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Abstract
Maintaining individual thermal comfort in indoor spaces shared by multiple occupants is
difficult because it requires both intuition about the thermal properties of the room and
an understanding of the thermal comfort preferences of each individual. We explore an
approach to optimizing individual thermal comfort within a group through temperature set-
point optimization of HVAC equipment. We propose a weakly supervised algorithm to learn
the individual thermal comfort preferences and an autoencoding framework to learn static
approximations of room thermodynamics. We further propose two approaches to learn a
control law that sets the HVAC set-points subject to the preferred user temperatures. The
proposed method is tested on a real data-set obtained from workers in an open office. The
results show that, on average, the temperature in the room at each user’s location can be
regulated to within 0.5 C of the user’s desired temperature.
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Abstract

Maintaining individual thermal comfort in indoor spaces
shared by multiple occupants is difficult because it requires
both intuition about the thermal properties of the room and
an understanding of the thermal comfort preferences of each
individual. We explore an approach to optimizing individual
thermal comfort within a group through temperature set-point
optimization of HVAC equipment. We propose a weakly-
supervised algorithm to learn the individual thermal comfort
preferences and an autoencoding framework to learn static
approximations of room thermodynamics. We further pro-
pose two approaches to learn a control law that sets the HVAC
set-points subject to the preferred user temperatures. The pro-
posed method is tested on a real data-set obtained from work-
ers in an open office. The results show that, on average, the
temperature in the room at each user’s location can be regu-
lated to within 0.5oC of the user’s desired temperature.

1 Introduction
At any given time, a person’s feeling of thermal comfort
is somewhere on a continuum from cold to hot (ASHRAE
2013). The conditions that make a person comfortable are
unique and dependent on physiological factors such as eth-
nicity, body composition, gender, and state of health, as well
as environmental factors such as temperature, humidity, air-
flow, and weather. As a consequence of the difficulty in
measuring many of these variables and the computational
complexity of using many measured variables, individual
thermal comfort is commonly summarized by the easily
measured variables of temperature and humidity (ASHRAE
2013; CEN 2006; Haldi 2010). The set of temperature and
humidity values for which a person is comfortable is com-
monly called their comfort zone, and zones common to
many individuals are defined by engineering standard bodies
(ASHRAE 2013; CEN 2006). These comfort zones provide
an imperfect method to attempting to optimize user comfort
that so far has been the best approach available for mass de-
ployment.

Traditionally, maintaining thermal comfort has been an
individual’s own responsibility. Comfort is usually main-
tained through clothing adjustments or adjustments in the
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environment, such as opening a window or adjusting a heat-
ing, ventilation, and air conditioning (HVAC) device. Yet,
each of these actions represents a learned intuitive model
that is more complex than readily apparent. In search of an
easily deployable method, here we focus on setting HVAC
set-points, which in practice means learning the compli-
cated non-linear relationship between the thermal conditions
at an individual’s location in the room and the tempera-
ture at a measurement point that controls the HVAC device.
Users typically do not approximate these relationships very
well. Most often, users learn heuristics on how to set the
HVAC set-point or learn the most acceptable compromise
on their thermal comfort. The problem is further compli-
cated in common spaces, such as offices and living rooms.
Here, choosing how to set the room temperature acquires a
social/political component, and users may try to satisfy im-
mediate desires by overshooting their perceived set-points,
resulting in more discomfort for themselves and other occu-
pants, as well as wasted energy. Yet, studies show that it is
exactly in these environments where improving comfort is
most important, leading to improved work performance and
satisfaction, as well as increased social happiness (Hedge,
Wafa, and Anshu 2005). Thus, the ability to improve com-
fort automatically is very desirable, particularly in group set-
tings. This is reflected in the recent increased interest in solv-
ing this problem (Smith et al. 2017).

1.1 Background
Modern methods in sensing and learning offer the promise
of developing the ability to automatically improve and main-
tain personal comfort. Here, we briefly review the state of
the art in several fields relevant to this application, focusing
mainly on thermal comfort modeling and thermodynamic
modeling of the room.

