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Business research practice is witnessing a surge in the integration of predictive modeling and
prescriptive analysis. We describe a modeling framework JANOS that seamlessly integrates
the two streams of analytics, allowing researchers and practitioners to embed machine learning
models in an end-to-end optimization framework. JANOS allows for specifying a prescriptive
model using standard optimization modeling elements such as constraints and variables. The
key novelty lies in providing modeling constructs that enable the specification of commonly
used predictive models within an optimization model, have the features of the predictive model
as variables in the optimization model, and incorporate the output of the predictive models
as part of the objective. The framework considers two sets of decision variables; regular and
predicted. The relationship between the regular and the predicted variables are specified
by the user as pre-trained predictive models. JANOS currently supports linear regression,
logistic regression, and neural network with rectified linear activation functions. In this paper,
we demonstrate the flexibility of the framework through an example on scholarship allocation
in a student enrollment problem and provide a numeric performance evaluation.
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Abstract

Business research practice is witnessing a surge in the integration of predictive modeling
and prescriptive analysis. We describe a modeling framework JANOS that seamlessly inte-
grates the two streams of analytics, allowing researchers and practitioners to embed machine
learning models in an end-to-end optimization framework. JANOS allows for specifying a
prescriptive model using standard optimization modeling elements such as constraints and
variables. The key novelty lies in providing modeling constructs that enable the specifica-
tion of commonly used predictive models within an optimization model, have the features
of the predictive model as variables in the optimization model, and incorporate the output
of the predictive models as part of the objective. The framework considers two sets of
decision variables; regular and predicted. The relationship between the regular and the pre-
dicted variables are specified by the user as pre-trained predictive models. JANOS currently
supports linear regression, logistic regression, and neural network with rectified linear acti-
vation functions. In this paper, we demonstrate the flexibility of the framework through an
example on scholarship allocation in a student enrollment problem and provide a numeric
performance evaluation.

1 Introduction

There has been significant proliferation of research in and application of machine learning and
discrete optimization. These two analytical domains have frequently been used in a single
business decision-making problem but for different purposes. Machine learning techniques
have typically been used to predict what is likely to happen in the future, while optimization
methods have been used to strategically search through feasible solutions.
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However, the integration of the two analytics streams is sometimes handled sequentially
without full integration (Deng et al. 2018), with the outputs of machine learning models only
used as parameters in an optimization model. As an example, suppose a neural network is built
to predict customer churn of a telecommunication company, with features consisting of demo-
graphic information together with service price to the customer (the lower the price, the lower
the probability of customer churn). How then should the company set service price in order to
maximize revenue? The features of the predictive model are variables in the decision problem
and the output of the predictive model for any choice of the decision variables is a part of the
objective function. This makes the optimization problem of maximizing revenue particularly
challenging. There are few, if any, techniques, much less tools, available for solving such an
optimization problem in the way proposed. This paper seeks to fill that void by introducing
JANOS1, a modeling framework for joint predictive-and-prescriptive analytics. Figure 1 depicts
how one could use JANOS for a similar business problem of minimizing customer churn. First,
the user would train a machine learning model, in this case a neural network, for predicting
customer churn. Then, the trained model would be replicated any number of times to repre-
sent either each customer or each segment of customers, and an optimization model where the
neural network is embedded is formulated and solved.

JANOS allows a user to specify portions of an objective function as commonly utilized pre-
dictive models, whose features are fixed or are variables in the optimization model. JANOS

currently supports predictive models of the following three forms: linear regression, logistic
regression, and neural networks (NNs) with rectified linear (ReLU) activation functions. These
models are commonly used in practice, and the framework is easily extensible to other predictive
models.

We decided to only include the output of the predictive models in the objective function
because the typical setting is that a predictive model provides just an expected value for the
dependent variable. Adding the outputs in the constraints is possible, but it would result
in satisfying constraints only in expectation. Constrained stochastic optimization problems
sometimes require chance constraints or other considerations, so in this iteration of the solver
we opted for a simplistic setting.

