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Abstract
We address the problem of enabling two-dimensional digital image correlation (DIC) for
strain measurement on large three-dimensional objects with curved surfaces. It is challenging
to acquire full-field qualified images of the surface required by DIC due to geometric distortion
and the narrow visual field of the surface that a single image can cover. To overcome this issue,
we propose an end-to-end DIC framework incorporating the image fusion principle to achieve
full-field strain measurement over the curved surface. With a sequence of blurry images as
inputs, we first recover sharp images using blind deconvolution, then project recovered sharp
images to the curved surface using camera poses estimated by our proposed perspective-n-
point (PnP) method called RRWLM. Images on the curved surface are stitched and then
unfolded for strain analysis using DIC. Numerical experiments are conducted to validate our
framework using RRWLM with comparisons to existing methods
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ABSTRACT

We address the problem of enabling two-dimensional digital image
correlation (DIC) for strain measurement on large three-dimensional
objects with curved surfaces. It is challenging to acquire full-field
qualified images of the surface required by DIC due to geometric
distortion and the narrow visual field of the surface that a single im-
age can cover. To overcome this issue, we propose an end-to-end
DIC framework incorporating the image fusion principle to achieve
full-field strain measurement over the curved surface. With a se-
quence of blurry images as inputs, we first recover sharp images
using blind deconvolution, then project recovered sharp images to
the curved surface using camera poses estimated by our proposed
perspective-n-point (PnP) method called RRWLM. Images on the
curved surface are stitched and then unfolded for strain analysis using
DIC. Numerical experiments are conducted to validate our framework
using RRWLM with comparisons to existing methods.

Index Terms— blind deconvolution, digital image correlation
(DIC), image fusion and stitching, perspective-n-point (PnP).

1. INTRODUCTION

Strain measurement of materials subjected to loadings or mechanical
damages is an essential task in various industrial applications [1–3].
For strain measurement, aside from the widely used pointwise strain
gauge technique, digital image correlation (DIC) as a non-contact
and a non-interferometric optical technique attracts a lot of attentions
for its capability of providing full-field strain distribution of the
surface using a simple experimental setup [4–7]. DIC is performed
by comparing the digital gray intensity images of the surface before
and after deformation, taking derivative of pixel displacement as a
measure of strain at the pixel.

In some of the applications, it is of great interest to perform full-
field two-dimensional (2D) DIC analysis [8] on the curved surface
of large 3D objects. DIC has strict requirements on images taken
before and after distortion for accurate pixel displacement, such as
image resolution, image registration, and compensation of camera
lens distortion, etc., since the displacements under strain are generally
subtle (typically sub-pixel level) for most industrial materials [9].
Therefore, the requirements in target scenarios lead to two limitations
for existing 2D DIC analysis. First, the DIC method is usually limited
to 2D planar object surfaces rather than 3D curved surfaces [4, 5].
Second, the DIC method is usually restricted to small surfaces due to
the extremely high pixel resolution requirement of images for DIC
analysis.
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In this work, we propose an end-to-end fusion-based DIC frame-
work to enable strain measurement along the 3D object curved surface
in large size using a single camera. We first use a moving camera
over the 3D large surface to acquire a sequence of 2D blurry images
of the surface texture. With these blurry observations, we recover the
corresponding sharp images using blind deconvolution and project
the pixels in them to the 3D surface using camera poses estimated
by our proposed robust perspective-n-Point (PnP) method for image
fusion. The stitched 3D surface images before and after deformation
are unfolded to two 2D fused ones respectively, converting the 3D
strain measurement into a 2D one for further DIC analysis. Since
the displacements are subtle as mentioned before, their derivatives
and corresponding strains are extremely sensitive to the fused image
quality. Thus, the most daunting challenge in the pipeline is the
stringent accuracy requirement (at least sub-pixel level) of the image
fusion method for valid strain measurement, which requirement lim-
its the application of existing PnP methods in our experiments. To
address these limitations and challenges of 2D DIC analysis for target
scenarios, our main contributions are as follows:

1. We propose an end-to-end DIC framework incorporating im-
age fusion to the strain measurement pipeline. It extends the
range of DIC-based strain measurement applications to the
curved surface of 3D objects in large size.

2. We propose a two-stage method based on PnP method and
bundle adjustment principle for image fusion. Our method
outperforms state-of-arts and achieves applicable image fusion
accuracy for strain measurement by DIC analysis.

