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Abstract

In this paper, we focus on the problem of robustifying reinforcement learning (RL) algorithms
with respect to model uncertainties. Indeed, in the framework of model-based RL, we pro-
pose to merge the theory of constrained Markov decision process (CMDP), with the theory
of robust Markov decision process (RMDP), leading to a formulation of robust constrained-
MDPs (RCMDP). This formulation, simple in essence, allows us to design RL algorithms
that are robust in performance, and provides constraint satisfaction guarantees, with respect
to uncertainties in the system’s states transition probabilities. The need for RCMPDs is
important for real-life applications of RL. For instance, such formulation can play an im-
portant role for policy transfer from simulation to real world (Sim2Real) in safety critical
applications, which would benefit from performance and safety guarantees which are robust
w.r.t model uncertainty. We first propose the general problem formulation under the concept
of RCMDP, and then propose a Lagrangian formulation of the optimal problem, leading to
a robust-constrained policy gradient RL algorithm. We finally validate this concept on the
inventory management problem.
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Abstract

In this paper, we focus on the problem of robustifying reinforcement learning
(RL) algorithms with respect to model uncertainties. Indeed, in the framework of
model-based RL, we propose to merge the theory of constrained Markov decision
process (CMDP), with the theory of robust Markov decision process (RMDP),
leading to a formulation of robust constrained-MDPs (RCMDP). This formulation,
simple in essence, allows us to design RL algorithms that are robust in performance,
and provides constraint satisfaction guarantees, with respect to uncertainties in the
system’s states transition probabilities. The need for RCMPDs is important for
real-life applications of RL. For instance, such formulation can play an important
role for policy transfer from simulation to real world (Sim2Real) in safety critical
applications, which would benefit from performance and safety guarantees which
are robust w.r.t model uncertainty. We first propose the general problem formulation
under the concept of RCMDP, and then propose a Lagrangian formulation of the
optimal problem, leading to a robust-constrained policy gradient RL algorithm. We
finally validate this concept on the inventory management problem.

1 Introduction

Reinforcement learning (RL) is a learning framework that addresses sequential decision-making
problems, wherein an ‘agent’ or a decision maker learns a policy to optimize a long-term reward by
interacting with the (unknown or partially known) environment. At each step, the RL agent obtains
evaluative feedback (called reward or cost) about the performance of its action, allowing it to improve
the performance of subsequent actions (Sutton & Barto, [1998)). With the advent of deep learning,
RL has witnessed huge successes in recent times (Silver et al.|[2017). However, since most of these
methods rely on model-free RL, there are several unsolved challenges, which restrict the use of these
algorithms for many safety critical physical systems (Vamvoudakis et al., 2015; Benosman) 2018)).
For example, it is very difficult for most model-free RL algorithms to ensure basic properties like
stability of solutions, robustness with respect to model uncertainties, etc. This has led to several
research directions which study incorporating robustness, constraint satisfaction, and safe exploration
during learning for safety critical applications. While safe exploration and robust stability guarantees
are highly desirable, they are also very challenging to incorporate in RL algorithms. The main goal
of our work is to formulate this incorporation into robust constrained-MDPs (RCMDPs), and derive
the corresponding equations necessary to solve problems on RCMDPs.

Constrained Markov decision processes (CMDPs) can be seen as an extension of MDPs with
expected cumulative cost constraints, e.g., (Altman, 2004). For such CMDPs, several solution
methods have been proposed, e.g., linear programming-based solutions (Altman) 2004]), surrogate-
based methods (Chamiea et al., 2016; |Dalal et al.,|2018), Lagrangian methods (Geibel & Wysotzki,
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2005} |Altmanl [2004). We refer to these CMDPS as non-robust since they do not take uncertainties in
the state transition probability into account, which is an important factor in real-life applications.

On the other hand, robustification of MDPs, w.r.t. model uncertainties, can be found in the context
of robust MDPs (RMDPs) which generalize MDPs to the case where transition probabilities and/or
rewards are not perfectly known, e.g., |[Nilim & Ghaouil (2004); Wiesemann et al.| (2013). These
RMDPs can be formulated and solved using so-called ambiguity or uncertainty sets, e.g., (Petrik
& Russell, 2019; |Petrikl 2012 [Petrik & Luss, 2016). However, one noticeable point in all the
RMDPs-based RL algorithms is the fact that they do not consider any safety constraints, i.e., expected
cumulative cost constraints.