To embed these predictive models in an optimization model, we utilized linearization tech-
niques. For linear regression this is straightforward. For logistic regression, we employ a
piece-wise linear approximation. Details are provided in Section 4.2. For NNs, we make use of
recent work that formulates a NN as a mixed integer programming (MIP) problem (Serra et al.
2017, Bienstock et al. 2018, Fischetti and Jo 2017, Anderson et al. 2020); we do not use the
MIP to train the NN, but rather utilize the network reformulation to produce outputs of the
NN based on the input features. Details are provided in Section 4.1.

A key advantage of JANOS is that it automates the transcription of common predictive
models so that they can be handled by mixed integer programming solvers. Thus, researchers
and practitioners are relieved of this onerous task of reformulating the predictive models into
tractable constraints. A different model for predictive variables can quickly be substituted
out without much effort from the modeler, enabling the user to quickly compare the optimal
decisions when different predictive models are used. Finally, a researcher or practitioner looking

1A play on Janus, who according to ancient Roman mythology is the god of beginnings, gates, transitions,
time, duality, doorways and is usually depicted with two faces one looking to the past (predictive) and one to
the future (prescriptive). (Source: Wikipedia)
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Historical Data
CustomerID  Churn  Income  Price
   00001          1        $12,000    $30
   00002          1        $22,000    $42
   00003          1        $15,000    $37

...
   09999          0        $12,000    $33

Train a neural network, NN, i.e., obtain the 
weights W, biases b and the structure of the 

neural network below
Churn = NN(Price, Income)

On-going Business Data
CustomerID  Income
  10001         $25,000
  10002         $20,000

...
  19999         $12,500

Obtain the price to charge each customer

CustomerID = ...

CustomerID = 19999

CustomerID = 10001

Price

Income

Churn

Price

Income

Churn

Figure 1: A schematic of how JANOS works
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to apply an algorithmic approach to the type of decision-making problem discussed in this paper
would not have to add all parameters of a predictive model with an optimization model; for
example, a neural network with 3 layers of 10 nodes each would have hundreds of parameters,
and JANOS automates that transformation. In future releases, additional predictive models will
be added as well as more advanced reformulations and algorithmic implementations.

1.1 Contributions

JANOS is built in Python and calls Gurobi (Gurobi Optimization 2019) to solve MIPs. A user
specifies an optimization model through standard modeling constructs that share similarities
to those in other common optimization modeling languages, for example Gurobi’s Python

interface, Pyomo Gurobi (Hart et al. 2011) or JuMP (Dunning et al. 2015) in Julia (Bezanson
et al. 2017).

We partition the variables in the model into two sets—the regular variables and the pre-
dicted variables. The regular variables are used to model operational constraints and objective
function terms as typical variables in MIP. The predicted variables are specified through pre-
dictive models wherein some of the features depend on regular variables. The predictive models
are pre-trained by the user, who can load any of the three permissible predictive model forms,
together with a mapping between the regular variables and the features. We eventually plan
to integrate automated machine learning (Feurer et al. 2015) and have JANOS determine the
best predictive model to associate with a given data frame. To exhibit how the framework can
be used, we present as an example the allocation of scholarship offers to admitted students to
optimize the enrollment.

The impact of the JANOS solver on research is twofold. First, framing a problem as optimiz-
ing over standard predictive models where the decision variables are features of the predictive
models requires much attention. Suppose the predictive model is a support vector regression
with a radial kernel. How does one solve the optimization problem? Each predictive model
added to JANOS will require research effort to investigate linearizations or advanced optimization
methodology that lead to efficient solution times.

