
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
https://www.merl.com

Learning-based Extended Object Tracking Using Hierarchical
Truncation Measurement Model with Automotive Radar

Xia, Yuxuan; Wang, Pu; Berntorp, Karl; Svensson, Lennart; Granstrom, Karl; Mansour, Hassan;
Boufounos, Petros T.; Orlik, Philip V.

TR2021-006 February 09, 2021

Abstract
This paper presents a data-driven measurement model for extended object tracking (EOT)
with automotive radar. Specifically, the spatial distribution of automotive radar measure-
ments is modeled as a hierarchical truncated Gaussian (HTG) with structural geometry pa-
rameters that can be learned from the training data. The HTG measurement model provides
an adequate resemblance to the spatial distribution of real-world automotive radar measure-
ments. Moreover, large-scale radar datasets can be leveraged to learn the geometry-related
model parameters and offload the computationally demanding model parameter estimation
from the state update step. The learned HTG measurement model is further incorporated
into a random matrix based EOT approach with two (multi-sensor) measurement updates:
one is based on a factorized Gaussian inverseWishart density representation and the other
is based on a RaoBlackwellized particle density representation. The effectiveness of the pro-
posed approaches is verified on both synthetic data and real-world nuScenes dataset over 300
trajectories

IEEE Journal of Selected Topics in Signal Processing

c© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139





1

Learning-based Extended Object Tracking Using Hierarchical
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Abstract—This paper presents a data-driven measurement
model for extended object tracking (EOT) with automotive
radar. Specifically, the spatial distribution of automotive radar
measurements is modeled as a hierarchical truncated Gaussian
(HTG) with structural geometry parameters that can be learned
from the training data. The HTG measurement model provides
an adequate resemblance to the spatial distribution of real-world
automotive radar measurements. Moreover, large-scale radar
datasets can be leveraged to learn the geometry-related model
parameters and offload the computationally demanding model
parameter estimation from the state update step. The learned
HTG measurement model is further incorporated into a random
matrix based EOT approach with two (multi-sensor) measure-
ment updates: one is based on a factorized Gaussian inverse-
Wishart density representation and the other is based on a Rao-
Blackwellized particle density representation. The effectiveness
of the proposed approaches is verified on both synthetic data
and real-world nuScenes dataset over 300 trajectories.

Index Terms—Automotive radar, extended object tracking,
random matrix, autonomous driving, nuScenes.

I. INTRODUCTION

Automotive radar plays an important role in autonomous
driving as it provides reliable environmental perception in all-
weather conditions with affordable cost [1]. With the advances
in radar technology, modern radar sensors can resolve multiple
detection points per object. The tracking of an object that
gives rise to multiple detection points is called extended
object tracking (EOT). Compared to conventional point object
tracking, EOT can lead to improved tracking capability as
multiple detections allow us to not only estimate the object
kinematic state more precisely but also to infer the object
extent state. An overview of EOT literature is given in [2].

To capture the spatial characteristics of automotive radar
measurements, it is often assumed that they are spatially
distributed as a function of individual measurement likeli-
hoods, also referred to as the spatial distribution. Spatial
distributions that are discussed in the literature can be divided
into two categories: 1) contour models, which reflect the
measurement distribution along the object contour, and 2)
surface models, which assume that the measurements are
generated from the inner surface of an object. For the contour
models, typical examples include rectangular shape models
[3], [4] and the star-convex shape models [5]–[8]. A widely
used surface model is the random matrix approach [9]–[14],
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Fig. 1. Accumulated automotive radar measurements of vehicles in a unit
frame extracted from the nuScenes dataset [20].

which assumes an elliptic object shape. The surface model
generally leads to computationally simpler algorithms than the
contour model, which enjoys more flexibility to describe more
complex shapes.

The spatial characteristics of real-world automotive radar
measurements are, however, more complex and can neither be
well described by the contour model nor by the surface model,
see, e.g., [15], [16]. Fig. 1 illustrates how the accumulated
radar measurement density is much lower at the center than it
is in a vicinity around the outer edges. Measurements also
exhibit self-occlusion features: the measurement density is
dominant at object parts that are in sight of the sensors. These
features of real-world automotive radar measurements have
motivated developments of EOT algorithms using customized
spatial representations with automotive radar. Early efforts
include the Set of Points on a Rigid Body (SPRB) models [17],
[18] and the direct scattering model [19]. The SPRB models
usually require explicit associations between the reflection
points and the measurements, whereas the direct scattering
model is physics-based and requires certain expert knowledge
and manual adaption.

A third category of models, the surface-volume models,
have started to attract more attention as they balance between
the contour models and the surface models with more realistic
features to account for the spatial characteristics of real-world
automotive radar measurements. Typical examples of surface-
volume models in the literature include the volcanormal
measurement model [21], the variational Gaussian mixture
model (GMM) [22], [23] and the hierarchical truncated Gaus-
sian (HTG) model [24], [25]. The volcanormal measurement
model uses a special donut-shaped spatial density to better
approximate the radar measurement spread of vehicles, and the
object state is determined using a maximum likelihood (ML)
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estimator. The variational GMM is data-driven and trained
using radar datasets. EOT using the learned variational GMMs
has been implemented by a Rao-Blackwellized particle (RBP)
filter [22] and an extended Kalman filter (EKF) [23]. For the
RBP implementation, the kinematic state is represented by
particles while the extent state is represented by discrete distri-
butions. For the EKF implementation, the associations between
the measurements and the individual Gaussian components is
handled using Expectation-Maximization (EM).

In our previous work [24], [25], we proposed an HTG
model and integrated it into a random matrix based approach
with a modified measurement update step and online trun-
cation bounds estimation for both full-view measurements
[24] and partial-view measurements due to self-occlusion
[25]. The new random matrix approach for the HTG model
leverages the computational advantages of surface models
and the customized spatial characteristics of automotive radar
measurements. In this paper, we expand on our previous
work to offload the ML truncation bounds estimation in the
state update by leveraging large-scale public automotive radar
datasets. This makes our learning-based method more suitable
for EOT with very few measurements, compared to methods
using ML estimation of object states [21] or model parameters
[4], [24], [25]. Moreover, by having fewer parameters in the
learned spatial model, our proposed method can be more
robust to measurement model mismatch between the learned
measurement model and the true sensor measurements, com-
pared with learning-based methods using variational GMMs.

