the scope
of this paper, but could be interesting future research.

For isotropic covariance functions κ, that is, for covari-
ance functions that are a function of r = |x − x′|, [33]
provides a connection between GPs and a basis-function
expansion of a function f with basis functions (3a).
Isotropic covariance functions can be equivalently rep-
resented in terms of the spectral density S(ω) of κ. In



particular, the connection between the basis-function ex-
pansion (2) with basis functions (4a) can be written as

f(x) ∼ GP(0, κ(x,x′))⇔ f(x) ≈
M∑
j=1

γjφj(x), (5)

with γj = [γ1j · · · γnxj ]> and

γij ∼ N (0,S(λj)). (6)

We use the squared exponential covariance function,

κ(r) = σ2 exp

(
− r2

2`2

)
, (7)

with hyperparameters ϑ = {σ, `}, where for simplicity
we assume the same hyperparameters for each dimen-
sion. The covariance (7) has the spectral density

S(ω) = σ2
√

2π`2 exp−π
2`2ω2

2
. (8)

Hence, with the connection (5), the spectral density can
be used to assign suitable priors on the weights in the
basis-function expansion (3a), and effectively enabling
online learning of GP-SSMs. For instance, the degree
of smoothness of the prior determines how likely the
function f is to rapidly change or not. In general, if a
different Ln is used for the different dimensions, so are
the associated hyperparameters ϑ.

Remark 2 The squared exponential covariance func-
tion (7) is infinitely differentiable, implying that the cor-
responding GP is smooth. While the squared exponential
is probably the most widely used covariance function, for
some physical systems the smoothness makes it unrealis-
tic [31]. In this case, the Matérn class of covariance func-
tions might be more appropriate. Note that the proposed
framework is not requiring the squared exponential, but
is used since it works sufficiently well for our purposes.

Remark 3 The basis-function expansion with the co-
variance function (7) depends on `, Ln, and σ, all of
which impact the behavior of the weights as well as the
basis functions themselves. These parameters can often
be chosen a priori using expert knowledge of the system
to be determined, and we give a practical example of this
in Sec. 6. In some cases, such expert knowledge might not
be available. If prior data are available, the parameters
can be estimated offline using, e.g., the method in [35].
The choice of Ln directly affects the basis functions and is
also connected to the GP hyperparameters through (4b)
entering the weight prior (6). Hence, online learning of
all these parameters as well as the weights, which are
also connected, and the state itself, will be difficult both
from an algorithmic standpoint and due to observabil-
ity/identifiability. However, if determining Ln a priori,

the GP hyperparameters can be adjusted. We propose
such an adaptation scheme in Sec. 4.3.

3.2 The Reduced-Rank GP-SSM Summary

With the basis-function expansion (2) and basis func-
tions (4), a reduced-rank GP-SSM (1a) is

xk+1 =


γ11 · · · γ1m

...
...

γnx1 · · · γnxm


︸ ︷︷ ︸

A


φ1(xk)

...

φM (xk)


︸ ︷︷ ︸

ϕ(xk)

+wk. (9)

In the limit, (9) converges to (1) [35].

Theorem 1 The reduced-rank GP-SSM (9) conver-
gences in distribution to (1) when the size of the domain
and M tend to infinity.

Remark 4 Theorem 1 is for M →∞, but for a reason-
ably largeM , the approximation effects are negligible. For
the examples in this paper, about 10 basis functions in
each dimension gives negligible performance reductions,
while maintaining reasonable computational load.

For convenience, we express the prior on the coefficients
γij in (6) at time step k = 0 as a zero-mean Matrix-
normal (MN ) distribution [9] over A,

A ∼MN (0,Q,V ), (10)

with right covariance Q and left covariance V with di-
agonal elements S(λj), which incorporates the prior (6).
The density of theMN distribution is

MN (A|M ,Q,V ) =
1

(2π)nxM/2|V |nx/2|Q|M/2

· exp

(
−1

2
tr
(
(A−M)TQ−1(A−M)V −1

))
. (11)

We put an inverse-Wishart (IW) prior on Q according
to Q ∼ IW(ν0,Λ0), with the density given by

IW(Q|ν,Λ) =
|Λ|ν/2|Q|−(nx+ν+1)/2

2νnx/2Γnx(ν/2)

· exp

(
−1

2
tr(Q−1Λ)

)
, (12)

where Γnx(·) is the multivariate gamma function. As-
suming the covariance prior to be IW distributed is
common in covariance estimation due to its beneficial
properties [6, 27,35].



Note that if there is prior knowledge about the physical
system underlying (1), it can be incorporated into (9).
Two common examples of prior knowledge are that only
parts of the system are unknown, and that f is approx-
imately known (e.g., from an initialization process). For
both cases, (9) can be modified to account for this.