Several recent papers have explored the problem of mod-
eling personal thermal comfort (Laftchiev and Nikovski
2016; Ranjan and Scott 2016; Huang, Yang, and Newman
2015; Jiang and Yao 2016; Farhan et al. 2015; Yi, Jia, and
Ler 2019; Kim, Schiavon, and Brager 2018). An important
focus of this work has been on reducing the need for human
feedback (Natarajan and Laftchiev 2019; Hu et al. 2019).
This is because we know that, given sufficient feedback from
the users, it is possible to learn a personalized model of the
user’s thermal preferences using statistical machine learning



techniques. Unfortunately, users are not likely to provide the
(typically) hundreds of labeled data points needed to learn
these models in full detail. Furthermore, it is unclear how
to combine multiple individual thermal comfort models to
optimize the overall group comfort for a room.

Room thermodynamics are complex. The temperature ex-
perienced by the user may be different than that specified
at the HVAC set point because of the spatial location of
the user or delays in the room’s thermodynamic response.
Therefore, modeling the room thermodynamics is essen-
tial for automatic thermal comfort optimization of a room.
Here, a distinction can be made between learning a truly dy-
namical thermodynamic model, where the temporal evolu-
tion of temperatures in response to the HVAC system op-
eration is modeled at all locations in the room, and static
(or quasi-static) models that learn the relationships between
room locations in the equilibrium (steady) state. Thermo-
dynamic systems have been modeled using the broad cate-
gories of white-box models (Deng et al. 2010; Oldewurtel
et al. 2010), which model the physical processes from first
principles; grey-box models (Hu and Karava 2014), which
rely on reduced-order physical models, simulation and op-
timization; and black-box models (Amasyali and El-Gohary
2018), which are purely data-driven models and include sta-
tistical models.

White- and grey-box models are still difficult to deploy
rapidly and at scale in the commercial setting because they
usually either exhibit large computational costs or require
individualized tuning by an expert for each deployment. On
the other hand, black-box models, and in particular neural
networks, have been shown (Delcroix et al. 2020) to per-
form well without external knowledge. Because of this, and
because of the relatively easier problem of inferring static
relationships from data, in this paper we will use neural net-
works to approximate static thermodynamic relationships.

1.2 Contributions
This paper proposes an automatic thermal comfort optimiza-
tion system for public spaces such as open offices, where im-
proved comfort has been directly linked to improvements in
economics (Hedge, Wafa, and Anshu 2005; Taub 2008). Our
approach combines personal thermal comfort modeling with
static thermodynamic models and proposes a data-driven ap-
proach to learning how to control one or more HVAC units to
optimize room comfort for one or more individuals. The ap-
proach we choose is specifically guided by the need for easy
deployment in real, and existing, environments. To this end
we test the proposed approach in a large field experiment in
an open office environment in Japan. We make the following
AI model contributions that facilitate easy deployment:

• We propose a weakly-supervised neural network ap-
proach to learning individual thermal comfort models that
minimizes the burden of feedback on the users.

• We learn predictive models relating the HVAC sensor and
measurement sensors throughout the room, using an auto-
encoding framework with a customized loss function that
promises a black-box modeling approach that is easily de-
ployable in new settings.

• We design a loss function that combines the user prefer-
ence models with the learned thermal models and use this
loss function to learn the final control law. This control
law is a set of HVAC set points that leverage the existing
HVAC system and its controller.

• We demonstrate that the learned model achieves optimal
per-point performance, thus allowing for computationally
cheaper online comfort optimization which is suitable for
low power field devices.

2 AI Problem Formulation
Consider an indoor space occupied by K users for an ex-
tended period of time, e.g. a shared office with assigned
desks. The indoor space is equipped with N HVAC devices,
which can heat or cool the environment, and withM sensors
at fixed locations that can measure the local temperature and
level of humidity.