This paper is based on our previous conference publications
[24], [25]. Some preliminary work has also been done in [26],
but only with limited derivations and experiments. This paper
supplements [24], [25] with more detailed derivations and its
new contributions and results are summarized as follows:

1) We present an offline learning method for the geometry-
related HTG model parameters using ML estimation and
coordinate descent optimization.

2) We integrate the learned HTG model into a random
matrix approach based on a factorized Gaussian inverse-
Wishart (GIW) density representation.

3) We extend the proposed single sensor (SS) measurement
update to multi-sensor (MS) measurement update.

4) We present a modified random matrix based approach
of [27] for the HTG model based on a RBP density
representation, which offers a trade-off between compu-
tational complexity and accuracy.

5) We compare the performance of our proposed methods
using the learned HTG model with our previous work
[25] in a comprehensive simulation study.

6) We benchmark our proposed methods against two other
EOT algorithms [8], [23], using real-world automotive
radar measurements from the public nuScenes dataset.

7) The experimental results averaged over 300 trajectories
show that our proposed method based on the GIW den-
sity has appealing performance in terms of estimation
error, computational complexity, and robustness.

The remainder of this paper is organized as follows. The
problem formulation is described in Section II. Section III

introduces the HTG measurement model and the offline learn-
ing of an HTG from an automotive radar dataset. Section IV
presents the random matrix approach based on a factorized
GIW density for the HTG model for both SS and MS measure-
ment updates. Section V presents a RBP filter implementation
for HTG model. Simulation and experimental results are given
in Section VI, followed by conclusions in Section VII.

II. PROBLEM FORMULATION

We consider the problem of single extended object tracking
without clutter. The extended object state at time step k is
represented as a tuple ξk = (xk, Xk) consisting of a kinematic
vector xk and a symmetric positive definite extent matrix Xk.
The kinematic vector xk encapsulates the center position of the
object [pk,x, pk,y]

T, object heading φk, and any other motion
parameters of interest, whereas the extent matrix Xk describes
the object spatial extension with elliptic form. The square of
the lengths of the half axes of the ellipse represented by Xk

can be obtained via the eigen-decomposition of Xk.
Radar sensors generally give rise to range/bearing measure-

ments. In this paper, we assume that all the measurements
acquired from the automotive radar sensors have already
been converted into a two-dimensional Cartesian frame by
applying the standard frame conversion [28]. The set of
measurements from the sth sensor at time step k is denoted by
Zsk = {zs,jk }

nsk
j=1 where zs,jk are the independent measurement

vectors and nsk is the number of measurements for the sth
sensor. The total measurements Zk from the S sensors at time
step k is Zk = (Z1

k , . . . , Z
s
k, . . . , Z

S
k ), the total number of

measurements received at time step k is nk =
∑S
s=1 n

s
k, and

the measurement sets up to and including time step k is Z1:k.
The objective of object tracking is to recursively compute

the posterior density of the object state p(ξk|Z1:k) using
Bayesian estimation. The estimate of the object state ξk with
corresponding uncertainty measures can then be extracted
from the posterior density p(ξk|Z1:k). Given the posterior
density p(ξk−1|Z1:k−1) and the object state transition density
p(ξk|ξk−1), the predicted density p(ξk|Z1:k−1) is obtained via
the Chapman-Kolmogorov equation

p (ξk|Z1:k−1) =

∫
p (ξk−1|Z1:k−1) p (ξk|ξk−1) dξk−1. (1)

The posterior density p (ξk|Z1:k) is obtained by updating the
predicted density p (ξk|Z1:k−1) using measurements Zk via
the Bayes’ rule

p (ξk|Z1:k) ∝ p (ξk|Z1:k−1) p (Zk|ξk) , (2)

where p(Zk|ξk) =
∏nk
j=1 p(z

j
k|ξk) is the joint measurement

likelihood with p(zjk|ξk) denoting the spatial distribution of the
measurements. To allow for a recursive use of the prediction
and update functions, we seek to approximate the predicted
and posterior object state densities such that they all have the
same functional form as the initial prior.

III. HIERARCHICAL TRUNCATION MODEL

In this section, we present the HTG model for modeling the
spatial distribution of automotive radar measurements and the
HTG model learning from offline training data.
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Fig. 2. Probability density functions of (a) a truncated Gaussian distribution with parameters ρ = 0.184, θ = 0.764 and B = (0.673, 0.614, 0.670, 0.648);
and (b) a hierarchical truncated Gaussian distribution obtained by performing (7) on the truncated Gaussian distribution in (a) and a zero-mean Gaussian with
covariance R =M(θ) diag([0.038, 0.035])M(θ)T.

A. Hierarchical Truncated Gaussian Measurement Model

To capture the spatial characteristics of automotive radar
measurements, we propose a hierarchical truncation model for
the spatial distribution of the measurements. In our previous
work [24], [25], the HTG model is introduced in an object
centered frame; see Appendix A for illustrative examples. To
enable a smooth integration of the HTG model into a learning-
based framework, the HTG model here is defined and learned
in a unit frame that is independent of the object size.

For rigid objects, it is often assumed that the object orien-
tation is aligned with the object heading, such that the object
extent matrix Xk can be factorized as

Xk = M(φk)E(Xk)E(Xk)TM(φk)T, (3)

where E(Xk) produces a diagonal matrix of the square root
of the eigenvalues of Xk (in decreasing order) and M(·) is
the counterclockwise rotation matrix

M(φk) =

[
cos(φk) − sin(φk)
sin(φk) cos(φk)

]
. (4)

Then, given an object state ξk, a measurement zk defined in
the global frame can be expressed using its counterpart uk
defined in a normalized object frame via

zk = Hxk +M(φk)E(Xk)uk, (5)

where H is the observation matrix that selects the position
components [pk,x, pk,y]T in the kinematic state vector xk.