These safety constraints are important in real-life applications, where one cannot afford to risk
violating some given constraints, e.g., in autonomous cars, there are hard safety constraints on the
robot velocities and steering angles. Besides, in real applications, to mitigate the sample inefficiency
of model-free RL algorithms, training often occurs on a simulated environment. The result is then
transferred to the real world, typically followed by fine-tuning, a process referred to as Sim2Real. The
simulation model is by definition uncertain with respect to the real world, due to approximations and
lack of system identification. Domain randomization (van Baar et al.,|2019) and meta-learning (Finn
et al.,|2017)), aimed at addressing model uncertainty in transfer, offer no guarantees. Furthermore, for
safety critical applications, a trained policy in simulation should offer certain guarantees on safety
when transferred to the real world.

In light of these practical motivations, we propose to merge the two concepts of CMDPs and RMDPs,
to ensure both safety and robustness. In this RCMDP concept, we propose to robustify both the
performance cost minimization, as well as the safety constraints (via cumulative constraint costs).
Indeed, robustness is equally (if not more) important in estimating the cumulative constraint costs
along the whole trajectory in order to certify that there will be no unexpected violations, if the system
is deployed in reality. That is, if deployed, the worst-case cumulative constrained-cost will not exceed
a pre-determined safety budget.

The contribution of this paper is four-fold: 1) Intuited from the concepts of CMDP and RMDP, we
formulate the concept of RCMDP, bridging the gap between constraints and robustness w.r.t. state
transition probability uncertainties; 2) propose a robust soft-constrained Lagrange-based solution
of the RCMDP problem; 3) derive associated gradient update rule and present a policy gradient
algorithm; 4) illustrate the performance of the proposed algorithm on the inventory management
problem under model uncertainties.

After our submission of this paper in the RWRL workshop and an earlier version in arXiv, we became
aware of a recent arXiv paper (Mankowitz et al.l 2020) which proposes similar robust constrained
formulation for MDPs. They derive robust constraint bellman operator and present an actor-critic
class of algorithm. Our focus in this paper remains within policy gradient class of algorithm and we
handle robustness with explicitly constructed ambiguity sets for each state-action.

The paper is organized as follows: Section[2]describes the formulation of our Robust-CMDP problem
and the objective we seek to optimize. A Lagrange based approach is presented in Section [3]along
with required gradient update rules and a robust constrained policy gradient algorithm. We evaluate
our algorithm in Sectiond and draw the concluding remarks in Section 3]

2 Problem Formulation

We consider a robust-MDP model with a finite number of states S = {1, ..., S} and finite number of
actions A = {1,..., A}. Every action a € A is available for the decision maker to take in every state
s € S. After taking an action a € A in state s € S, the decision maker receives a cost ¢(s,a) € R
and transitions to a next state s’ according to the true but unknown transition probability p} , € AS.
Do is the distribution of an initial state. We further incorporate a constrained-MDP (Altman), |2004)
setup into this robust-MDP model by introducing a constraint cost d(s) € [0, Dy,ax] and an associated
constraint budget dp € R...

An ambiguity set P ,, defined for each state s € S and action a € A, is a set of feasible transition
matrices quantifying the uncertainty in transition probabilities. In this paper, we restrict our attention
to s, a—rectangular ambiguity sets which simply assumes independence between different state-action
pairs (Le Tallec, [2007; |Wiesemann et al.,|2013). We use in this paper L; —norm bounded ambiguity



sets around the nominal transition probability p, . = E[p} ,|D], on some dataset D, as:

Ps,a - {P S AS : prﬁs,aHl S ws,a}

Where 15 , > 0 is the budget of allowed deviations. This budget ¢ can be computed using Hoeffding

)
in dataset D originating from state s and an action a, and ¢ is the confidence level. Note that this
is just one specific choice for the ambiguity set. Our method can be extended to any other type of
ambiguity sets (e.g. Lo, —norm, Bayesian, weighted etc.). We use P to refer cumulatively to P; , for
all states s € S and actions a € A.

bound as (Russel & Petrik, 2019): ¥, , = /-2 log S42% '\yhere n, , is the number of transitions