3.3 Problem Formulation

We consider approximate joint state inference and learn-
ing of the GP-SSM (1a) with known measurement equa-
tion (1b) (the extension to unknown h is similar to the
setting with unknown f). Instead of targeting (1a), we
learn (9). In a fully Bayesian setting, this implies esti-
mating the posterior distributions of x, A, and Q, at
each time step k. Since we are aiming for online applica-
tions, we are interested in approximating the marginal
(filtering) distributions.

The involved distributions cannot be resolved analyti-
cally, and we therefore approach the estimation of x,
A, and Q in a sequential Monte-Carlo (SMC) setting,
where we tailor a PF for approximating p(xk|y0:k) and
p(θk|y0:k), where θ = {A,Q}.

As is the case for most filtering problems, we assume
p(x0) to be known. We assign a suitable prior p(θ0) on
θ that is dependent on the hyperparameters ϑ affecting
the spectral density (e.g., (8) for the squared exponential
kernel). Initially, we assume the hyperparameters ϑ of
said prior to be known. However, in Sec. 4.3 we address
different ways to relax this assumption.

Remark 5 In practice, the priors p(x0) and p(θ0) can
be deduced based on expert knowledge of the system at
hand, and we give a practical example of this in Sec. 6.
Alternatively, since the method proposed in this paper is
an online extension of the method proposed in [35], that
method can be used to initialize some of the priors and
hyperparameters assumed known in this paper.

4 Online Bayesian Inference and Learning

In this section, we focus on approximating the joint pos-
terior density p(x0:k+1,θk|y0:k), 2 from which marginal
densities p(xk|y0:k) and p(θk|y0:k) can be computed. We
decompose the joint posterior as

p(x0:k+1,θk|y0:k) = p(θk|x0:k+1,y0:k)p(x0:k+1|y0:k).
(13)

We will go through the main steps in the proposed al-
gorithm for approximating (13). First, we explain how
to recursively update the parameters θk and compute
p(θk|x0:k+1,y0:k) given the trajectory {x0:k+1,y0:k}.

2 Because θk depends on xk+1, this modified joint posterior
is more appropriate than p(x0:k,θk|y0:k).

Utilizing the priors (11), (12), this step can be done
analytically. Second, we describe how to approximate
p(x0:k+1|y0:k) using a tailored PF, which utilizes that
the analytic expression for p(θk|x0:k+1,y0:k) enables
marginalizing out θk in the prediction step.

4.1 Estimating the Parameter Posterior

The distribution of θk is computed conditioned on the
realization of the state and measurement trajectories for
each particle. For a specific realization x0:k+1, the pos-
terior density of θk can be written according to

p(θk|x0:k+1,y0:k) = p(θk|x0:k+1), (14)

since (1b) is not dependent on θk. Using Bayes’ rule,
(14) can be decomposed into a likelihood and prior as

p(θk|x0:k+1) ∝ p(xk+1|θk,x0:k)p(θk|x0:k). (15)

The first term on the right-hand side of (15) is the tran-
sition density of the reduced-rank model (9),

p(xk+1|θk,xk) = N (xk+1|Akϕ(xk),Qk). (16)

To get a recursive expression for updating (15), we lever-
age that the MNIW distribution is a conjugate prior
for the considered model.

Theorem 2 Suppose that the initial prior p(θ0) is dis-
tributed according to p(θ0) =MNIW(θ0|0,V ,Λ0, ν0).
Define Ξ := Σk|k + V −1. Then, for realizations x0:k+1

and y0:k, (14) can be computed at each time step k as

p(θk|x0:k+1,y0:k) =MNIW(θk|Ψk|kΞ
−1,

Ξ−1,Λ0 + Φk|k −Ψk|kΞ
−1Ψ>k|k, νk|k), (17)

where Ψk|k, Φk|k, Σk|k, and νk|k can be recursively up-
dated as

Φk|k = Φk|k−1 + xk+1x
>
k+1, (18a)

Ψk|k = Ψk|k−1 + xk+1ϕ(xk)>, (18b)

Σk|k = Σk|k−1 +ϕ(xk)ϕ(xk)>, (18c)

νk|k = νk|k−1 + 1. (18d)

PROOF. See Appendix.

For constant parameters, the time-update step is
(∗)k|k−1 = (∗)k−1|k−1 for all quantities in (18). However,
for PFs it can be problematic to estimate static param-
eters. Using the principle of exponential forgetting [3],



for slowly time-varying parameters an approach is to
write the time-update step of the predictive statistics as

Φk|k−1 = λΦk−1|k−1, (19a)

Ψk|k−1 = λΨk−1|k−1, (19b)

Σk|k−1 = λΣk−1|k−1, (19c)

νk|k−1 = λνk−1|k−1. (19d)

The forgetting factor 0 ≤ λ ≤ 1 helps in the estimation
of dynamic variables by forgetting older data as new
data are accumulated in time. As a rule of thumb, for a
forgetting factor λ the update of the statistics will rely
on the last 1/(1− λ) time instants.