We assume that each measurement uk originates from a
measurement source yk, which is corrupted by a zero-mean
Gaussian measurement noise with covariance Rk. We further
assume that the measurement source yk is truncated Gaussian
distributed with probability density function (pdf)

T N (yk; 02×1, ρI2, Dk) =
1Dk(yk)

cDk
N (yk; 02×1, ρI2) , (6)

where ρ is a scaling factor, Dk ⊆ R2− rect(Bk, θk) specifies
the truncated Gaussian density support, 1Dk(·) is the indicator
function on Dk, and cDk is the normalization factor such
that (6) integrates to one. The truncation area rect(Bk, θk),

assumed rectangular, is fully specified by four truncation
bounds Bk = (ak,1, ak,2, bk,1, bk,2) and an orientation θk with
respect to the horizontal axis. An illustrative example of p(yk)
is given in Fig. 2 (a). The spatial distribution of uk is an HTG
by marginalizing out the measurement source yk,

p(uk) =

∫
p(uk|yk)p(yk)dyk

=
1

cDk

∫
Dk

N (uk; yk, Rk)N (yk; 02×1, ρI2)dyk. (7)

An illustration of p(uk) is given in Fig. 2 (b). Note that the
density support of an HTG distribution is R2, despite the fact
that the density inside the truncation area could be very low.
The pseudo code for sampling an HTG density, as illustrated
in Fig. 2 (b), is given in Appendix B. To model partial-view
measurements caused by self-occlusion, one can set one or
more of the truncation bounds to infinity. Also, note that
in contrast to the HTG model introduced in [24], [25], the
orientation of the truncation area considered in this work does
not need to be aligned with the object heading nor the object
orientation, i.e., θ can be non-zero. This leads to a better
modeling of the spatial characteristics of automotive radar
measurements when the vehicle wheels and wheel houses are
typical measurement sources; an example is later given in
Section VI, Fig. 5(c).

Because the measurements’ spatial density differs when the
object is observed from different perspectives due to self-
occlusion, we may need different HTG models to describe the
spatial distributions of different sets of measurements acquired
from different sensors. The measurement likelihood, condi-
tioned on the object state ξk, the number of measurements nk

and the sensor state, is modeled as1

p(Zk|ξk) =

S∏
s=1

1

c
nsk
Dsk

nsk∏
j=1

∫
Dsk

N (yk; 02×1, ρ
sI2) (8)

1The dependences on the number of measurements and the sensor state are
not explicitly expressed here for simplicity. Also, as this paper only considers
the problem of single object tracking, modeling the cardinality distribution and
estimating the number of measurements is outside the scope of this paper.
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×N
(
E(Xk)−1M(φk)−1

(
zs,jk −Hxk

)
; yk, R

s
k

)
dyk,

where Ds
k, specified Bsk and θsk, is the truncated Gaussian

density support for the sth sensor. The parameters of the HTG
distribution for the sth sensor include Bsk, θsk, Rsk and ρsk.

B. Hierarchical Truncated Gaussian Model Learning

Let us first focus on the problem of learning an HTG
model defined in the unit frame. Suppose that the training
data to learn the model consist of a set of N two-dimensional
accumulated data points U = {uj}Nj=1 that have already been
transformed to the unit frame, and that we seek to estimate
the parameters given the available data. The ML estimate can
be obtained by maximizing the joint measurement likelihood
with respect to the parameters as

arg max
ρ,B,θ,R

1

cND

N∏
j=1

∫
D

N
(
uj ; y,R

)
N (y; 02×1, ρI2) dy. (9)

Computing (9) involves evaluating the convolution of a bi-
variate truncated Gaussian (cf. (6)) and a bivariate Gaussian,
which is intractable in general. To obtain a tractable solution
of (9), we assume that the noise covariance R has the same
orientation as the truncation area such that

R = M(θ) diag ([r1, r2])M(θ)T. (10)

This can be regarded as a reasonable assumption because the
measurement noise is typically smaller than the object extent.
More importantly, such factorization of the measurement noise
covariance (10) allows the decomposition of (9) into more
explicit expressions to which an optimization solver can be
easily applied, as will be explained later. After plugging (10)
into (9) and taking the negative log, one can then show that
solving (9) is equivalent to obtaining

arg min
ρ,B,θ,r1,r2

−
N∑
j=1

log

∫
D

N
(
M(−θ)uj ; y,diag ([r1, r2])

)
×N (y; 02×1, ρI2) dy +N log cD (11)

where we transform the measurements U to a new frame, such
that the orientation of the truncation area is now aligned with
the axes and that the noise covariance R after transformation
becomes a diagonal matrix. As mentioned previously, a non-
zero orientation of the truncation area θ can be utilized to
model strong reflection points at object corners. Letting the
orientation of the truncation area be zero in the new frame is
merely to make the mathematical derivations easier.

With the new parameterization, the integral over the product
of two bivariate Gaussians in (11) can be computed as a
product of two integrals over univariate Gaussians, and, hence
decoupled. With simplifications, we can rewrite (11) as

arg min
ρ,B,θ,r1,r2

−
N∑
j=1

log
(
N
(
ũjx; 0, r1 + ρ

)
N
(
ũjy; 0, r2 + ρ

)
×
(
1− γ

(
ũjx, a1, b1, r1

)
γ
(
ũjy, a2, b2, r2

)) )
+N log cD

s.t. θ ∈ [−π, π], {ρ,B, r1, r2} ∈ [0,∞) (12)

where[
ũjx, ũ

j
y

]T
= M(−θ)uj , (13a)

cD = 1−
(
(Φ(b1ρ

−1/2)− Φ(−a1ρ−1/2))

× (Φ(b2ρ
−1/2)− Φ(−a2ρ−1/2))

)
, (13b)

γ(ũ, a, b, r) = Φ

b− ρũ
r+ρ√
rρ

(r+ρ)

− Φ

−a− ρũ
r+ρ√
rρ

(r+ρ)

 , (13c)

Φ(·) denotes the cumulative density function of a standard
normal distribution and {ρ,B, r1, r2} ∈ [0,∞) is an abuse of
notation meaning that all the HTG parameters except θ are
non-negative real numbers. The ML estimate of all unknown
parameters can be approximately found by applying coordinate
descent optimization. The derivation of the cost function in
(12) is given in Appendix C, while its optimization over the
structural model parameters and numerical performance of the
ML estimation are given in Appendix D.