1.1. Related Work

A lot of efforts have been made on 3D DIC methods based on a binoc-
ular stereo vision or a multi-camera system surrounding involving
precise calibration and image stitching, which are difficult to operate
in various scenarios [10–13]. This work utilizes the images captured
by a single ordinary moving camera [6,7] rather than a well-calibrated
multi-camera system. Furthermore, the proposed framework incorpo-
rates image fusion and camera pose estimation to automatically stitch
a large number of images of the full-field curved surface under test.

This work extends the range of applications based on image fu-
sion and stitching [14] to strain measurement in mechanical engineer-
ing. The proposed framework decouples the image fusion problem
into a sequence of well-known PnP problems, which have been widely
explored by using both non-iterative and iterative methods [15–20].
Some are with extra outlier rejection [15, 18] or incorporate the ob-
servation uncertainty information [21]. The proposed image fusion
method combining the bundle adjustment principle and an iterative
PnP method which outperforms existing PnP methods and achieves
applicable fusion accuracy.



2. FUSION-BASED DIC FRAMEWORK

2.1. Image Acquisition Model and Problem Formulation

Without loss of generality, we consider the strain measurement of
a cylinder surface which is of interest in many applications. For
image acquisition, a moving camera captures a sequence of images
tYiu

p
i“1 for the cylindrical surface texture Ub before deformation,

and tY 1
i u
q
i“1 for Uf after deformation, as illustrated in Fig.1. Each

sequence consists of p (or q) images in order which overlapping with
their neighbors. In the following sections, we mainly show the model
and analysis for the sequence tYiupi“1 without loss of generality.

Since out-of-focus blur is a common image degradation phe-
nomenon, we consider a six degree of freedom (6-DOF) pinhole
camera model [14] with a camera lens’ point spread function (PSF)
(blur kernel) K P Rp2rg`1qˆp2rg`1q, which is assumed to be a trun-
cated Gaussian kernel [22]:

Kpx, yq “

#

1
C1

expp´px
2`y2q

2σ2 q
a

x2 ` y2 ď rg

0
a

x2 ` y2 ą rg,
(1)

where rg is the radius, C1 is the normalization term to ensure the
energy of the PSF

ř

x,y
1
C1

expp´px
2`y2q

2σ2 q “ 1. Then the captured
images tYiupi“1 can be modeled as [23, 24]:

Yi “K fXi, i “ 1, 2, ¨ ¨ ¨ , p, (2)

where f denotes the convolution operation, Xi P Rmˆn is the i-th
sharp camera focal plane image in the sequence tXiu

p
i“1.

Each pixel x “ rx, ysJ in Xi is projected from a pixel u “

rxu, yu, zus
J on the 3D surface according to:
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(3)
where R P R3ˆ3 and T P R3 are the rotation matrix and the transla-
tion vector respectively, depending on the camera pose of Xi, v is a
pixel-dependent scalar projecting the pixel to the focal plane, and Ps
is the perspective matrix of the camera.

Note that each image Yi (Y 1
i ) in the sequence covers a narrow

field of the cylinder surface Ub (Uf ), whose camera pose is not
known exactly except for the first image due to random perturbations
of the camera. With the prior knowledge of the cylinder geometry,
our goal is to recover the full-field unfolded images of the curved
surface based on tYiupi“1 and tY 1

i u
q
i“1 such that the strain on the

cylindrical surface can be analyzed using 2D DIC. In the following
subsections, we will introduce our proposed framework including
image deblurring, image fusion, and DIC, as illustrated in Fig.1.

2.2. Image Deblurring

The goal of this module is to recover sharp focal plane images
tXiu

p
i“1 and the unknown blur kernel K simultaneously from the

blurry observations tYiupi“1 in (2). To this end, we formulate the
blind deconvolution problem as

min
K,tXiu

p
ÿ

i“1

˜

β

2
}Yi ´K fXi}

2
F `

m¨n
ÿ

j“1

}DjXi}2

¸

` IGpKq,

(4)
where }¨}F represents the Frobenius norm of a matrix, IGp¨q is the
indicator function to ensure K is a truncated Gaussian kernel, Dj

represents the derivative of Xi at pixel j in both x and y directions,
and β is a weight depending on the noise level of the image Yi.
In the objective function, the first term is a data fidelity term; and
the second term is total variation (TV) [25] which is a widely used
regularization term to preserve sharpness of the image. Equation
(4) is solved by alternating minimization with respect to K and
tXiu

p
i“1. Especially, we update tXiu

p
i“1 [26] utilizing circular

convolution with the periodic boundary assumption on tXiu
p
i“1 for

fast computation by FFT [4].
To obtain a great initialization K0 of the blur kernel, we use

Wiener filter [4] by minimizing the normalized sparsity measure [23]
in the possible region of σ as

K0 “ argmin
K

L
ÿ

i“1
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where ĎXipK,Yiq “ WienerpK,Yiq is the filtered image of Yi
with kernel K, ∇x and ∇y denote the derivatives in x and y direc-
tions respectively, and L is the number of images used.