To find the posterior distribution of θk, we marginalize
out the state trajectory according to

p(θk|y0:k) =

∫
p(θk|x0:k+1,y0:k)p(x0:k+1|y0:k) dx0:k+1

≈
N∑
i=1

qikp(θk|xi0:k+1,y0:k), (20)

where p(θk|xi0:k+1,y0:k) is given by (17) and qik is the
particle weight, see Sec. 4.2.

Remark 6 The scalar real-valued number λ ∈ [0, 1]
provides exponential forgetting in p(θk|x0:k+1,y0:k) that
allows the algorithm to adapt to (slowly time-varying)
changes in θ over time. It also mitigates path degeneracy
since for λ < 1, mixing is introduced in the model [27],
which explains why the PF works for marginal distribu-
tions [11]. For λ = 1 we recover the case of static param-
eters, however, with increased risk of path degeneracy in
a practical implementation for a finite N .

Remark 7 In this paper we assume that λ is known,
which is consistent with previous approaches in the liter-
ature (e.g., [27, 32]). One reason for assuming λ known
is that in practice it can often be determined from expert
knowledge, as we will discuss in Sec. 6. Another reason
for assuming a known λ is more practical. In an online
algorithm, introducing too many variables and parame-
ters to estimate impacts the observability/identifiability
of the system, and also inevitably increases complexity of
the estimation algorithm.

4.2 Particle Filtering for State Inference

SMC methods, such as PFs, constitute a class of tech-
niques that estimates the posterior distribution in
SSMs, and SMCs have recently proved useful in learn-
ing of SSMs [19]. PFs approximate the posterior density
p(x0:k|y0:k) by a set of N weighted trajectories,

p(x0:k|y0:k) ≈
N∑
i=1

qikδxi0:k(x0:k), (21)

where qik is the importance weight of the ith state tra-
jectory xi0:k and δ(·) is the Dirac delta mass. The tra-
jectories xi0:k are sampled recursively from a tractable,
user-designed proposal distribution π(xk|x0:k−1,y0:k),
and the weights {qik}Ni=1 are updated as

qik ∝ qik−1

p(yk|xi0:k,y0:k−1)p(xik|xi0:k−1,y0:k−1)

π(xik|xi0:k−1,y0:k)
. (22)

If the proposal is chosen as the predictive density,

π(xk|xi0:k−1,y0:k) = p(xk|xi0:k−1,y0:k−1), (23)

the weight update (22) simplifies to

qik ∝ qik−1p(yk|xik). (24)

The PF algorithm iterates between prediction and
weight update, combined with a resampling step that
removes particles with low weights and replaces them
with more likely particles. We assume a known mea-
surement model, and the weight update (24) therefore
uses the standard Gaussian likelihood. However, since
the transition density depends on θ, the prediction
step is nonstandard. We predict the state trajectory
by sampling from the predictive density (23). From
marginalization of the unknown quantity θ, (23) can be
expanded for each particle i as

p(xk|x0:k−1,y0:k−1) =

∫
p(xk|θk−1,xk−1)

p(θk−1|x0:k−1,y0:k−1)dθk−1. (25)

By assumption, the second density in the integrand of
(25) isMNIW distributed. The integrand can be writ-
ten as the hierarchical model

xk|xk−1,Ak−1,Qk−1 ∼ N (Ak−1ϕ(xk−1),Qk−1),

Ak−1,Qk−1 ∼MNIW(M∗,Σ∗,Λ∗, νk|k−1),
(26)

where

M∗ = Ψk|k−1(Σk|k−1 + V )−1,

Σ∗ = (Σk|k−1 + V )−1,

Λ∗ = Λ0 + Φk|k−1 −Ψk|k−1(Σ∗)−1Ψ>k|k−1.

(27)

The predictive distribution of an MNIW distribution
is a matrix-variate Student-t (MT ) distribution [9, 38],

MT (A|ν,M ,Λ,Σ) =
ΓM (ν+nx+M−1

2 )

(2νπ)Mnx/2ΓM (ν+nx−1
2 )

· |IM + Λ−1(A−M)Σ−1(A−M)>|−
ν+nx+M−1

2

|Λ|−M/2|Σ|−nx/2
.

(28)



Hence, using the hierarchical structure (26), we can gen-
erate states xik by first sampling Ai

k−1 ∈ Rnx×M as

Ai
k−1 ∼MT (νik|k−1,M

∗,Λ∗,Σ∗), (29)

and then obtain xik as xik = Ai
k−1ϕ(xik−1). Theorem 3

states that instead of sampling A ∈ Rnx×M from an
MT distribution, we can generate xk by sampling a
vector of dimension nx × 1 from a multivariate Student-t
(T ) distribution, which is computationally simpler than
sampling a matrix.

Theorem 3 Assume that the integrand of (25) can be
written on the form (26). Then, the predictive density
(23) can be written as

p(xk|x0:k−1,y0:k−1) = T (νk|k−1−nx+1,M̄ , Λ̄), (30)

where M̄ = Ψk|k−1(Σk|k−1 + V )−1ϕ(xk−1) and

Λ̄ = chol(Λ∗)

·Tr
(
chol(Σ∗)ϕ(xk−1)ϕ(xk−1)>chol(Σ∗)>

)
chol(Λ∗)>,

and where M∗, Σ∗, and Λ∗ are defined as in (27).