With a slight stretch of notation, let i ∈ 1, . . . ,M de-
note one sensor and its location in the space, and let xi(t) =
[xT,i(t), xH,i(t)] ∈ R2 be the measurement of the ith

sensor at time t, called the thermal state, where xT,i and
xH,i are the temperature and humidity measurements, re-
spectively. The room thermal state is denoted by X(t) =
[x1(t), . . . , xM (t)]T ∈ R2M . The thermal state perceived by
the kth user, k ∈ 1, . . . ,K, is approximated by the measure-
ments of the closest ith sensor. We denote by x∗T,k,i the opti-
mal temperature of user k at location i. The vector of optimal
temperatures desired by the occupants is denoted as X∗T . No
assumptions are made regarding the number of users asso-
ciated with each sensor. We assume that each user has the
capability of providing feedback regarding their perceived
thermal comfort by changing the temperature set point of an
appropriate HVAC unit. By associating the user’s feedback
with the measurement of the closest sensor, we can deter-
mine if the user feels hot, cold, or comfortable at that time
instant. Finally, let j ∈ 1, . . . , N denote a given HVAC de-
vice, and hj(t) ∈ R be the temperature set point of the jth
HVAC device at time t. The vector of set points for all de-
vices is denoted as H(t) = [h1(t), . . . , hN (t)]T .

Our goal is to learn a control law H∗ = π(X∗T ) that,
given the preferred temperature x∗T,k,i for each user k, max-
imizes the comfort probability of all the users denoted by
yc = [y1c , . . . , y

k
c ]

T .

3 User Model Learning
For the kth user, associated with the ith sensor, there ex-
ists an unknown function, yk,ic = f̃k,i(x̃i) that maps the
user’s thermal state, x̃i(t) at time t, to their personal proba-
bility of comfort, yk,ic (t) ∈ (0, 1) at time t. In practice, the
user’s thermal state x̃i(t) is defined by an extended set of
parameters that include age, gender, metabolic rate, ethnic-
ity, clothing, and others. Because many of these parameters
are not measurable, it is not possible to learn f̃ . Here, as in
prior works (Laftchiev and Nikovski 2016; Ranjan and Scott
2016; Huang, Yang, and Newman 2015; Jiang and Yao 2016;
Farhan et al. 2015), we aim to learn an approximation to f̃
using the measurable quantities xi(t):



Figure 1: Psychrometric chart illustrating default comfort
zones, learned models, and collected data.

ykc (t) = fk(xi(t)). (1)

where we dropped the superscript i for ease of notation. To
minimize the burden of providing feedback on the users,
we propose a weakly supervised approach. First, a standard
model, f0, is learned using synthetic data. Then, the stan-
dard model is adapted using feedback provided by each user.
The model for the kth user is denoted as fk.

3.1 Learning an Initial User Model
The standard model, f0, common to all users, is learned us-
ing labeled synthetic data sampled uniformly over the space
of all possible temperature and humidity values that could
be measured in a room. The labels for the data are derived
from commonly accepted ranges of temperature and humid-
ity that are thought to be comfortable for all individuals. If a
given temperature and humidity data point falls within such
a commonly accepted range, it is labeled comfortable. Oth-
erwise, the point is labeled uncomfortable.

Selecting the ranges of humidity and temperature that
constitute a comfortable range is an important design choice.
There are at least two methods of choosing these ranges. The
first method is through expert opinion. An example of expert
opinion is the summer and winter comfort regions published
by ASHRAE (ASHRAE 2013). These are visualized by blue
and yellow rectangles, respectively, on the psychrometric
chart (Balmer 2011) shown in Fig. 1. The second method
is to define a region on the psychrometric chart that encom-
passes the actual observed data points at a given location.
Extending the logic used in the ASHRAE zones, here we
suggest that the region should be rectangular, corresponding
to the observed Tmin, Tmax, Hmin and Hmax. An example
of such a region is shown in the red rectangle in Fig. 1. The
black points plotted inside the rectangle represent data col-
lected for the verification of this paper. Note that these fall
outside of the expert defined comfort zones. This method is
convenient because it does not require prior knowledge or
hand engineering.