A stationary randomized policy (+|s) for state s € S defines a probability distribution over
actions a € A, II represents the set of all stationary randomized policies. We parameterize
the randomized policy for state s € S as 7(-|s;#) where § C RF is a k—dimensional pa-
rameter vector. Let & = {so,ao,co,do,--.,ST-1,07-1,¢7—1,d7r—1,S7} be a sampled trajec-
tory generated by executing a policy 7 from a starting state sg. Then the probability of sam-
pling ¢ is: p?(€) = po(so) HtT:_Ol 7(ag|se; 0)p(si+1]8t, ar). The total cost g for trajectory & is:
g(&) = X727 e(s¢, ar) (Puterman, 2005). The value function is defined as the expected return:
v?(s9) = E, [g(¢)]. We define the robust value function © as the expected return in the worst-case
realization of the transition probability within P as: 0% (so) = max,ep E, [g(€)]. Similarly, the
total constraint-cost for trajectory £ is: h(§) = > o v'd(st, ar). And the robust constraint value
function 4 is defined as: 4} (so) = maxpep E, [R(E)].

The robust Bellman operator fp for a state s € S and an ambiguity set P computes the best action
with respect to the worst-case realization of the transition probabilities in P as:

T = mi .t
(Tpv)(s) gﬂpfélgfﬂ(C(s,aHv P )

The optimal robust value function 9*, and the robust value function ¢™ for a policy 7 are unique
and satisfy 9* = T’p0* and 9™ = T50™ (Iyengar,2005). Similarly, all these properties hold for the
constrained robust value function 4 as well.

Objective Our objective is then to solve the RCMDP optimization problem below:

min 45 (s) 0
S.t. ﬂ%(s) <dy

This objective resembles the objective of a CMDP, but with additional robustness integrated by the
quantification of the uncertainty in the model.

3 Robust Constrained Optimization

A general approach for solving Equation (1)) is to apply the Lagrange relaxation procedure (Chapter 3
of Bertsekas| (2003))), which turns it into an unconstrained optimization problem:

A>0

max mein <L((97 A) =0p(s) + A(ﬁ%(s) - d0>> (2)

where A is known as the Lagrange multiplier. The goal is then to find a saddle point (6*, \*) that
satisfies L(6, \*) > L(6*, \*) > L(6*, \), VO, \. This is achieved by descending in § and ascending
in A using the gradients.



Without loss of generality, we rewrite Equation (2) for a fixed starting state s, and perform some
algebraic manipulation:

L(6,) = 95 (s0) + A (s0) — do

= maxE, [9(6)] + A maxE, [h(©)] ~do)

= Epo [9(€)] + MEpg [h(€)] — Ado

=5 (@006 + ML) ~ 2o
£
Here (a) follows with p? = argmax,cp B, [¢(£)] and Pl = argmax,cp Ep, [h(£)].

3.1 Gradient Update Rules

We now derive the gradient update rules with respect to 6 as below:

VoL(0.3) = 3 (Vort(€)a(6) + Vot On(o) )
13

=> (ﬁﬁ(f)g@)ve log p (€) + Ap%(§)h(€) Ve logﬁﬁ(§)>
1

T-1
_ Z ( VQ log (p() 80 H pv st+1|st,at)7r9(at|8t))

t=0

T-1
+ APy (E)R(€) Vo log (PO(SO) II ﬁﬁ(stﬂst,at)ﬁe(adst)))

t=0

T-1
= Z <pv Ve(logpo s0)+ Y logpl (sir1lsi, ar) +10g7r9(at|5t)>

t=0

T-1
+ Aﬁi(f)h(ﬁ)VQ <1ng0(30) + Z log P (st41]5¢, ar) + log 7T9(at|5t)>>

t=0

-y (ﬁi (©0(6) 3 Toloxmolarlsy) + MEOME) 3 Vologmaadso)
3

t=0 t=0

- (@06 + ey ) 3 emiee)

— mo(at]se)

Notice that the constraint budget dy does not play any role in the policy optimization. Also, the
expectations over the cost g(¢) and constraint cost h(£) are with respect to p% (&) and p? (€)), respec-
tively. However, the costs and constraint costs are coupled together in reality, meaning that the two
trajectories would not diverge. So one of p? (&) or p (€) can be chosen depending on the priorities
toward robustness of cost or constraint cost, and both of the expectations can be evaluated with that
common probability measure p?(¢). The gradient update rule then becomes:

T—1
VoL(6,\) Zp ( +Ah(5)> > Vomo(aclse)