PROOF. See Appendix.

In the implementation, we generate samples w̄i
k−1 ∼

T (νk|k−1−nx+1,0, Λ̄i) and determinexik from (9) using

Ai = M̄ i according to xik = M̄ϕ(xik−1) + w̄k−1. From
the lemma on transformations of variables in densities
applied to (9) [30],

p(xk|x0:k−1,y0:k−1) = p(wk−1|x0:k,y0:k−1),

this generates samples consistent with (30).

Remark 8 The generation of samples (30) is done based
on the assumption of unknown noise covariance. If it
is known, the sampling is instead done according to a
Gaussian distribution.

4.3 Determining the GP Hyperparameters

In this section we discuss how to adjust the GP hyper-
parameters. For simplicity, we assume one set of range
and hyperparameters for all dimensions. As discussed in
Remark 3, determining online all parameters associated
with the GP is prohibitive. Sometimes the parameters
can be determined from expert knowledge; for instance,
σ can be chosen such that the initial uncertainty covers
the possible range of uncertain functions, L can be cho-
sen based on knowledge of the possible values of x, and

` can be determined based on prior knowledge of the
shape of the nonlinearity to be learned. We apply this
reasoning to a real-world example in Sec. 6.

If there is no expert knowledge but there are data avail-
able a priori, it is possible to set the parameters based
on offline learning methods—for example, it is possible
to run the fully Bayesian PMCMC method in [35], which
uses the same basis function expansion, to initialize the
parameters. One approach is then to collect data, run
the method in [35], and then execute the proposed online
method based on the offline estimated parameters. An-
other possibility is to occasionally update the parame-
ters online using a data batch, and, for example, execute
the method in [35] or a maximum aposteriori method
over the data batch and then reinitialize the estimator.
While fully recursive adaptation of the basis-function
range L may be infeasible, it is possible to adapt the
GP hyperparameters ϑ (i.e., the length ` and the scale
σ) online when L has been set. Intuitively, the GP hy-
perparameters adjust to the prior choice L, as long as is
covers the feasible space.

Let the GP hyperparameters evolve according to a ran-
dom walk and assume independence between the differ-
ent dimensions,

ϑk = ϑk−1 + wϑ,k−1, (31)

where wϑ,k ∼ N (0,Qϑ), Qϑ is a diagonal matrix. In-
stead of having V in (10) fixed, we now let it be updated
according to the sampled GP hyperparameters. The ad-
ditional steps involved when including GP hyperparam-
eter estimation amount to; (i) sample {ϑi}Ni=1 from the
prior (31); (ii) update the MN left covariance prior
{V i

k }Ni=1 in (10) according to (8). The updated {V i
k }Ni=1

affect the update of θ by Theorem 2 and the generation of
states by (29). The additional steps for the GP hyperpa-
rameter updates imply an estimation of the joint poste-
rior density p(x0:k+1,ϑ0:k, θk|y0:k). However, in the end
we are interested in the marginal densities p(xk|y0:k) and
p(θk|y0:k). The standard PF implementation marginal-
izes out x0:k−1 by discarding it, which leads to an O(N)
implementation. This approximation relies on sufficient
mixing properties in the dynamic model to avoid the de-
pletion problem, essentially meaning that errors in the
state are forgotten as time progresses, which is the rea-
son why the O(N) implementation of the PF works in
many realistic scenarios. In addition, the use of exponen-
tial forgetting by introducing λ helps in this regard [27].
However, when adapting the GP hyperparameters the
model used to generate the state samples will differ at
each time step, which increases the risk of particle de-
pletion. Especially in high signal-to-noise ratios, it may
be important to account for different paths, which leads



to the modified weight update

qik ∝ p(yk|xik)

N∑
j=1

qjk−1p(x
i
k|x

j
k−1,A

j
k−1,Q

j
k−1). (32)

Eq. (32) results in an O(N2) method, but it is possible
to implement (32) withO(N logN) complexity and even
linearly (e.g., using accept-reject sampling [18]).

4.4 Algorithm Summary

Algorithm 1 summarizes the proposed method, where we
have introduced Ξ = {Φ,Ψ,Σ,Λ, ν}. In the proposed
method, each particle i retains its own set of Ξi.

Algorithm 1 Pseudo-code of proposed algorithm

Initialize: Set {xi0}Ni=1 ∼ p0(x0), {qi−1}Ni=1 = 1/N ,

ΞNi=1 = {0,0,0,Λ0, ν0}, {ϑi}Ni=1 = {σi0, `i0}Ni=1.
1: for k = 0, 1, . . . do
2: for i ∈ {1, . . . , N} do
3: if GP hyperparameter estimation then
4: Update weight q̄ik using (24) or (32).
5: else
6: Update weight q̄ik using (24).
7: end if
8: Determine Ξik|k−1 using (19).