In this paper, we adopt the second method for two reasons.
First, this approach extends the well-known and accepted
engineering logic used in determining the original ASHRAE

zones of comfort. Second, a rectangular region immediately
suggests a shape for the standard thermal comfort model, f0,
and the user’s thermal comfort model, fk, which matches
our intuitive understanding of the personal comfort region:
a neural network with four neurons in the hidden layer, an
example of which is shown in Fig. 2. Conveniently, we can
think of each neuron as learning a boundary on one side of
the chosen comfort region: a temperature boundary cold to
comfortable; a temperature boundary comfortable to hot; a
humidity boundary humid to comfortable; and a humidity
boundary dry to comfortable. To interpret the output of the
model as a probability, we give each neuron a sigmoid acti-
vation. Using this neural network is advantageous not only
because of its intuitive origin, but also because we know
that the comfort region is highly dependent on the season.
We expect that each user’s model will be continuously tuned
during exploitation.

To learn the models, we sample uniformly over the set of
all possible room conditions and label the samples using the
boundaries of our newly defined comfort region shown in
Fig. 2. We then train the standard model, f0. This model is
shown in Fig. 1. Here the red rectangle represents the com-
fort region, and the blue dashed line represents the learned
model. The line is one of the level sets of the learned thermal
comfort probability model, f0.

3.2 Personalizing the User Model
Customization of the standard model for a given user be-
gins when an uncomfortable user, k, adjusts the jth HVAC
device’s set point. At this point, we observe the user’s ther-
mal state, xi(t) and the requested set point temperature, hj .
Each set point request reveals three levels of information.
First, we know that the user is uncomfortable in the current
state, xi(t). Second, the user is either hot or cold, depending
on the direction in which the set point, hj , is changed. Third,
the user thinks that their optimal temperature might be hj .

Of these three feedback components, we only make use of
the first component. This is because we cannot be explicitly
sure that the target set point chosen by the user is optimal,
and because the thermal comfort model chosen in this paper
only determines the probability of comfort, not the direction
of discomfort. Thus, when a user adjusts the HVAC thermo-
stat, we obtain a labeled data point that states that the user is
uncomfortable in these conditions.

To personalize f0, we fit the newly acquired labeled data
point using backpropagation on f0 until the probability of
comfort assessed at the present data point is below a given
threshold, τ . The fitted model is termed fk because it is
the personalized model of the kth user. This is updated as
the user provides feedback. Note here that personalizing the
model in this manner has the effect of altering the probabil-
ity of comfort over all previously recorded data points. There
are two reasons for this. First, because the overwhelming
majority of points used in learning the model are synthetic,
each new data point provides a more concrete indication of
the user’s actual preference. Second, we ideally want to learn
a decision surface over which comfort probability can be de-
termined from a collection of points. Yet we do not know
when/if the user will interact with the system. Thus we treat



(a) Individual comfort model

(b) The thermal sensor model and the thermal set point model
shown in the autoencoding framework.

Figure 2: Neural Network Models

each interaction as if it is the last for this user.
Lastly, when deploying this model we envision that at

least during the first full year of exploitation the user model
will be periodically learned from sets of recent feedback
points, leading to a collection of seasonal personalized mod-
els fk for a given user k. This initial method of deploy-
ment provides a bridge between the current experiment and
the development of a seasonally adjustable thermal comfort
model. Initial deployment in this fashion will motivate users
to participate when they are readily observing the effect of
their participation.

An example of a model fk that is personalized over 15
feedback instants of a single user is shown in Fig. 1 as a
yellow oval that represents one of the level sets of the per-
sonalized model. As expected, this model encompasses only
a small subset of the data encompassed by f0.

3.3 Approximating the Room Thermodynamics

In any given room with M sensors and N HVAC units,
at steady state, there exists a function X(t) = g(H(t))
that maps the forward (causal) relationship in the data from
HVAC set points to room sensor measurements. In addition,
there exists a function H(t) = g−1(X(t)) that maps the
inverse relationship, g−1, in the data from room sensor mea-
surements to HVAC set points. Ideally a single invertible
model g is learned from steady state data. Unfortunately, col-
lecting steady-state data is both time consuming and requires
further thermodynamic modeling. For this reason, we focus
on tightly controlled environments, such as an office, and ac-
cept that there will be some thermodynamic transients in the
data, which means that learning a single invertible model
might not be possible. Instead, here we learn two models.
In the forward direction we learn a model, herein called the
thermal sensor model, that maps the HVAC set points to the

resulting room thermal state X:

X̂(t) = fsensor(H(t)). (2)

and in the inverse direction we learn a model, herein referred
to as the thermal set point model, that maps the current room
state to the best estimate of the input HVAC set points,

Ĥ(t) = fSetPts(X(t)) (3)

We also observe that due to the nature of our data, the
functions fsensor and fSetPts might be highly non-linear
and non-convex. Noting that neural networks are particu-
larly suitable for approximating such functions, we choose
to model both the forward and inverse models with neural
networks. Then, observing the symmetry in these models,
and that the number of HVAC set-pointsN is usually strictly
less than the number of sensorsM ,N < M , and the fact that
these are black-box neural network models, we observe that
these models can be trained as an autoencoder where

X̂(t) = fsensor(fSetPts(X(t))). (4)

Fig. 2(b) shows the models linked in the autoencoding
framework. From left to right, the input layer of the model
corresponds to the room thermal state,X(t). The hidden lay-
ers consist of a tunable group of layers with the usual non-
linear activation functions. The latent layer has a dimension
equal to the number of HVAC units controlling the room
and represents the learned set-point for each HVAC unit,
hj . Next comes a new set of hidden layers that translate the
latent layer’s outputs into an estimate of the room thermal
state, X̂ . As shown in the figure, the model inputs can be
further augmented using HVAC state conditions such as fan
on/off state, fan speed, etc. We denote these as xC,j(t).

To learn the forward and inverse models together in an
autoencoder, we augment the usual autoencoding loss func-
tion with a term minimizing the deviation of the embedding
from the real HVAC set-points, hj . The new loss function is
denoted as LT (t), where T denotes that this is an approxi-
mation of the static thermodynamic relationships.

LT (t) =
M∑
i=1

(x̂T,i(t)− xT,i(t))
2 + (x̂H,i(t)− xH,i(t))

2

︸ ︷︷ ︸
Reconstruction Loss on X(t)

+

N∑
i=1

(ĥj(t)− hj(t))2︸ ︷︷ ︸
Embedding Loss on H(t)

(5)

The modeling approach presented here is attractive from
the stand point of deploying this technology at real-world
locations for two reasons. First, learning the room models
together in an autoencoder leverages a well known unsuper-
vised modeling approach that can be set to learn the on-site
conditions without further human intervention. Second, us-
ing neural network models allows for online updates to the
model as new data is recorded. This is advantageous because
we expect that the model will have a seasonality that will
shift the relationship between the room measurements and
the HVAC set point slowly throughout the year.



4 Learning the Control Law
We now combine these models to learn a control law,
π(X∗T ), the set points of the HVAC units such that thermal
comfort is optimized. To begin, we first leverage the per-
sonalized user models, fk, to find the optimal temperature
of each user. To do this, we sample uniformly from the set
of possible room conditions, and for each user k we choose
the point with the highest probability of comfort. The tem-
perature at this point is x∗T,k,i as described in the problem
formulation.

Next, we propose two methods of learning the control law
π. The first approach, herein called Retuned Inverse Model
(RIM), is to choose the control law π to have the same archi-
tecture as the thermal set-point model, eq. (3). The model is
warm started with the learned weights of the thermal set-
points. Then the control law is trained such that the pre-
dicted HVAC set-points result in measurements xT,i at the
user locations that correspond to x∗T,k,i. This training is ac-
complished by using the forward model, and by tuning π
using a loss function that penalizes deviations from the ideal
user temperature at each user’s location,

LC,I(X̂(t), X∗T ) =
∑
i∈M

∑
k∈K

(1(i)x̂T,i(t)− 1(i, k)x∗T,k,i)
2

where 1(i) = 1 if i corresponds to the sensor location clos-
est to at least one user, and 1(i, k) = 1 if i corresponds
to the closest sensor location for the kth user. This forces
RIM to learn a new mapping that emphasizes user comfort
over reconstruction of the room thermal state. The second
approach, herein called Tuned Linear Map (TLM), is to de-
fine π as the thermal set-point model, eq. (3), with an ad-
ditional linear layer of dimension N added to the output of
the model. Here the inverse and forward models are fixed,
and training is only performed on the added layer using eq.
(4). The advantage of this approach is that there are fewer
model parameters to learn, resulting in a model that can be
efficiently learned with few training data samples.