C. Measurement Model Learning for Vehicles

To construct the training data needed in (11), we collect data
for which we assume that the object states, the sensor states
and the sensor measurements are all available, and that the
correspondence between object states and measurements are
known. All the sensor measurements can then be transformed
to a normalized object frame that is independent of the object
states, e.g., positions and sizes.

To account for the self-occlusion feature of automotive radar
measurements, we use the aspect angle under which the sensor
sees the vehicle to encapsulate the relation between the object
state and the sensor state as a single quantity [22]. The aspect
angle can be approximately computed as

χ = φSC − atan2(py,SC, px,SC) (14)

where φSC and [py,SC, px,SC]T, respectively, denote the object
orientation and center position in the sensor frame. The
design choice (14) is also used in [22], [23], and an intuitive
explanation is that the relative location of the measurements
conditioned on similar aspect angles are similar irrespective
of the vehicle size or its position in the sensor’s field of view.

The training data is formed by accumulating the normalized
measurements in the unit coordinate and corresponding aspect
angles. The training data is further split into different groups
based on the range of the aspect angle, and a conditional HTG
model on the aspect angle is learned for each group of data.

IV. RANDOM MATRIX APPROACH FOR HIERARCHICAL
TRUNCATED GAUSSIAN MODEL

In the random matrix model, the object shape is approxi-
mated by an ellipse and the spatial spread of the measurements
is modeled by a Gaussian distribution whose covariance is
proportional to the object extent matrix. The random matrix
appoach was orginally proposed in [9] for noise-free mea-
surements and linear kinematic state based on a coupled GIW
density representation. An improved noise modeling was later
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Fig. 3. Diagram of the iterative update method for learned HTG model.

proposed in [10] based on a factorized GIW density repre-
sentation, which makes the modeling of nonlinear dynamics
possible.

In this section, we extend the random matrix approach [10]
using a factorized GIW density representation to HTG spatial
density. We note that the learned HTG model (8) is defined in
a normalized object frame. Therefore, before performing the
measurement update, we first need to select a learned HTG
model according to the aspect angle and transform it to the
global frame using object state ξk. Since the object state is
unknown, a simple approximate solution is to replace ξk with
the predicted state estimate ξ̂k|k−1, but this may not work well
when the prediction is inaccurate. To address this problem,
we propose an iterative update method for both SS and MS
measurement updates2.

The complete state update step for the learned hierarchical
truncation model runs iteratively over two building blocks: 1)
HTG model update, and 2) object state update. See Fig. 3 for
a diagram. Specifically, at the tth iteration, we first compute
the aspect angle (14) using the updated object state ξ̂t−1k|k at
the (t − 1)th iteration, and then we select a learned HTG
measurement model conditioned on ξ̂t−1k|k and convert it to the
global frame. From one iteration to the next, a refined HTG
model defined in the global frame can be obtained by having a
more accurate object state estimate. At the first iteration (t =
1), we may use the predicted state estimate ξ̂k|k−1 to initialize
the update step by setting ξ̂0k|k = ξ̂k|k−1. The iterative update
can be run either for a fixed number of iterations, or until
some convergence criterion is met. A convergence analysis is
carried out in a simulation study in Section VI.

We remark here that, for factorized GIW density, the
iterative update was first presented in [11] based on varia-
tional Bayesian approximation. In the variational measurement
update, the unknown measurement sources are estimated as
hidden variables, and one can obtain improved estimates of
the measurement sources and object state from one iteration
to the next. It is also possible to consider the variational
measurement update for HTG spatial density, but this requires
further investigation.

For the factorized GIW parameterization, the predicted and
posterior densities are, respectively, approximated as

p(ξk|Z1:k−1) ≈ p(xk|Z1:k−1)p(Xk|Z1:k−1) (15a)
= N (xk;mk|k−1, Pk|k−1)IW(Xk; vk|k−1, Vk|k−1),

p(ξk|Z1:k) ≈ p(xk|Z1:k)p(Xk|Z1:k)

= N (xk;mk|k, Pk|k)IW(Xk; vk|k, Vk|k) (15b)

2When multiple sensors are available, it is also possible to use a track-to-
track fusion strategy [29], but this is not considered here.

where IW(X; v, V ) denotes an inverse-Wishart (IW) pdf over
the matrix X with degrees of freedom v and scale matrix V
[30, Def. 3.4.1]. For the pdf IW(X; v, V ) with 2×2 matrices
X and V , the expected extent is X̂ = V/(v − 6). In the
literature, several approximate update methods exist for both
SS and MS measurement updates [27], [31]. Our proposed
update methods for the HTG spatial density are adapted from
the SS extent update presented in [10] based on matrix square
root computation (FFK)3 and its MS extension (MSFFK) [27].

A. Single Sensor Update

For the SS (S = 1) case, the random matrix model assumes
Gaussian spatial density with measurement likelihood [10]

pRM (Z1
k |ξk

)
=

n1
k∏

j=1

N
(
z1,jk ;Hxk, ρ

1Xk +R1,g
k

)
(16)

where R1,g
k is the measurement noise covariance defined in

the global frame. Given that the predicted kinematic state
density is also Gaussian, the updated estimate of the centroid
kinematics can be determined using the centroid measurement

z̄1k =
1

n1k

n1
k∑

j=1

z1,jk , (17)

by applying standard (nonlinear) Kalman filter update equa-
tions with suitable substitutions of terms [10]. The extent
matrix can be approximately updated using two matrices
proportional to the measurement spread

Z̄1
k =

n1
k∑

j=1

(
z1,jk − z̄

1
k

)(
z1,jk − z̄

1
k

)T
, (18)

and the spread of the centroid measurement around the pre-
dicted object position, respectively [10].