9: end for
10: Normalize weights as qik = q̄ik/(

∑N
i=1 q̄

i
k).

11: Compute Neff = 1/(
∑N
i=1(qik)2).

12: if Neff ≤ Nthr then
13: Resample particles and copy the correspond-

ing statistics. Set {qik}Ni=1 = 1/N .
14: end if
15: for i ∈ {1, . . . , N} do
16: if GP hyperparameter estimation then
17: Sample ϑk from (31).
18: Update V i

k .
19: end if
20: Sample xik+1 from (30).

21: Determine Ξik|k using (18).

22: end for
23: end for

5 Numerical Evaluation

In this section we consider the system

xk+1 = tanh(2xk) + wk, wk ∼ N (0, 0.1), (33a)

yk = xk + ek, ek ∼ N (0, 0.1), (33b)

where the objective is to learn f(xk) = tanh(2xk) and
Qw = 0.1, as well as estimating xk. We initialize with
ν0 = 1, Λ0 = 2, (i.e., with prior Qw ∼ IW(2, 1)).
We set L = 4 in (4) and M = 16 basis functions,
and the forgetting factor to λ = 0.97. We compare
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Fig. 1. The posterior estimates of the Bayesian PMCMC
method (see [35]) for T = 500 data points and 5000 MCMC
iterations for the example in Sec. 5. The true function is in
dashed red, the estimate in black, and the Bayesian learning,
the 3σ confidence is shown in gray. The bars in the lowest
plot show the distribution of data in the state space.

with the fully Bayesian PMCMC method reported in
[35], which our method extends to the online case. The
method uses a particle Gibbs Markov kernel for finding
the state smoothing distribution within an MCMC pro-
cedure based on the whole sequence of measurements.
We perform a Monte-Carlo study and compare the state
root mean-square error (RMSE) of Algorithm 1 with
and without GP hyperparameter estimation. We initial-
ize σ0 = 1, `0 = 0.1 in (8). Note that these values are
kept fixed for Algorithm 1 without GP hyperparameter
estimation. For Algorithm 1 with GP hyperparameter
estimation, we set Qϑ = diag(1, 0.3).

The posterior estimates for the method in [35] for T =
500 data points and K = 5000 MCMC iterations are
shown in Fig. 1. Fig. 2 displays the results for Algo-
rithm 1 using GP hyperparameter estimation for k = 50,
k = 300, and k = 500 time steps, respectively. Algo-
rithm 1 provides quite similar results as in Fig. 1 as the
number of data points increases. The role of the forget-
ting factor, which increases uncertainty in regions that
havent been explored recently, can be seen when com-
paring the second and third plots for x ≈ 0.

Fig. 3 shows the GP hyperparameter and covariance es-
timates averaged over 500 Monte-Carlo runs. As time
progresses, the ` and Qw estimates using Algorithm 1
converge very close to the estimates of the PMCMC
method, but the σ estimate is slightly biased. Note that
the two methods are distinctly different. Algorithm 1
uses the method outlined in Sec. 4.3 whereas [35] em-
ploys a Metropolis-Hastings step within the MCMC pro-
cedure.

Fig. 4 compares the state RMSE values of Algorithm 1
with and without GP hyperparameter estimation for
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Fig. 2. The posterior estimates of Algorithm 1, for the exam-
ple in Sec. 5. True function in dashed red, estimated function
in black, and 3σ confidence in gray. The green dots are the
measurements until time step k.

0 100 200 300 400
0

0.2

0.4

0.6

0.8

k

`
Algorithm 1

PMCMC

0 100 200 300 400
0

2

4

6

8

k

σ
Algorithm 1

PMCMC

0 100 200 300 400
0

0.2

0.4

0.6

0.8

k

Qw Algorithm 1

PMCMC

Fig. 3. The GP hyperparameter estimates for the example
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of the MCMC iterations after the burn-in period.
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Fig. 5. Illustrations of lateral tire friction µy as a function
of slip angle α for surfaces corresponding to asphalt, loose
snow, and ice.

N = 20 and N = 100 particles. Clearly, the adjustment
of the GP hyperparameters increases accuracy.

6 Application to Tire-Friction Estimation

In this section, we apply Algorithm 1 to real-time esti-
mation of the friction between the tire of a vehicle and
the road using both synthetic and real data. The fric-
tion dependence between tire and road is highly non-
linear and varies heavily between different surfaces, see
Fig. 5 for an illustration. Knowledge of the tire friction
is important for real-time vehicle control [7]. A difficulty
when addressing the tire-friction estimation problem us-
ing automotive-grade sensors is that the sensors are low
grade, only provide indirect measurements of the fric-
tion, and do not even measure the vehicle state, which
is nonlinearly dependent on the tire friction and must
therefore be known or estimated for learning the tire
friction.