More broadly, we envision that JANOS will be used by researchers in fields other than
optimization to solve the problems they are interested in to derive the insights they desire.
Currently, a researcher familiar with optimization who has a machine learning model that
they would like to optimize over is unable to solve the problem of interest. Contrast that
with a researcher in logistics that requires the solution of a routing problem to identify how
many trucks are needed by the company. This researcher can use a standard commercial integer
programming solver, solve the routing problem to identify the number of trucks that are needed
by the company, and then make decisions based on that output. The logistics researcher need
not know how the optimization model is solved, just that the problem of interest can be solved.
We envision the same thing for the former researcher. JANOS allows the researcher to solve an
optimization problem with machine learning models so that optimal decisions can be identified
for real-world decision making problems that previously could not.

The rest of the paper is organized as follows. We first review the literature related to
the joint reasoning in predictive and prescriptive analysis in Section 2. The general problem
addressed by JANOS is provided in Section 3. The algorithmic details of how we optimize
over linear regression models, logistic regression models and NNs are given in Section 4. The
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student enrollment example and a collection of experiments designed to test the efficiency of
JANOS are described in Section 5. We then describe how JANOS can be downloaded and installed
in Section 6. We conclude in Section 7.

2 Literature Review

Existing studies on the combination of predictive and prescriptive analytics take predictions as
fixed and then make choices based on fixed predictions, for example, predictions are parameters
in an optimization model (Ferreira et al. 2015). Ferreira et al. (2015) first predict sales based on
a chosen number of price values and then uses those fixed estimates to determine the optimal
price. In their application, the predicted sales are parameters in the optimization model.
This modeling approach adapts, but still lacks in full integration between the two analytics
disciplines. Sales will generally depend on price, and an optimization algorithm for tackling
this problem should incorporate such reasoning. Approaches using fixed-point estimates of
parameters are feasible when full enumeration or partial enumeration of the collection of feasible
solutions is practical. However, in instances where enumeration is not possible, aspects of the
optimization algorithm need to be integrated into the predictive model. For example, Huang
et al. (2019) model a real-world problem in such a way, but only propose an exact optimization
approach when simple linear regression models are used for prediction.

There are additional streams of research that combine predictive modeling and optimiza-
tion. First of all, machine learning algorithms are powered by optimization techniques. For
example, when fitting a simple linear regression model, the ordinary least square method deter-
mines the unknown parameters by minimizing the sum of the squares of the difference between
the observed dependent variable values and the fitted values. In machine learning, various op-
timization techniques are applied so that the learning process is efficient and achieves desired
accuracy (Boyd et al. 2011). For example, Koh et al. (2007) propose an interior-point method
for solving large-scale `1-regularized logistic regression problems; ALAMO (Cozad et al. 2014)
uses mixed integer optimization to learn algebraic models from data; and, linear programming
(LP) and integer programming (IP) based methods have been proposed to assist training NNs
(Bienstock et al. 2018). Additionally, there have been recent efforts on using machine learning
to improve optimization algorithms. For example, Cappart et al. (2019) utilize deep reinforce-
ment learning to improve optimization bounds, and Khalil et al. (2017) proposes a generic
method for learning combinatorial optimization over graphs, with a plethora of papers arising
in this area (Nazari et al. 2018, Lemos et al. 2019, Bengio et al. 2018). These papers either
leverage machine learning to improve optimization, or leverage optimization to improve ma-
chine learning—in our setting, we integrate the two into a unified decision-making framework.
There are multiple streams of research that consider machine learning and operations research
in one decision-making pipeline. One stream of research is to estimate machine learning mod-
els while minimizing the regret of decisions (Elmachtoub and Grigas 2017, Wilder et al. 2019,
Demirović et al. 2019, Mandi et al. 2019). Another is a framework for using auxiliary data to
prescribe business decisions (Bertsimas and Kallus 2020). In particular, a conditional stochas-
tic optimization problem minimizing uncertain costs is formulated, while our framework does
not explicitly model the uncertainty in the predictions.