We note that the HTG spatial density (8) reduces to (16)
when S = 1 and the integral in (8) is taken over R2 instead
of D1

k, i.e., when all the truncation bounds are zero. For
the HTG spatial density (8), a direct state update using the
centroid measurement (17) and the measurement spread (18)
is likely to yield inaccurate state estimates due to measurement
model mismatch. To improve the estimation performance, we
introduce a set of pseudo measurements, such that the spatial
density of the union of the received measurements Z1

k and the
pseudo measurements may be regarded as Gaussian. Using the
centroid measurement and the measurement spread of the new
set of measurements to perform the state update would then
yield more accurate state estimates, and at the same time it
allows us to make the most use of the available random matrix
update equations.

Given truncated Gaussian distributed measurement sources
Y 1
k = {y1,jk }

n1
k
j=1 in a normalized object frame with pdf (6),

we observe that if we draw a certain number of samples
from the truncated Gaussian distribution whose support is the
complement of the support D1,c

k = R2 \ D1
k, i.e., y1,j,ck ∼

T N
(

02×1, ρ
1I2, D

1,c
k

)
, then the drawn samples together with

3It is named after the authors’ initials.
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received measurements in 
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Fig. 4. An example of the measurement sources and drawn samples.

the measurement sources Y 1
k may be regarded as random

samples drawn from the Gaussian distribution N
(
02×1, ρ

1I2
)
;

see Fig. 4 for an illustration of the pseudo measurements
denoted in red circles. In order for this to be justifiable, the
relation between the number of measurement sources n1k and
the number of samples n1,ck should satisfy

n1k
n1,ck

=
cD1

k

1− cD1
k

(19)

where the normalization factor cD1
k

can be interpreted as
the probability that a random sample of N

(
02×1, ρ

1I2
)

falls
inside the truncation area specified by D1

k. For each sample
y1,j,ck , we further obtain its Gaussian noise corrupted coun-
terpart as u1,j,ck ∼ N

(
y1,j,ck , R1

k

)
. Finally, the set of pseudo

measurements in the global frame is Z1,c
k = {z1,j,ck }n

1,c
k
j=1 with

z1,j,ck = M(φk)E(Xk)
(
u1,j,ck +Hxk

)
. (20)

Augmented with the introduced pseudo measurements, the set
of measurements Z1,u

k = Z1
k ∪ Z

1,c
k can then be regarded as

realizations of the spatial density

p
(
Z1,u
k |ξk

)
=

∏
z1,uk ∈Z

1,u
k

N
(
z1,uk ;Hxk, ρ

1Xk +R1,g
k

)
,

(21a)

R1,g
k = M(φk)E(Xk)R1

kE(Xk)TM(φk)T, (21b)

which is in line with the Gaussian spatial density assumption
(cf. (16)) used in the random matrix model.

The centroid measurement and measurement spread of Z1,u
k

can be, respectively, expressed as

z̄1,uk =
1

n1k + n1,ck

 n1
k∑

j=1

z1,jk +

n1,c
k∑
j=1

z1,j,ck

 (22a)

=
cD1

k

n1k

 n1
k∑

j=1

z1,jk +

n1,c
k∑
j=1

z1,j,ck

 ,

Z̄1,u
k =

n1
k∑

j=1

(
z1,jk − z̄

1,u
k

)(
z1,jk − z̄

1,u
k

)T
(22b)

+

n1,c
k∑
j=1

(
z1,j,ck − z̄1,uk

)(
z1,j,ck − z̄1,uk

)T

=

n1
k∑

j=1

(
z1,jk − z̄

1,u
k

)(
z1,jk − z̄

1,u
k

)T

+
n1k

(
1− cD1

k

)
cD1

k

z̄1,uk

(
z̄1,uk

)T
+

n1,c
k∑
j=1

z1,j,ck

(
z1,j,ck

)T

−

n1,c
k∑
j=1

z1,j,ck

(z̄1,uk )T
− z̄1,uk

n1,c
k∑
j=1

z1,j,ck

T

.

For practicality, instead of constructing n1,ck (which may not
be an integer) pseudo measurements, we can further express∑n1,c

k
j=1 z

1,j,c
k and

∑n1,c
k
j=1 z

1,j,c
k

(
z1,j,ck

)T
using the analytic mean

and the second moment of z1,j,ck as

n1,c
k∑
j=1

z1,j,ck ≈ n1,ck E
[
z1,j,ck

]
(23a)

=
n1k

(
1− cD1

k

)
cD1

k

(
M(φk)E(Xk)E

[
y1,j,ck

]
+Hxk

)
n1,c
k∑
j=1

z1,j,ck

(
z1,j,ck

)T
≈ n1,ck E

[
z1,j,ck

(
z1,j,ck

)T
]

(23b)

=
n1k

(
1− cD1

k

)
cD1

k

(
E
[
z1,j,ck

]
E
[
z1,j,ck

]T

+M(φk)E(Xk)
(

Cov
[
y1,j,ck

]
+R1

k

)
E(Xk)TM(φk)T

)

where E[y1,j,ck ] and Cov[y1,j,ck ] are, respectively, the mean and
the covariance of T N (y1,j,ck ; 02×1, ρ

1I2, D
1,c
k ); see Appendix

E for their explicit expressions. Equations (22) and (23) can
be interpreted in a way that we make use of the mean and
the second moment of a HTG distribution to correct the
biases introduced in directly using the centroid measurement
and the measurement spread to perform the random matrix
measurement update.