6.1 Modeling

The vehicle model relating the vehicle state to the tire
friction is the well-known single-track model,

v̇Y + vX ψ̇ =
1

m
(F zf µ

y
f cos(δ) + F zr µ

y
r + F zf µ

x
f sin(δ)),

(34a)

Izzψ̈ = lfF
z
f µ

y
f cos(δ)− lrF zr µyr + lfF

z
f µ

x
f sin(δ),

(34b)



where µy is the lateral tire-friction function and the sub-
scripts f, r stand for front and rear, respectively,m is the
vehicle mass, Izz is the vehicle inertia about the vertical
axis, and δ is the front-wheel steering angle. By denot-
ing the wheel base with l = lf + lr, the normal force F z

resting on each front/rear wheel is F zf = mglr/l, F
z
r =

mglf/l. The tire-friction components µyi , i ∈ {f, r} are
modeled as static functions of the slip quantities,

µyi = fyi (αi(x)), i ∈ {f, r}, (35)

αi is the slip angle, αi = − arctan(vy,i/vx,i), where vx,i
and vy,i are the longitudinal and lateral wheel velocities
for wheel i with respect to an inertial system, expressed
in the coordinate system of the wheel. The wheel veloci-
ties can be computed from a transformation of the longi-
tudinal and lateral vehicle velocities. The lateral velocity
is estimated in the proposed method, whereas the lon-
gitudinal velocity vX is determined from the measured
wheel-speeds {ωi}4i=1. For brevity, we define the vector
α = [αf αr]

T and write (35) as µ = [fyf f
y
r ]>, and model

the friction vector as a realization from

µ ∼ GP(0, κ(α,α′)). (36)

Discretizing the system with sampling period Ts
and using u = [δ vX ]T as the known input vec-
tor, the vehicle model (34)–(36) can be written as
xk+1 = a(xk,uk) +G(xk,uk)µ(αk), where a(·) and
G(·) are the (known) parts of the vehicle model, and
µ(·) is the unknown tire-friction function. After a co-
ordinate transformation, the model is in accordance
with (9), where we model the tire friction µ using the
reduced-rank formulation.

The measurement model is based on a setup commonly
available in production cars, namely the lateral accelera-
tion aYm and the yaw rate ψ̇m, forming the measurement

vector y = [aYm ψ̇m]>. We model the measurement noise
ek as zero-mean Gaussian distributed noise with known
covariance R according to ek ∼ N (0,R), and the re-
sulting measurement model is on the form (1b).

6.2 Prelimiaries

We use 10 basis functions each for the front and rear tire.
From expert knowledge we know that (i) the friction be-
tween the front and rear wheel can be estimated inde-
pendently, (ii) the tire friction is antisymmetric, which
implies that we only use odd basis functions—that is,
j = 2, 4, . . . in (3). This gives M = 10 basis functions
in total, whereas without using the expert knowledge
M = 100 basis functions would have been needed. The
sampling period is Ts = 40ms. The number of particles
is N = 200. In (8), we set sf = 50, which allows the ini-
tial uncertainty to cover the different ranges of possible
friction values. We set L = 30π/180, since α usually is

restricted to−15 / α / 15 deg, and ` = 2π/180, to align
with the shape of a typical friction curve. We set the es-
timator to use roughly the last second of measurements
for learning, which gives a forgetting factor of λ = 0.95.
This forgetting factor is a trade off between being able
to quickly estimate sudden surface changes and not be-
ing overly sensitive to bad data points due to the large
noise in the automotive-grade sensors.

6.3 Simulation Results

For the simulation results, we simulate a vehicle execut-
ing a number of step-steer maneuvers at constant veloc-
ity. The vehicle parameters are that of a mid-size SUV
and we use the well-known Pacejka tire model [28] to
model the tire forces (c.f. Fig. 5),

µi = µ̄i sin(Ci arctan(Bi(1−Ei)αi +Ei arctan(Biαi))),
(37)

for i ∈ {f, r}, where µ̄, B, C, and E are the peak, stiff-
ness, shape, and curvature factor, respectively. The sim-
ulation lasts for 25s and starts off on dry asphalt. After
14.5s, there is an abrupt change in surface from dry as-
phalt to snow.

Fig. 6 shows eight snapshots of the estimates during dif-
ferent time steps for the rear tire. In the first two rows,
the vehicle drives on dry asphalt and the estimates are
very close to the true friction function. At t = 14.5s,
there is an abrupt change in surface from dry asphalt
to snow. The estimator reacts to the new measurements
that indicate a surface shift, and again converges close
to the true friction function.

6.4 Experiments

For the experimental study, we have used a mid-size
SUV to gather data and collected several data sets using
the same vehicle on a snow-covered track, all data sets
roughly 250s long, and the maneuvers are such that parts
of the nonlinear region of the tire-force curve is excited
at certain times. The data contains both variation in
velocities and periods of straight driving and cornering.
The parameters of the vehicle model have been extracted
from data sheets and bench testing.