— mo(ar|st)

And the gradient update rule with respect to A as below:

VAL(0, ) = (Z +>\<Z d0)>
:;pu —do



3.2 Policy Gradient Algorithm

Algorithm 1: Robust-Constrained Policy Gradient Algorithm

Input: A differentiable policy parameterization 7(.|., §), nominal transition model p, step
size schedules (, and (.
Output: Policy parameters 6
1 Initialize actor parameters 6 < 6, and critic parameter A <— \g;
2 fork <+ 0,1,2,...do

3 Sample initial state: sg ~ po;
4 | Trajectory: & + 0;
/* Simulate trajectory with current policy 6 */

fort < 0,1,2,...,T do

Sample action: a; ~ w(-|s¢,0);
7 Observe cost: ¢; = ¢(st, a) and constraint cost: dy = d(s;);
8 Compute gradient: V; %j;‘f)ﬂ
9 Compute worst-case transition: p , +— arg minyep, , p' g(£]s'),Vs' € S
10 Sample next state: Sy+1 ~ Psqo(*|Se, ar);
11 | Record sample: & < & + [s¢, az, ¢, dy, @t]
12 g+ 0,h <0
/* Loop backward and update parameters */
13 fort<— T, T—-1,T—-2,...,0do
14 g &+ 9
15 h<¢&, +7h
16 0 < 0+ C(k)(g+ Ah)ée, ; // 0 update
17 A= A+ Gk)(h —do) ; // X update
18 return 0;

Algorithm I] presents a robust constrained policy gradient algorithm based on the gradient update
rules derived above in Section[3.1] This algorithm proceeds in an episodic way and update parameters
based on the Monte-Carlo estimates of g and &. Line 9 of the algorithm requires the nominal transition
probability p, , and the ambiguity set P, , which can be some parameterized estimates. The step
size schedules satisfy the standard conditions for stochastic approximation algorithms ensuring that 6
update is on the fastest time-scale (5 (k) and the A update is on a slower time-scale (; (k). This results
in a two time-scale stochastic approximation algorithm and the convergence of it to a (local) saddle

point can be shown following standard proof techniques (Borkar, 2009).
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Figure 1: Return distributions for the inventory management problem.



4 Empirical Study

In this section, we empirically study the performance of our policy gradient algorithm on several
problem domains. All the experiments are run with confidence parameter § = 0.9, discount factor

= 0.99, and n,, = 100 number of samples drawn for each state-action from the underlying
true transition distribution p} ,. For domains emitting reward signals instead of costs, we simply
consider their negative magnitude keeping our cost-based formulation intact. We implement several
combinations of different settings: i) non-robust unconstrained, ii) robust-unconstrained and iii)
robust-constrained. We note that the non-robust unconstrained setting is the general policy gradient
algorithm (Sutton & Bartol [1998). The robust-unconstrained version deals only with robustness
without any constraint cost or associated budget. The robust constrained version deals with both
constraints and robustness as described in Algorithm [T}

Inventory Management We evaluate the policy gradient method on the classic inventory manage-
ment problem (Behzadian et al., 2019; |[Putermanl 2005} [Zipkin} 2000). The state space is discrete and
is represented by the level of inventory. The goal is to order products from a supplier in order to meet
demands. Demand for a product is random and comes from a normal distribution. Figure[T|shows the
return distributions for the inventory management problem. Here the non-robust unconstrained variant
has slightly higher expected return compared to the robust counterparts. This is expected because the
robust version particularly deals with the worst-case situation. However, the unconstrained variant
is not guaranteed to enforce any constraint. The plot also shows that the robust-constrained version
outperforms the robust-unconstrained variant with a higher expected return.

5 Conclusion

In this paper, we studied the problem of MDPs under constraints, and model uncertainties. We
proposed to merge together the concepts of constrained MDPs and robust MDPs, leading to the
concept of robust constrained MDPs (RCMDPs). Indeed, by doing so, one can take advantage of
the safety guarantees given by the CMDP formulation, as well as the robustness guarantees w.r.t.
model uncertainties, given by the RMDP formulation. We then proposed a robust soft-constrained
Lagrange-based solution to the RCMDP problem, and a corresponding policy gradient algorithm.
Next work will focus on extending the proposed approach to continuous domains, and validate the
performance of this RCMDP formulation on more safety critical examples, e.g., robotics test-beds.
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