Given SS measurements Z1
k and the predicted GIW param-

eters
(
mk|k−1, Pk|k−1, vk|k−1, Vk|k−1

)
, at the tth iteration the

posterior Gaussian parameters
(
mSS,t
k|k , P

SS,t
k|k

)
are

mSS,t
k|k = mk|k−1 −K1

k|k−1

(
z̄1,u,t−1k −Hmk|k−1

)
, (24a)

P SS,t
k|k = Pk|k−1 −K1

k|k−1HPk|k−1, (24b)

K1
k|k−1 = Pk|k−1H

T
(
S1
k|k−1

)−1
, (24c)

S1
k|k−1 = HPk|k−1H

T + Ŷ 1
k|k−1, (24d)

Ŷ 1
k|k−1 =

cD1
k

n1k

(
ρ1X̂t−1

k|k +R1,g,t−1
k

)
(24e)
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and the posterior IW parameters
(
vSS,t
k|k , V

SS,t
k|k

)
are

vSS,t
k|k = vk|k−1 +

n1k
cD1

k

, (25a)

V̂ = Vk|k−1 + Z1
k|k−1 + L1

k|k−1, (25b)

V SS,t
k|k = M(φ̂tk|k)TE(V̂ )2M(φ̂tk|k), (25c)

Z1
k|k−1 = X̂

1
2

k|k−1

(
n1k
cD1

k

Ŷ 1
k|k−1

)− 1
2

Z̄1,u,t−1
k

×

(
n1k
cD1

k

Ŷ 1
k|k−1

)− T
2

X̂
T
2

k|k−1, (25d)

L1
k|k−1 = X̂

1
2

k|k−1

(
S1
k|k−1

)− 1
2

N1
k|k−1

(
S1
k|k−1

)− T
2

X̂
T
2

k|k−1,

(25e)

N1
k|k−1 =

(
z̄1,u,t−1k −Hmk|k−1

)(
z̄1,u,t−1k −Hmk|k−1

)T

(25f)

where variables with superscript t− 1 are computed using the
updated state estimate ξ̂t−1k|k at the (t− 1)th iteration.

Several differences between the FFK update [10] and the
update equations (24), (25) are noted below. First, n1k/cD1

k

is regarded as the number of measurements instead of n1k;
the former can be interpreted as the approximate number of
measurements when the spatial density is not affected by self-
occlusion. Second, the assumption that Xk ≈ X̂k|k−1 in the
FFK update is relaxed by Xk ≈ X̂t−1

k|k , which could be more
accurate when there is no accurate prior information about
the object size. Last, equation (25c) can be interpreted in a
way that we ignore the orientation information contained in
Xk and enforce it to be the object heading in the kinematic
state4. Empirical results show that this can lead to improved
estimation performance. The reasons here are two fold. First,
the object orientation is assumed to be aligned with the object
heading. Second, the object kinematic state estimate is usually
more accurate than the measure of orientation obtained via the
eigen-decomposition of the extent matrix, even when there are
few measurements.

B. Multi-Sensor Update

We proceed to present the MS extension of the proposed
random matrix update method. Similar to the SS update for
HTG spatial density, for each sensor we augment the sensor
measurements Zsk with a set of pseudo measurements Zs,ck
such that the set of measurements Zs,uk = Zsk ∪ Z

s,c
k can be

regarded as Gaussian distributed. The MS likelihood for the
augmented sensor measurements can be written as

p(Zuk |ξk) =

S∏
s=1

∏
zs,uk ∈Z

s,u
k

N (zs,uk ;Hxk, ρ
sXk +Rs,gk )

∝
S∏
s=1

N
(
z̄s,uk ;Hxk,

ρskXk +Rs,gk
nsk

)
4It is also possible to consider the de-coupling on matrices Z1

k|k−1
and

L1
k|k−1

before matrix V̂ is computed.

×
S∏
s=1

|ρskXk +Rs,gk |
−
|Zs,u
k
|−1

2

× etr

(
−1

2
Z̄s,uk (ρskXk +Rs,gk )

−1
)
. (26)

The derivation of the second step of (26) can be found in e.g.,
[9, Appendix C] or [32, Appendix A].

We can further obtain the approximate z̄s,uk and Z̄s,uk by
making use of the analytic mean and the second moment
of the HTG distributed random variable zs,ck , cf. (23). With
(26), the MS generalization of the SS update (24) and
(25) follows the MSFFK approach [27], which makes use
of the centroid measurements and measurement spreads for
the individual sensors. The main difference here is that the
centroid measurement z̄sk and the measurement spread Z̄sk of
received sensor measurements are replaced with (22), which
are computed using the means, variances and normalization
factors of different HTG distributions.

Given MS measurements Zk and the predicted GIW param-
eters

(
mk|k−1, Pk|k−1, vk|k−1, Vk|k−1

)
, at the tth iteration the

posterior Gaussian parameters
(
mMS,t
k|k , P

MS,t
k|k

)
are

mMS,t
k|k = mk|k−1 +Kf

k|k−1

(
z̄fk|k−1 −Hmk|k−1

)
, (27a)

PMS,t
k|k = Pk|k−1 −Kf

k|k−1HPk|k−1, (27b)

Kf
k|k−1 = Pk|k−1H

T
(
Sfk|k−1

)−1
, (27c)

Sfk|k−1 = HPk|k−1H
T + Ŷ fk|k−1, (27d)

z̄fk|k−1 = Ŷ fk|k−1

S∑
s=1

(
Ŷ sk|k−1

)−1
z̄s,u,t−1k , (27e)

Ŷ fk|k−1 =

(
S∑
s=1

(
Ŷ sk|k−1

)−1)−1
, (27f)

Ŷ sk|k−1 =
cDsk
nsk

(
ρsX̂t−1

k|k +Rs,g,t−1k

)
, (27g)

Rs,g,t−1k = M(φ̂t−1k|k )E(X̂t−1
k|k )RskE(X̂t−1

k|k )TM(φ̂t−1k|k )T,

(27h)

and the posterior IW parameters
(
vMS,t
k|k , V MS,t

k|k

)
are

vMS,t
k|k = vk|k−1 +

S∑
s=1

nsk
cDsk

, (28a)