We do not have access to ground truth of the real tire-
friction function. Instead, as a performance indication,
we use the offline Bayesian learning PMCMC method
in [35], also evaluated against in Sec. 5, to get a high-
performance estimate. This method is the offline version
of the method proposed in this paper and comes with
strong convergence guarantees, and is therefore a good
benchmark for our method.

6.4.1 Results

Fig. 7 shows the experimental results of our method
(black solid) for t = 20, 30, 45s, respectively, for the front



−10 −5 0

−1
−0.5

0
0.5 t =3s

αr [deg]

µr

−10 −5 0

−1
−0.5

0
0.5 t =6s

αr [deg]

µr

−10 −5 0

−1
−0.5

0
0.5 t =9s

αr [deg]

µr

−10 −5 0

−1
−0.5

0
0.5 t =12s

αr [deg]

µr

−10 −5 0

−1
−0.5

0
0.5 t =15s

αr [deg]

µr

−10 −5 0

−1
−0.5

0
0.5 t =18s

αr [deg]

µr

−10 −5 0

−1
−0.5

0
0.5 t =21s

αr [deg]

µr

−10 −5 0

−1
−0.5

0
0.5 t =24s

αr [deg]

µr

Fig. 6. The posterior estimates (black solid), estimated 3σ
(gray) of our proposed method for the rear tire, true friction
curve in red dashed, and current αr value as the red circle.
Knowledge of αr is not used in learning, it is estimated
online. Surface change from dry asphalt is at t = 14.5s.

(first row) and rear (second row) tire. The third row in
Fig. 7 shows the excitation level of the underlying data
for the range of slip angles of the front wheel. The slip an-
gles shown are computed using the state estimates from
the PF. We stress that the data in the lowest row are a
result from Algorithm 1. For learning, we only employ
the onboard automotive-grade wheel-speed sensors for
computing the forward velocity, the steering angle, the
yaw rate, and lateral acceleration measurements. Due to
the zero-mean prior of the function coefficients in (6),
the estimates do not suffer from overfitting issues out-
side of the available data range. Instead, they smoothly
converge to the zero-mean prior.

The results for the PMCMC approach are shown in red
dotted. Note that the results for the PMCMC approach
have been genererated using the whole data set (250s).
As data are acquired, the results of Algorithm 1 become
increasingly similar to those of the PMCMC approach.
The fit between the estimated Pacejka tire models for
each estimator is also good for the region where data
have been collected, which is an indication of how the
uncertainty estimate from the method can be useful in
determining how to trust the available estimates. For
instance, at t = 20 and t = 30s, mostly straight driv-
ing has occured and there are few data points exciting
anything but the region close to the origin. As a result,
the estimates for Algorithm 1 are only accurate around

the origin. At t = 45 s, when data have been gathered
for a larger region, the estimates of our approach very
closely resemble those of the PMCMC approach. Hence,
the method is able to produce similar results as the sub-
stantially more computation-heavy PMCMC approach.

To validate further the accuracy of the learned tire-
friction functions, Fig. 8 shows the measured yaw
rate (red dashed, upper) and lateral acceleration (red
dashed, lower), together with the predicted quantities
(black solid) when simulating the system using the es-
timated tire-friction function for a portion of one data
set (different from the data set used for learning). Note
that it is a pure simulation of the vehicle model that has
been used to generate the trajectories, with the average
estimate of the tire friction (i.e., the black solid lines
in the two upper left-most plots in Fig. 7) to predict
the forces. The resulting tire models give accurate pre-
diction capabilities when comparing to the measured
quantities, which is an indication that the tire-friction
estimates using the proposed method give valid results.

7 Conclusions

This work builds upon recent work on learning and pa-
rameter estimation for systems that can be described
by state-space models. This paper focused on a fully
Bayesian approach incorporating GPs into a state-space
formulation for online inference and learning. Our work
relies on the PF framework, and we extended the use
case of the PF to estimate online both complex functions
describing the dynamics, as well as the state. The pro-
posed algorithm relies on a reduced-rank formulation of
GP-SSMs, together with marginalization and conjugate
priors. The algorithm is applicable to general nonlinear
systems, and a comparison with a state-of-the-art offline
learning approach indicates that the online method can,
at least for certain problems, give similar performance.
The experimental case study involving the difficult prob-
lem of tire-friction estimation shows that the method
can indeed be used for real-world applications.

In learning involving GPs, tuning the hyperparameters
can turn out to be a difficult problem by itself. While
estimating all involved tuning parameters online is in-
tractable, we presented an extension of our method to
tune the GP hyperparameters, which reduces the need
for prior tuning and improves estimation accuracy. How-
ever, inevitably, some tuning is necessary, and it is future
research how to systematically introduce estimation of,
for example, the forgetting factor in the PF framework.