2.3. Image Fusion

In this module, we reconstruct the super-resolution texture over the
3D object curved surface using the deblurred sequence of images
tX̂iu

p
i“1 for DIC analysis.

2.3.1. Camera pose estimation

Without loss of generality, we consider the problem of estimating the
camera pose of a target deblurred image X̂i by registering it with an
overlapping reference image X̂j of which the camera pose is known.

Firstly, we acquire the well-known SIFT [27] feature point sets
ΩSIFT
i “ txiu in the target image X̂i and ΩSIFT

j “ txju in the
reference X̂j . Then we seek a set of matched feature points Apj,iq “
tpxmj ,x

m
i q|x

m
j P ΩSIFT

j ,xmi P ΩSIFT
i ,m “ 1, 2, ...u satisfying [28]

›

›apxmi q ´ apxmj q
›

›

2
ď C2 ¨ min

xPΩSIFT
j zxmj

}apxmi q ´ apxq}2 , (6)

where apxq denotes the SIFT feature vector at the pixel x, ΩSIFT
j zxmj

is the set of ΩSIFT
j excluding xmj , and 0 ă C2 ď 1 is a constant

chosen to remove feature outliers, typically C2 “ 0.7.
We project each feature point xmj in Apj,iq to the 3D surface and

get the corresponding set of points tumj “ px
m
uj , y

m
uj , z

m
uj qu, using

(3) with the pose of X̂j and the object geometry. Then the camera
pose estimation problem becomes the widely known PnP problem to
estimate the camera pose using the point set Mpj,iq “ tpu

m
j ,x

m
i qu

[16].
PnP problem can usually be formulated as a nonlinear sum of

least squares problem [17]. Considering that r3 “ r1 ˆ r2 holds
in R “ rr1, r2, r3s

J, we use h “ rrJ1 , r
J
2 ,T

J
s
J
P R9 to denote

unknown parameters of the camera pose. Then the camera pose hi
associated with X̂i can be achieved by seeking h that [15, 29]:

min
h
gph|Mpj,iqq “

ÿ
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m
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2
,

s.t. RRJ “ I, (7)

where x̂ipu
m
j ,hq is the projection result from the 3D point umj to

the camera focal plane of X̂i with respect to the camera pose h using



Fig. 1. The pipeline of the image acquisition and the strain measurement framework.

(3), R is determined by h as above, and wm “ 1

}x̂ipumj ,hq´xmi }
α

2

represents the inverse of the measurement error for the m-th feature
pair, for m “ 1, ¨ ¨ ¨ , |Mpj,iq|, and typically α “ 0.5.

To solve this problem, we utilize the widely used Levenberg-
Marquardt algorithm (LM) [29] in conjunction with the projection
operator Pp¨q to keep the orthonormality of the rotation matrix R.
Given the present estimation hptq, one step update hpt`1q

“ hptq `
∆h for (7) by LM can be seen as the interpolation of the greedy
descent and Gauss-Newton update with

∆h “ pH ` λdiagpHqq´1 b, (8)

where H “
ř

Mpj,iq
wm

∇x̂ipu
m
j ,hq

∇h

”

∇x̂ipu
m
j ,hq

∇h

ıJ

is the Hessian

matrix, b “
ř

Mpj,iq
wm

”

∇x̂ipu
m
j ,hq

∇h

ıJ
“

xmi ´ x̂ipu
m
j ,hq

‰

, and
λ is a parameter varying with iterations to determine the interpolation
level accordingly.

The projection operator Pphq is defined to orthonormalize r1, r2.
We revise the method used in [30] which approximately apportions
half of the error to r11 and r12 as
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with outputs r1, r2 being orthonormalized r11{
›
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›
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2
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›
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›

›

2
.