V̂ = Vk|k−1 +

S∑
s=1

Zsk|k−1 + Lfk|k−1, (28b)

V MS,t
k|k = M(φ̂tk|k)TE(V̂ )2M(φ̂tk|k), (28c)

Zsk|k−1 = X̂
1
2

k|k−1

(
nsk
cDsk

Ŷ sk|k−1

)− 1
2

Z̄s,u,t−1k

×
(
nsk
cDsk

Ŷ sk|k−1

)− T
2

X̂
T
2

k|k−1, (28d)

Lfk|k−1 = X̂
1
2

k|k−1

(
Sfk|k−1

)− 1
2

Nf
k|k−1

(
Sfk|k−1

)− T
2

X̂
T
2

k|k−1,

(28e)
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Algorithm 1 Multi-Sensor GIW Update for HTG Model
Input: Measurements from S sensors Zk = {Zs

k}Ss=1, a set of
Nh learned HTG models

{
(Di, Ri, ρi)

}Nh
i=1

, predicted GIW
parameters

(
mk|k−1, Pk|k−1, vk|k−1, Vk|k−1

)
.

Output: Posterior GIW parameters (mk|k, Pk|k, vk|k, Vk|k).
1: Initialize ξ̂0k|k = ξ̂k|k−1.
2: while convergence is not reached do
3: for s = 1 to S do
4: Compute object kinematic state ξ̂tk|k in the frame of the

sth sensor.
5: Compute approximate aspect angle (14).
6: Select a learned HTG model based on aspect angle and

convert it to the global frame.
7: Compute z̄s,uk (22a) and Z̄s,u

k (22b) using approximation
(23).

8: Compute Ŷ s
k|k−1 (27g) and Ẑs

k|k−1 (28d).
9: end for

10: Compute
(
mt

k|k, P
t
k|k
)

(27) and
(
vtk|k, V

t
k|k
)

(28).
11: end while
12: Set

(
mt

k|k, P
t
k|k, v

t
k|k, V

t
k|k
)

as
(
mk|k, Pk|k, vk|k, Vk|k

)
.

Nf
k|k−1 =

(
z̄fk|k−1 −Hmk|k−1

)(
z̄fk|k−1 −Hmk|k−1

)T

(28f)

where z̄s,u,t−1k (cf. (22a)) and Z̄s,u,t−1k (cf. (22b)) are, respec-
tively, the approximate centroid measurement and measure-
ment spread for the sth sensor computed using the updated
state estimate ξ̂t−1k|k at the (t− 1)th iteration.

The approximation errors introduced by (23) and (22) for
the individual sensors decrease as the number of sensor mea-
surements nsk increases. Nevertheless, the experiment results
in Section VI show that the proposed MS update for HTG
model has promising estimation performance even when there
are few measurements. For the extent matrix update, we have
sums over the approximate spreads for the individual sensors∑S
s=1 Z

s
k|k−1 and the spread Nf

k|k−1 around the approximate
centroid for all sensors. It is also possible to compute the
approximate spread for all measurements from all sensors, i.e.,∑S
s=1 Z̄

s,u
k . This will result in a slightly different implemen-

tation similar to the fusion approximation in [31].
When S = 1, the MS update (27), (28) reduces to the SS

update (24), (25). The pseudo code for the complete MS GIW
update for HTG model is given in Algorithm 1. Note that
the means, variances, and normalization factors of the learned
truncated Gaussian distributions can be precomputed before
running the algorithm to avoid repetitive computations.

C. Prediction

We briefly review the state prediction for factorized GIW
density representation for completeness. The kinematic state
transition density is

p(xk|xk−1) = N
(
xk; fk,k−1(xk−1), QKS

k

)
(29)

where fk,k−1(xk−1) is a function that describes the (non-
linear) motion of the object and QKS

k is the motion pro-
cess noise covariance. The predicted Gaussian parameters
(mk|k−1, Pk|k−1) can be obtained by the EKF prediction

mk|k−1 = fk,k−1(mk−1|k−1), (30a)

Pk|k−1 = Fk,k−1Pk−1|k−1F
T
k,k−1 +QKS

k , (30b)

Fk,k−1 = ∇xk−1
fk,k−1(xk−1)|xk−1=mk−1|k−1

(30c)

where Fk,k−1 is the Jacobian matrix.
By modeling the extent matrix state transition density as a

non-central IW distribution [30, Def. 3.5.2], parameterized as

p(Xk|Xk−1) = IWnc (Xk; vk, AkQ
ES
k A

T
k, AkQ

ES
k X

−1
k−1A

−1
k

)
(31)

where Ak is the nonsingular transition matrix and QES
k is the

extent noise matrix, a recent work [14] shows that the resulting
predicted density for an IW extent matrix posterior is also
an IW distribution without approximation. The predicted IW
parameters (vk|k−1, Vk|k−1) are

vk|k−1 = 6 + (vk−1|k−1 − 6)
∣∣I2 +QES

k Vk−1|k−1
∣∣− 1

2 ,
(32a)

Vk−1|k−1 = AkVk−1|k−1
(
I2 +QES

k Vk−1|k−1
)−1

AT
k. (32b)

With the assumptions that the object orientation is aligned
with the object heading and that the noise matrix QES

k has no
impact on the extent matrix, one can set QES

k = V −1k−1|k−1/αk
and Ak = M(ωk−1Ts) with Ts denoting the sampling period
and ωk−1 denoting the turn rate at time step k− 1, such that

vk|k−1 = 6 +
αk

1 + αk
(vk−1|k−1 − 6), (33a)

Vk−1|k−1 =
αk

1 + αk
M(ωk−1Ts)Vk−1|k−1M(ωk−1Ts)

T

(33b)

where αk is a tuning parameter controling the noise level. The
larger αk is, the more confident the prediction (33) becomes.
We note that (33) resembles the heuristic extent prediction for
a Wishart extent transition density [10].