Another question is how to integrate the online learning
with its uncertainty estimates into safe control strate-
gies, where the estimated distribution is used to assess
safety in a systematic manner. We have started to ex-
plore this related to adaptive model-predictive control
(MPC, [7]), and the potential to combine with recent
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Fig. 7. The posterior estimates (black solid) and estimated 3σ confidence (gray) of our proposed method after t = 20s, t = 30s,
and t = 45s (left to right), for the tire-friction experiments. The offline Bayesian PMCMC learning method in [35] is shown
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instants. The green vertical lines indicate the excitation level and correspond to the boundaries of the excitation range.
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developments in stochastic MPC is a potentially fruitful
research direction [12].
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8 Appendix

Proof sketch of Theorem 2

For convenience, we will work with logarithms of the
considered expressions. Consequently, by taking the log-
arithm of (16), after some manipulations we get that

log (p(xk+1|θk,xk)) ∝ −1

2
log (|Q|)

− Tr
(
Q−1(xk+1x

>
k+1 −Aϕ(xk)x>k+1

− xk+1ϕ(xk)>A> +Aϕ(xk)ϕ(xk)>A>)
)
. (38)

Suppose that at time step k, it holds that

p(θk|x0:k) =MNIW(θk|Ψk|k−1Ξ
−1,

Ξ−1,Λ0 + Φk|k−1 −Ψk|k−1Ξ
−1Ψ>k|k−1, νk|k−1). (39)

Taking the logarithm of (39) gives that

log(p(θk|x0:k)) ∝ −1

2
(nx +M + 1 + νk|k−1) log(|Q|)

− 1

2
Tr
(
Q−1(Λ0 + Φk|k−1 −Ψk|k−1Ξ

−1Ψ>k|k−1)
)

− 1

2
Tr
(
(A−Ψk|k−1Ξ

−1)>Q−1(AΞ−Ψk|k−1)
)
.

(40)

Now, assume that xk+1 is obtained. From (38) and (40),



log(p(θk|x0:k+1))

∝ log (p(xk+1|θk,xk)) + log(p(θk|x0:k) ∝

− 1

2
(nx+M+1+νk|k−1+1) log(|Q|)− 1

2
Tr(
(
Q−1(xk+1x

>
k+1

−Aϕ(xk)x>k+1 − xk+1ϕ(xk)>A>

+Aϕ(xk)ϕ(xk)>A>)
)
)

− 1

2
Tr
(
Q−1(Λ0 + Φk|k−1 −Ψk|k−1Ξ

−1Ψ>k|k−1)
)

−1

2
Tr
(
(AΞA>−AΨ>−Ψk|k−1A

>+Ψk|k−1Ξ
−1Ψ>k|k−1)

)
.

(41)

Collecting and identifying terms in (41) lead to

log(p(θk|x0:k+1)) ∝ −1

2
(nx+M+1+νk|k−1 + 1︸ ︷︷ ︸

νk|k

) log(|Q|)

− 1

2
Tr
{
Q−1((Λ0+Φk|k−1 + xk+1x

>
k+1︸ ︷︷ ︸

Φk|k

−Ψk|k−1Ξ
−1Ψ>k|k−1)

+A
(
Σk|k−1 +ϕ(xk)ϕ(xk)>︸ ︷︷ ︸

Σk|k

+V −1)A>
−A(Ψ>k|k−1 +ϕ(xk)x>k+1︸ ︷︷ ︸

Ψ>
k|k

)− (Ψk|k−1 + xk+1ϕ(xk)>︸ ︷︷ ︸
Ψk|k

)A>

+ Ψk|kΞ
−1Ψ>k|k−1

)}
, (42)

which, from (14), implies (17) and (18). 2

Proof sketch of Theorem 3

For ease of notation, ϕ := ϕ(xk−1). The predictive
distribution of an NIW distribution is a T distribu-
tion [25]. Hence, the idea is to find an NIW expression
of the integrand of (25) (i.e., (26)). That the mean of
the integrand is M̄ follows trivially from (17) and (26).
We utilize two well-known properties for the MN dis-
tribution [17]; (i), if X ∼ MN (M̄ , I, I), Y = M̄ +
chol(Λ∗)Xchol(Σ∗) ∼ MN (M̄ ,Λ∗,Σ∗); (ii), if X ∼
MN (0, I, I), E(XAX>)) = Tr(A>). From xk = Y ϕ,

E
(
(xk − M̄ϕ)(xk − M̄ϕ)>

)
= E(xkx

>
k ). (43)

Next, we get that

E(xkx
>
k )

= chol(Λ∗)E
(
Xchol(Σ∗)ϕϕ>chol(Σ∗)>X>

)
chol(Λ∗)>

= chol(Λ∗)Tr(chol(Σ∗)ϕϕ>chol(Σ∗)>)chol(Λ∗)>︸ ︷︷ ︸
Λ̄

,

(44)

where we used (i) for the first equality and (ii) for the sec-
ond equality. Hence, the integrand of (25) can be written
as

NIW(xk|M̄ , Λ̄, νk|k−1), (45)

from which (30) follows (see, e.g., [27]). 2
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