There appear many recently-published and on-going works that optimize over supervised
learning models. For example, Paul et al. (2018) optimize over a non-parametric tree choice
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model; Mǐsić (2017) and Biggs and Hariss (2018) optimize over tree ensembles; and Aouad
et al. (2019) and Feldman et al. (2019) optimize over multinomial logistic models.

There exist some studies on optimizing over neural network structures. For example, in
Lam et al. (2000), a dual-objective optimization algorithm is formulated to optimize two neural-
network outputs. They use a heuristic algorithm for finding the optimal values of the decision
variables by searching over a small enumerated collection of possible values. Schweidtmann
and Mitsos (2019) present a method for a global optimization problem with a single embedded
neural network. They utilize the convex and concave envelops of the activation function they
employ, the hyperbolic tangent function. In JANOS, we restrict to only rectified linear unit
(ReLU) functions as activation functions, enabling us to formulate a network flow model to
optimize over any number neural networks through a mixed-integer linear programming (MILP)
transformation.

3 Problem Description

JANOS seeks to solve problems formulated as (PROBLEM-ORI):

max
x

n1∑
j=1

cjxj +

n2∑
k=1

dkyk (PROBLEM-ORI)

s.t.

n1∑
j=1

aijxj ≤ bi, ∀i ∈ {1, . . . ,m} (1)

yk = gk(α
k
1 , . . . , α

k
pk

; θk), ∀k ∈ {1, . . . , n2} (2)

αkl is given, ∀l ∈ {1, . . . , qk} ,∀k ∈ {1, . . . , n2} (3)

αkl = ekl · x, ∀l ∈ {(qk + 1), . . . , pk} , ∀k ∈ {1, . . . , n2} (4)

xj ∈ Xj , ∀j ∈ {1, . . . , n1} . (5)

The variables x = (x1, . . . , xn1) are regular variables and the variables y = (y1, . . . , yn2) are
predicted variables. Each variable xj belongs to a finite or continuous set Xj and are constrained
via linear inequalities. Each predicted variable yk is associated with a predictive model gk, with
features αk = (αk1 , . . . , α

k
pk

). Each gk is assumed to be a pre-trained predictive model (a linear
regression, logistic regression, or neural network with a rectified linear activation function) so
that the parameters θk are fit prior to optimization by the user. Model gk has pk features,
(αk1 , . . . , α

k
pk

). The first qk, 1 ≤ qk ≤ pk, features of predictive model gk are fixed and given,
while each of the remaining (pk−qk) features are regular variables, linked through the function
ekl , a n1-length binary unit-vector with a 1 in the coordinate of the associated regular variable.
Note that a single pre-trained model can be used as multiple gk’s.

4 Algorithmic Details

In this section, we summarize how JANOS handles linear regression, logistic regression, and
NN models. If y is determined by a linear regression model, the function g is linear and the
construction is straightforward. We construct (PROBLEM-ORI) and feed the model to
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Gurobi. If y is a predicted value of a NN, y is obtained from a network flow model. The details
are in Section 4.1. If y is a predicted value of a logistic regression model, we partition the range
of the log-odds, i.e., Xβ as in y = 1

1+e−Xβ
into a collection of intervals, and use the mean of

the sigmoid value of Xβ within the corresponding interval to approximate y in the objective
function. The details are in Section 4.2.

4.1 Optimization over Neural Networks

For every predicted variable y that is determined by a NN prediction, we associate a distinct
network flow model. A NN can be viewed as a multi-source single-terminal2 arc-weighted
acyclic layered digraph N = (V,A). The node set V is partitioned into a collection of layers
V1 ∪ · · · ∪ Vl. There is a one-to-one mapping between input features α of g and nodes v ∈ V1.
For any node v ∈ V1, we denote the corresponding feature by α(v). Set Vl consists of a single
terminal node t. For j ∈ {2, . . . , l}, every node u ∈ Vj has a bias B(u) learned during training.

Each arc a = (u, v) ∈ A is directed from a node u in layer Vj to a node v in layer Vj+1 for
some j ∈ {1, . . . , l − 1}. Every arc has a weight w(a) learned during training.