For each image X̂i in the sequence tX̂iu
p
i“2, using the previous

image X̂i´1 as the reference image, we estimate its camera pose
hi by iteratively update the camera pose using (8) with matching
feature set Mpi´1,iq followed by the projection operation Pp¨q and
an evaluation step.

2.3.2. Camera pose refinement and image fusion

Motivated by the bundle adjustment principle [14], we propose to
further refine camera pose estimations to take advantage of more
useful matching feature pairs. With this observation, for the i-th
image X̂i, we search feature pairs in all the previous images and
form the index set Li “ tl|l ă i, X̂l

Ş

X̂i ‰ 0u of images overlap-
ping with X̂i. Using the same condition in (6) for the feature point
matching between the target image X̂i and each image with index in
the set Li, we obtain the union of matching feature sets

Ť

jPLi Apj,iq.
Initialized with the estimated camera poses tĥiupi“2 from Sec.2.3.1,
the proposed method RRWLM alternatively updates one pose while
keeping other poses fixed, as summarized in Algorithm 1.

Finally, with accurately estimated camera poses for the sequence
of images tX̂iu

p
i“1 (or tX̂ 1

iu
q
i“1 after deformation), we project all

the pixels in these images back to the 3D surface, utilize the linear
interpolation to achieve the super-resolution surface texture Ûb (Ûf )
[14], and unfold it to the final 2D image Û 1

b (Û 1
f ).

Algorithm 1: Refined robust weighted LM (RRWLM)

Input: Matching feature set t
Ť

jPLi Apj,iqu
p
i“2, initial

poses thi “ ĥiu
p
i“1, and parameters

N,M, ε, L1, L2, ε1, ε2;
for mÐ 0 to M do

for iÐ 2 to p do
Construct

Ť

jPLi Mpj,iq “ tpu
m
j ,x

m
i qu from

Ť

jPLi Apj,iq using thju;

Initial λ and h
p0q
i “ hi;

for tÐ 0 to N ´ 1 do
∆hÐ pH ` λdiagpHqq´1 b ;
ho Ð Pphptqi `∆hq ;
Evaluate ∆h: ρphoq “
gph

ptq
i |

Ť

jPLi
Mpj,iqq´gpho|

Ť

jPLi
Mpj,iqq

∆hJ¨rλ diagpHq∆h`bs
;

if ρphoq ě ε (ho is good) then
h
pt`1q
i Ð ho λ “ max rλ{L1, ε1s ;

else
h
pt`1q
i Ð h

ptq
i λ “ min rλ ¨ L2, ε2s

end
end
Update hi Ð hNi ;

end
end
Output: thiupi“1.

2.4. DIC

From previous modules, we obtain the reference Û 1
b and the deformed

image Û 1
f of large visual fields of the 3D surface from two sequences

of images tYiupi“1 and tY 1
i u
q
i“1 of narrow visual fields as inputs,

respectively. The basic principle of DIC is tracking of the chosen
points between two images recorded before and after deformation for
displacement. The sub-level displacement can be computed by track-
ing pixels in the sparse grid defined on the reference image, thanks
to feature tracking methods [31]. Under the assumption that the dis-
placement is small in most engineering applications, our DIC module
enables the computation of strain measurement by displacement in
different smooth levels based on the programming in [31].

3. NUMERICAL EXPERIMENTS

3.1. Experimental Settings

For the 3D surface under test, two sequences of images are captured,
before and after deformation respectively, by a moving camera as
illustrated in Fig.1, where the region outside the cylinder is assumed



to be black. The 3D cylinder is of radius r “ 500mm and of height
H “ 80mm. The camera moving trajectory approximately lies in a
co-axial virtual cylinder surface of radius r2 “ 540mm.

For super-resolution reconstruction of the surface texture, the
camera moves in a snake scan pattern, taking 5 images as it moves
along the axial direction and then moving forward in the tangential
direction for the next 5 images along the axial direction, and so on. We
collect a total of p “ q “ 160 images of sizemˆn “ 500ˆ600 for
each sequence. Both sequences cover the same area, about 60 degree
of the cylinder surface with slightly different camera starting positions
before and after deformation, which can be directly extended to the
360˝ surface.