5 Data Collection and Training Parameters
Data to test the proposed approach was collected in a
large field experiment in an open office. The office is air-
conditioned by N = 5 HVAC units, each of which directly
cools or heats a particular part of the room. The desks in
the room are arranged in rows, and each desk has two sen-
sors, one at each corner that abuts the next desk. Each sen-
sor measures temperature and humidity. There are 39 such
sensors in the room, resulting in M = 78 sensor measure-
ments. There are 18 users in the room, who are actively par-
ticipating by setting the set-points of the HVAC units via an
Apache Tomcat server that identifies the users and the HVAC
units. No assumptions are made about additional heat loads
in the room, such as computers or non-participating occu-
pants. Data from the sensors is streamed to the same server,
but we envision a cloud deployment to systems like AWS or
Azure for commercial deployments.

Data collection was performed continuously for 10 days
in August of 2019. During this time, sensor and HVAC data
was collected at 1-minute increments and the users were free

to request a new set-point temperature at any time. This ex-
periment resulted in 12, 425 measured data points and 136
user set-point change requests. We observed that the request
data are not uniformly obtained from all users; some users
were much more inclined to change the HVAC unit set-
points, while others provided as little as one HVAC change
over the course of the experiment. This distribution of inter-
action is common to this setting and fits the expected behav-
ior of the users.

For the experiments in this paper, the data are split using
an 80/20 (train/test) split. The thermal set point and thermal
sensor models are each composed of a single hidden layer
with 50 neurons. This number of neurons is chosen based on
the number of available data points. Training is performed
using the loss function in eq. (5) and using an Adam opti-
mizer (Kingma and Ba 2014) with standard parameters. AI
model learning and testing is performed on a Linux desktop
machine with an i7 processor.

6 Comparison Methods
The AI approach proposed in this paper invites comparison
to several other methods. These methods include learning
direct inverse models, distal learning (Jordan and Rumelhart
1992), and on-line optimization. To directly exploit the in-
verse model, eq. (2), as a control law, we input to the model
the desired temperature measurements at each user’s loca-
tion xi and predict the resulting set-points H . To make use
of the distal learning framework suggested in (Jordan and
Rumelhart 1992), we learn and fix the forward model and
then directly learn the control law from the desired tempera-
ture measurements. For both of these models, an entire vec-
tor of desired temperatures at all M locations needs to be
provided as input. Lastly, directly optimizing eq. (4), i.e.,
solving H∗ = argminH LC,I(fsensor(H), X∗T ), we can
learn a global set of HVAC set-points that optimizes the
temperature measurements only at the specific locations of
users, for a fixed forward model learned ahead of time. In
practice, we expect that directly using the inverse model as a
control law will have worse performance than our approach,
because the input vector composed of desired temperatures
does not have to obey the physical correlation between room
measurements, which would result in an out-of-sample con-
dition for the inverse model. Similarly, methods that select
one set of optimal set-points, such as the global optimization
approach or the model learned from the distal framework,
are also likely to under perform. This is because these ap-
proaches assume a static relationship in the underlying data,
while some transients will inevitably be present in our data.
Thus, these approaches likely yield an average solution.

Lastly, it is possible to use optimization in an online fash-
ion by setting the initial value of the solution to set-points
predicted by the inverse model, for a given value of X(t).
This approach uses the neural network model to identify
the correct numerical sub-problem to optimize and should
yield an optimal solution. However, this approach requires
continuous online optimization, which is more computation-
ally expensive than performing prediction using an advance
tuned neural network model.



Set-Point (oC) Temperature (oC) Humidity (%)

MAE RMSE MAE RMSE MAE RMSE
Linear Regression 1.42 1.89 0.88 1.13 3.98 4.82

Thermal Model w/o xC,j 1.15 1.53 1.96 4.54 10.94 19.24
Thermal Model with xC,j 0.58 0.75 0.51 0.71 4.13 12.82

Table 1: Error rates of static thermodynamic models.