Given values α(v) for all nodes v ∈ V1, the prediction from a NN with a ReLU activation
function is calculated recursively by assigning a value Fv to all nodes in the NN via the following
iterative procedure and returning Ft:

• ∀v ∈ V1,Fv = Gv = α(v);

• For j = 2, . . . , l − 1,∀v ∈ Vj , Gv =
∑

u∈Vj−1
w ((u, v)) · Fu + B(v), Fv = max {0,Gv}; and

• Ft = Gt =
∑

u∈Vl−1
w ((u, t)) · Fu + B(u).

Here Gv is the input of the ReLU function, and Fv is the output of the ReLU function.
We further define zu ∀u ∈ V as a binary variable indicating if Gu > 0. With this interpre-

tation, one can formulate the following model (MOD-NN) to calculate y based on the inputs
α(v), ∀v ∈ V1, that are the features, which can be fixed constants or functions of the decision
variables.

y = Ft (MOD-NN)

Fv = Gv, ∀v ∈ V1 ∪ Vl (6)

Gv = α(v), ∀v ∈ V1 (7)

Gv =
∑

u∈Vj−1

w((u, v)) · Fu + B(u), ∀j ∈ {2, . . . , l} ,∀v ∈ Vj (8)

−M · (1− zv) ≤ Gv ≤M · zv, ∀v ∈ V2 ∪ · · · ∪ Vl−1 (9)

Gv −M (1− zv) ≤ Fv ≤ Gv +M · (1− zv) , ∀v ∈ V2 ∪ · · · ∪ Vl−1 (10)

0 ≤ Fv ≤M · zv, ∀v ∈ V2 ∪ · · · ∪ Vl−1 (11)

zv ∈ {0, 1} , ∀v ∈ V (12)

Gv unconstrained, ∀v ∈ V (13)

Fv unconstrained, ∀v ∈ V. (14)

2The NN does not always have a single terminal. In our case, we only have one output, and so the output
layer in our trained NN only has one node.
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Constraints (6) guarantee that the ReLU activation function is not enforced in the input and
output layers. Constraints (7) enforce that the values of the nodes in the input layer is the
values of each input variable of the predictive model. These will either be fixed constants or
the value determined by the optimization model for a single problem variable. Constraints (8)
compute the input of the ReLU function of each node that is not on the first layer. Constraints
(9) to (11) enforce the ReLU activation function on each hidden layer.

In (PROBLEM-ORI), α(v) can be a regular variable or a constant, and there will be
a separate network flow formulation for each of the predicted variables that are outcomes of
neural networks. We test the impact of the size of the neural network and the number of such
predicted variables on the performance of JANOS in Section 5.

4.2 Optimization over Logistic Regression Models

JANOS provides a parameterized discretization for handling logistic regression prediction. Specif-
ically, it represents the nonlinear function of a logistic regression model using a piece-wise linear
approximation, partitioning the range of the log-odds, i.e., Xβ as in yk = 1

1+e−Xβ
into a collec-

tion of mutually exclusive and collectively exhaustive intervals. The number of intervals is a
parameter that can be specified by users. This is done by taking any number of intervals, and
forcing the output of the logistic regression model to take a fixed value within a small window
of what the actual predicted value is. This idea is illustrated on Figure 2.

Figure 2: A logistic function curve for a collection of points. Each point represent an element
of a training set, with coordinates given by the dot product of the coefficients and their fea-
tures, and the dependent variable. The curve shows a fit logistic regression, with confidence
interval in estimation around the points. The horizontal lines depict the linearization currently
implemented in JANOS, which associates the mean value of the function with every interval in
the discretization.