3.2. Implementation and Evaluation

To examine our proposed framework and the essential PnP method for
image fusion, we consider 5 baseline methods consisting of a classical
iterative method LHM [17], four state-of-art non-iterative methods
EPnP + GN [16], OPnP + LM [18], ASPnP [20], and REPPnP
[19] rejecting outliers. For comparison, we denote the non-refined
estimation process in Sec 2.3.1 as robust weighted LM (RWLM)
and the refined robust weighted LM as RRWLM in Alg.1. All the
baseline methods use the same matching feature set as RWLM. Both
LHM and RWLM use their own camera pose estimation of the
previous image as initialization for estimation of the present image.
RRWLM runs with tLi “ tl ă i, |l ´ i| ď 30uupi“2, M “ 20, and
other parameters set as [29]. To evaluate the accuracy of the camera
pose estimation tR̂, T̂ u, we compute the rotation and translation
error together with the ground truth tR,T u as

›

›

›

”

R̂´R, T̂ ´ T
ı
›

›

›

2

and widely used PSNR for the image stitching results Û 1
b and Û 1

f .
Firstly, using only the first 10 images of each sequence of images,

i.e., tX̂iu
10
i“1 and tX̂ 1

iu
10
i“1 for the reference and deformed texture,

we show the average of camera pose estimation errors and the av-
erage PSNR of the stitched surface texture images Û 1

b and Û 1
f with

comparison to the best 3 baseline methods in Table 1. The strain
analysis results by DIC are presented in Fig.2. We observe that the
proposed methods have competitive accuracy compared to existing
methods when the number of images for fusion is relatively small.

Method Average pose error PSNR of Û 1
b and Û 1

f

tX̂iu
160
i“1 tX̂iu

10
i“1 tX̂iu

160
i“1 tX̂iu

10
i“1

LHM 40.67 0.15 11.86 30.63
EPnP+GN 34.23 0.18 11.91 30.63
OPnP+LM 29.35 0.12 12.53 30.67

RWLM 0.22 0.08 28.09 27.84
RRWLM 0.13 0.07 30.18 30.74

Table 1. The average error of camera pose estimation and the average
PSNR (in dB) of the image fusion results Û 1

b and Û 1
f , using all 160

images or only the first 10 images in each sequence.

Table 1 also displays the same quantities using all images in the
sequence of size p “ q “ 160 instead. Compared to RWLM, the
proposed method RRWLM improves the performance by camera
pose refinement, and it also significantly outperforms the baseline
methods when stitching a large number of images. The main reason
for improvement is that the proposed method RRWLM reduces the
irreversible camera pose error accumulation in the targeted scenarios.

For illustration, the image fusion results for the reference image
U 1
b via the proposed RRWLM are shown in Fig.3 (b) with compari-

son to the ideal image shown in Fig.3 (a) and the best baseline method

   

(a) True strain (b)RRWLM (c) OPnP+ LM
Fig. 2. Comparison of strain maps of a small field over the cylin-
der using: (a) ideal surface images, (b) fused images by proposed
RRWLM method, and (c) fused images of the best baseline result by
OPnP + LM.

OPnP + LM in Fig.3 (c). As the image fusion results by existing
methods are not applicable anymore for reasonable strain measure-
ment, we only compare the strain measurement result by DIC using
RRWLM with the ground truth in Fig.4 (we only display the strain
in xx direction owing to space limit). It implies that the proposed
framework achieves at least sub-pixel and applicable accuracy of
image fusion results for strain measurement even if a large number of
images are under fusion.

 

(a) Ub (b) Û 1
b by RRWLM (c) Û 1

b by OPnP + LM

Fig. 3. Comparison of surface images: (a) ideal image Ub, (b) fused
image Û 1

b by RRWLM, and (c) fused image Û 1
b by OPnP +LM.

  

(a) Strain using Ub and Uf (b) Strain via RRWLM fusion

Fig. 4. Comparison of strain maps of a large field over the cylinder
using (a) ideal surface images Ub and Uf , and (b) fused images Û 1

b

and Û 1
f by RRWLM.

4. CONCLUSION

We proposed an end-to-end fusion-based DIC framework for 2D
strain measurement along curved surfaces of 3D objects in large
size. To address the challenges of the single image’s narrow visual
field of the surface, we incorporate the image fusion principle and
decouple the image fusion problem into a sequence of perspective-
n-point(PnP) problems. The framework based on our proposed PnP
method in conjunction with bundle adjustment accurately recovers the
3D surface texture stitched by a large number of images and achieves
applicable strain measurement by DIC. Numerical experiments are
conducted to show its outperformance with comparisons to existing
methods.
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