7 Numerical Experiments
Here we present numerical results and compare them to the
aforementioned methods. All optimization experiments are
implemented using back propagation in PyTorch. We begin
by training the forward and inverse models (see section 3.3).
Model performance is compared to baseline linear regres-
sion models trained in the forward and inverse directions.
Table 1 shows the average performance of models quanti-
fied using both the Mean Absolute Error (MAE), and the
effect of model output outliers quantified using Root Mean
Squared Error (RMSE). When MAE is approximately equal
to RMSE model performance is consistent with few outliers.

We note here that the neural network model with xC,j

outperforms both other models when predicting temperature
and set points. This is also true when comparing the per mea-
surement (set point) standard deviation (σ) of this model
with the linear regression model (MAE/RMSE): σSetPt:
0.23/0.27 vs. 0.70/0.80; σTemp.: 0.15/0.22 vs. 0.26/.34; and
σHumid.: 0.48/0.66 vs. 1.13/1.27 (outliers omitted). Outliers
notably exist in predictions of humidity measurements, as
seen when comparing MAE to RMSE for this model.

Using the inverse and forward models with HVAC state
conditions, we learn a control law π using the two ap-
proaches suggested in section 4. We compare the results to
two baseline methods. The first uses the inverse regression
model to predict optimal HVAC set-points directly, and the
second uses a common HVAC set-point of 27oC (the average
preferred temperature of the users). The results are shown in
Table 2. To gain further insight in Fig. 3, we plot a histogram

MAE RMSE
Baseline Regression 1.11±0.70 1.41±0.68

Baseline 27C 1.08±0.36 1.32±0.36
Retuned Inv. Model (RIM) 0.49±0.17 0.63±0.18
Tuned Linear Map (TLM) 0.46±0.23 0.64±0.24

MAE RMSE
Direct Inv. Model 0.93±0.14 1.08±0.12

Global Optimization 1.04±0.46 1.35±0.50
Distal Learning 1.16±0.66 1.52±0.70

Table 2: Averaged error per user in oC ± standard deviation
in oC. A comparison to (top) baseline methods and (bottom)
competing modeling approaches.

of the RMSE and MAE of both methods suggested in sec-
tion 4. Each histogram is compared to the online optimiza-
tion approach described at the end of section 6.

The data in Table 2 and Fig. 3 show that the proposed ap-
proaches, RIM and TLM, outperform baseline methods by
improving RMSE and MAE by a factor of at least 2 when
compared to the baseline regression method and the aver-
age set-point baseline. The results in Table 2 also show that
competing modeling approaches have error rates on par with
the error observed by setting the HVAC set-points to an av-
erage desired value. Lastly, comparing the resulting error
histograms, we find that both RIM and TLM find solutions
similar to those in the online optimization approach. But the
methods presented in this paper have a clear computational
advantage with an average run time of 3.7ms, while online
optimization has an average run time of 4.7s.

The results in this section and the model choices through-
out make the developed approach a practical AI model-
ing approach to user comfort optimization. Our approach is
greatly facilitated by modern IoT sensing and cloud technol-
ogy. Still, to deploy this application, a long term study must
be performed to learn about the seasonality of the AI models
and model improvements that this will require.

8 Conclusion
We propose a new easily deployable data driven approach
to learning how to determine HVAC set-points in order to
optimize user comfort in a room. Our work proposes a new
approach to learning personalized thermal comfort models
that reduce the burden of collecting labeled user data. We
also propose to learn a static model of the relationship of
temperature and humidity readings between the HVAC sen-
sor and room sensors using an autoencoding framework with
a custom loss function. We propose two methods of learn-
ing an HVAC control law based on a custom loss function
that incorporates the desired temperature of multiple users
simultaneously. Our approach is tested using real data from
an open office in Japan, achieving a mean absolute error of
0.5oC and a root mean square error of 0.6oC per user loca-
tion.
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