We partition the range of the log-odds into ∆ intervals, [Lδ, Uδ], for δ ∈ {1, . . . ,∆}, where
Lδ+1 = Uδ and we assume that the length of each interval [sigmoid(Lδ), sigmoid(Uδ)], ∀δ ∈
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{1, . . . ,∆} is uniform. The range of the log-odds is computed based on the bounds of the
features. We use the mean of the sigmoid function value within an interval to serve as a
piece-wise linear approximation of the actual predicted value of the logistic regression model.
Specifically, for interval δ, let

Vδ =
log(1 + eUδ)− log(1 + eLδ)

Uδ − Lδ
.

The value Vδ is the average value of the sigmoid function over all values between Lδ and Uδ,
where

sigmoid(a) =
ea

1 + ea
.

We define zδ, ∀δ ∈ {1, . . . ,∆} as a binary variable indicating if we select a value for yk in
interval δ. Let F be the vector of features. Let β be the vector of estimated coefficients in
the logistic regression model. With this interpretation, one can formulate (MOD-LOGIT) to
maximize over a logistic regression model approximately, using the following transformation:

max y (MOD-LOGIT)

s.t.

∆∑
δ=1

zδ = 1, (15)

(Lδ − L1) · zδ + L1 ≤ Fβ, ∀δ ∈ {1, . . . ,∆} (16)

(Uδ − U∆) · zδ + U∆ ≥ Fβ, ∀δ ∈ {1, . . . ,∆} (17)

sigmoid(L1) + (Vδ − sigmoid(L1)) · zδ ≤ y, ∀δ ∈ {1, . . . ,∆} (18)

sigmoid(U∆) + (Vδ − sigmoid(U∆)) · zδ ≥ y, ∀δ ∈ {1, . . . ,∆} (19)

zδ ∈ {0, 1} . ∀δ ∈ {1, . . . ,∆} (20)

The value assumed by y will be approximately equal to sigmoid(Fβ), used as the value pre-
dicted by a logistic regression model.

Constraint (15) ensures that only one interval is selected. Constraints (16) to (17) select
the interval that contains the linear combination Fβ. Constraints (18) to (19) make sure that
y equals the mean outcome value of the selected interval. Recall that F will be determined
partially through fixed features and partially through decision variables.

5 Example Applications

In this section, we explore an example of allocating offered scholarship to admitted college
students to exhibit the capability and flexibility of JANOS v0.0.9. All predictive models were
built in Python3.6.9 using scikit-learn 0.22.2 (Pedregosa et al. 2011) and all optimization
models were solved with Gurobi Optimizer v9.0.2 (Gurobi Optimization 2019) setting the
MIPGap parameter to 0.1%. All experiments were run in Ubuntu 18.04.4 LTS on a Intel(R)
Xeon(R) Gold 6130 CPU @ 2.10GHz processor with 16 GB RAM. Data, code, and results are
available on GitHub3.

3https://github.com/iveyhuang/janos paper experiments
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5.1 Problem Description

The Admission Office of a university wants to offer scholarship to its admitted students in
order to bolster the class profile, such as academic metric, and often to simply maximize the
expected class size (Maltz et al. 2007).

The Admission Office has collected from previous enrollment years the applicants’ SAT,
GPA, scholarship offer, and matriculation result, i.e., whether the student accepted the offer
or not. This year, suppose the school is issuing N offers of admission. Moreover, suppose the
budget available for offered scholarship is $0.2 · N · 104, denoted by BUDGET henceforth.
The amount of scholarship that can be assigned to any particular applicant is between $0 and
$25,000. The Admission Office wants to maximize the incoming class size.

To solve this optimization problem using JANOS, one can pre-train a model to predict the
probability of a candidate accepting an offer given this student’s SAT, GPA and scholarship
offered. The decision to make is the third feature for each student : the amount of scholarship
to offer to each student.

We model this problem as follows (STUDENT-ENROLL):

max

N∑
i=1

yi (STUDENT-ENROLL)

s.t.
N∑
i=1

xi ≤ BUDGET (21)

yi = g(si,gi, xi; θ), ∀i ∈ {1, . . . , N} (22)

0 ≤ xi ≤ 25, 000, ∀i ∈ {1, . . . , N} (23)

where,

• xi is the decision variable, i.e., the amount of scholarship assigned to each student ac-
cepted;

• si is the SAT score of applicant i (standardized using z-score);

• gi is the GPA score of applicant i (standardized using z-score);

• yi is a predicted variable per admitted student, the outcome of a predicted model repre-
senting the probability of a candidate accepting the offer; and

• g is a predicted model pre-trained to predict any candidates’ probabilities of accepting
an offer. The parameters si, gi and xi are the predictive model’s inputs. The vector θ
represents the parameters of the predictive model, which we assume to be the same for
each applicant. The function g can be any of the permissible predictive models with θ
determined prior to optimization.

5.2 Experimental Results

We utilize randomly generated realistic student records to train predictive models and test the
efficiency of the solver when solving different-sized problems with variations in parameters as
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well. We build the three permissible models (linear regression, logistic regression, and neural
networks) with various parameter settings, i.e., the number of intervals for logistic regression
models and the hidden layer sizes for neural networks. Each of the models is trained on 20,000
randomly generated student records.

We then generate sets of random student records of different sizes to test the scalability of
JANOS, 50, 100, 500 and 1,000 admitted students. These experiment instances are produced
using the same data-generating scheme as was used for building the training set. In the test
data sets, each record contains only a SAT score and a GPA score, where the decision is to
assign scholarship based on prediction of enrollment. We document how long it takes JANOS to
solve problems of different sizes with different predictive models.

We first provide an analysis of the total runtime using various parameters for each of the
models. For the linear regression there are no configurable parameters, and so we have only
one setting, LinReg. For the logistic regression model, the main parameter of interest is the
number of intervals in the discretization. For a fixed number of intervals ∆, let LogReg(∆)
refer to solving the model with logistic regression prediction with ∆ intervals. For neural
networks, there are several parameters one might tune, most apparent being the configuration
of the neurons. We fix 10 nodes per hidden layer and vary the number of hidden layers to 1, 2,
3. Let NN(h) refer to solving the model with neural networks with h hidden layers.

For each of the predictive model specifications, we run 5 instances and take the mean run-
time. Figure 3 depicts the runtimes. On the x-axis we indicate the number of admitted students
in the admitted pool. On the y-axis we report the runtime in seconds. LinReg yields the most
efficient model, taking up to a second to solve. LogReg(∆) takes an increasing amount of time
as ∆ grows, as does NN(h) for increasing h, but the runtimes are not prohibitively large. Note
that largest instances have 1,000 logistic regression approximations or 1,000 neural network
flow models.

Figure 3: The average runtimes of linear regression models, logistic regression models, and
neural networks with different scales.

We also evaluate how well the approximation of the logistic regression performs at obtaining
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optimal solutions. We apply the logistic regression approximation for 10 instances with 50 stu-
dents. The results are reported on Figure 4. On the x-axis we indicate the number of intervals
in the approximation, and on the y-axis we report the root mean squared error (RMSE) of
the probability estimates given by the approximation and the actual learned logistic regression
evaluation at the optimal solutions obtained by the approximation. As the number of intervals
increases, the approximation becomes stronger, but as discussed earlier, increases runtime.

Figure 4: The quality of the linear approximation of the logistic regression function at optimal
solutions.

In order to evaluate the expected improvement in solutions obtained from JANOS over what
might be done in practice, we evaluate the solution obtained by JANOS and compare with the
following heuristic that can be employed for any predictive model g for this application:

1. Sort the accepted students in non-decreasing order of

g(si,gi, $25, 000|θ)− g(si,gi, $0|θ).

2. Following the above order, allocate the maximum permissible aid (i.e., $25,000) until
reaching the maximum budget.

This is a realistic heuristic because it greedily assigns scholarship to the students in the order
of those that are most sensitive to scholarship. Results obtained using this heuristic are listed
under “Heuristic” in Table 1.

There are other ways that a practitioner who is well-versed in both optimization and
predictive modeling might address a decision problem of this sort. For example, in this
application, one could discretize the domain of the decision variables to take values D =
{0, 1, . . . , 25, 000} and then evaluate the predictive model g(·) at each value for each ad-
mitted student. However, such a transformation results in a pseudo-polynomial size model
and also admits only an approximation. Note that if desired, one can model the prob-
lem in this way directly in JANOS by declaring the decision variables as discrete and set-
ting their domain to D. So we provide results evaluated using JANOS by setting the regu-
lar variables as discrete in {$0, $5, 000, $10, 000, $15, 000, $20, 000, $25, 000}, listed under
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“JANOS Discrete” in Table 1. Results obtained by solving STUDENT-ENROLL are listed
under “JANOS Continuous” in Table 1.

Table 1 reports results from the experimental evaluation. In particular, for logistic regres-
sion (LogReg(∆)) and neural network prediction (NN(1)) models, we report for 500 and 1000
admitted students the expected number of enrolled students based on the allocation determined
by JANOS and the heuristic described above. We also report for both models and for each N
the percent reduction in admitted student declination of admission.

The results indicate that simply by a more careful assignment of scholarship and making no
other changes, JANOS can provide a substantial improvement in expected matriculation rates.
In particular, we see that the heuristic described above would yield under a 50% expected
matriculation rate on average, while the solutions obtained using JANOS yield approximately
60% expected matriculation. Using a discretization of monetary increments within JANOS yields
slightly lower expected matriculation rates than a continuous domain, but is a realistic setting
for a university where giving scholarships in fixed increments is more common, even though
more expected enrollments can be realized from allowing the university any level of scholarship
for any student, i.e., allowing continuous assignment of scholarship. In summary, going from
the heuristic to using a discretization can reduce the number of declined admissions by about
20%, and moving from the discretized model to the continuous model can reduced declined
admissions by an additional 6%. This example exemplifies the improvement in decision-making
capability that JANOS can obtain.

Table 1: Improvement by JANOS over a basic heuristic.

LogReg Heuristic JANOS Discrete JANOS Continuous
Expected % Reduction in Declination

JANOS Discrete
vs. Heuristic

JANOS Continuous
vs. JANOS Discrete

500 243.17 297.45 308.59 21.13% 5.50%

1000 467.16 576.35 599.95 20.49% 5.57%

NN Heuristic JANOS Discrete JANOS Continuous
Expected % Reduction in Declination

JANOS Discrete
vs. Heuristic

JANOS Continuous
vs. JANOS Discrete

500 243.28 299.67 311.86 21.97% 6.08%

1000 467.44 580.66 606.57 21.26% 6.18%

6 Accessing the Solver

JANOS works with Python3 and currently requires Gurobi for optimization and sklearn for pre-
dictive modeling. You also must have numpy and matplotlib installed. Please refer to JANOS’s
website (http://janos.opt-operations.com) for more information, where a user manual,
quick start guide, and examples are provided, including all data used for the experimental
analysis in this paper.

7 Conclusions and Future Work

We propose a modeling framework JANOS that integrates predictive modeling and prescriptive
analytics. JANOS is a useful tool both for practitioners and researchers who are seeking to inte-
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grate machine learning models within a discrete optimization model. JANOS can be expanded
in many directions. Adding the capability to handle additional predictive models like random
forests will greatly expand the potential for use in industry. Investigating how other predictive
models, like support vector regressions with an arbitrary kernel function, can be incorporated
is also an interesting avenue for research. Another direction is to explore alternative MIP
formulations for existing predictive models, such as the MIP formulations for trained NNs in
Anderson et al. (2020). Incorporating uncertainty in the predictions and making decisions that
account for their impact as suggested in Bertsimas and Kallus (2020) is a further direction to
explore.
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