V. RAO-BLACKWELLIZED PARTICLE FILTER FOR
HIERARCHICAL TRUNCATED GAUSSIAN MODEL

In this section, we extend the random matrix approach
[27] based on a RBP representation to HTG spatial density.
The RBP representation of the object state density assumes
a Gaussian distribution for the kinematic state xk and a
particle approximation of the extent state Xk whose orientation
is determined by the object heading contained in xk

5. By
having a particle representation of the object extent state
and limiting the sampling space to object length and width,
we aim at obtaining an implementation that offers a good
trade-off between computational complexity and estimation
performance. Also, the RBP filter implementation can be
regarded as a fair benchmark for the implementation based
on factorized GIW density representation.

For a RBP representation of the state density, the predicted
and posterior densities are, respectively, approximated as

p(ξk|Z1:k−1) ≈ p(xk|Z1:k−1)p(Xk|Z1:k−1)

5It is also possible to represent each particle as a vector consisting of
the object length and width. We stick to the extent matrix representation
here merely for the purpose of simplifying notations. Note that the practical
implementations for both representations are the same.
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= N (xk;mk|k−1, Pk|k−1)

Np∑
i=1

w
(i)
k−1δXk(X

(i)
k ), (34a)

p(ξk|Z1:k) ≈ p(xk|Z1:k)p(Xk|Z1:k)

= N (xk;mk|k, Pk|k)

Np∑
i=1

w
(i)
k δXk(X

(i)
k ) (34b)

where w(i)
k is the weight of particle i, Np is the number of par-

ticles and δX(Y ) is the Dirac delta function. For particle repre-
sentation of Xk, the expected extent is X̂k =

∑Np
i=1X

(i)
k w

(i)
k .

In the RBP state update presented in [27], the kinematic state is
approximated by its prediction to split the state update into two
parts: Gaussian kinematic update and particle extent update.
Similar to the GIW state update for HTG spatial density, an
iterative update method is used here. Because the kinematic
update is the same as (24), we focus on the extent update.

We proceed to present the measurement likelihood function
and the importance distributions used to draw samples in the
sequential importance resampling. At the tth iteration, we
approximate the kinematic state xk ≈ mt

k|k, and the MS
measurement likelihood (8) can be written as

p(Zk|ξk) =

S∏
s=1

Lsk
(
Zsk|Xk,m

t
k|k

)
(35)

where Lsk(Zsk|·) is shorthand notation for the measurement
likelihood function for the sth sensor conditioned on the aspect
angle (14); its explicit expression can be derived following (8)
and (12). As the object orientation is assumed to be aligned
with the object heading, it is sufficient to first draw samples of
Xk in the object frame, i.e., E(Xk)2, from an assumed density.
We can then transform the generated samples to the global
frame to obtain the particles X(i),t

k . Therefore the importance
distribution can be chosen as

q(·|X(i)
k−1, Zk) = M(φ̂tk|k)

(
E(X

(i)
k−1) + σk

)
(36a)

×
(
E(X

(i)
k−1) + σk

)T
M(φ̂tk|k)T,

σk ∼ N
(
02×1,diag

([
σ2
l1/4, σ

2
l2/4

]))
(36b)

where σl1 and σl2 are the standard deviations for the major
and minor axes, respectively. Note that the orientation of X(i),t

k

is determined by the object heading estimate φ̂tk|k rather than
from sampling, compared to the RBP state update proposed
in [27] for Gaussian spatial density.

The main steps of the sequential importance resampling
at the tth iteration can be summarized as follows. First, Np
new particles are generated using (36). Second, new particle
weights are computed according to

w
(i),t
k ∝ w(i)

k−1

S∏
s=1

Lsk
(
Zsk|X

(i),t
k ,mt

k|k

)
, (37)

and normalized to sum to one. Lastly, resampling is performed
if the effective number of particles [33]

N eff
p ≈

1∑Np
i=1

(
w

(i),t
k

)2 (38)

Algorithm 2 Multi-Sensor RBP Update for HTG Model
Input: Measurements from S sensors Zk = {Zs

k}Ss=1, a set of
Nh learned HTG models {(Di, Ri, ρi)}Nhi=1, predicted RBP
parameters (mk|k−1, Pk|k−1, w

(i)
k−1, X

(i)
k−1).

Output: Posterior RBP parameters (mk|k, Pk|k, w
(i)
k , X

(i)
k ).

1: Initialize ξ̂0k|k = ξ̂k|k−1.
2: while convergence is not reached do
3: for s = 1 to S do
4: Compute object kinematic state ξ̂tk|k in the frame of the

sth sensor.
5: Compute approximate aspect angle (14).
6: Select a learned HTG model based on aspect angle and

convert it to the global frame.
7: Compute z̄s,uk (22a) using approximation (23a).
8: Compute Ŷ s

k|k−1 (27g).
9: end for

10: Compute (mt
k|k, P

t
k|k) (27).

11: For i = 1, . . . , Np, obtain X(i),t
k ∼ q(·|X(i)

k−1, Zk) (36).
12: Compute new particle weights w(i),t

k (37).
13: Normalize weights

∑Np
i=1 w

(i),t
k = 1.

14: Compute effective number of particles N eff
p (38).

15: if N eff
p is significantly lower than Np then

16: Resample
{
w

(i),t
k , X

(i),t
k

}Np

i=1
.

17: end if
18: end while
19: Set (mt

k|k, P
t
k|k, w

(i),t
k , X

(i),t
k ) as (mk|k, Pk|k, w

(i)
k , X

(i)
k ).

is significantly less than Np, e.g., N eff
p < Np/4, to avoid the

particle degeneracy problem. Afterward, the extent estimate
X̂t
k|k can be used for Gaussian kinematic update at the next

iteration. The pseudo code for the complete MS RBP update
for HTG model is given in Algorithm 2. Note that, though
the state update is iterative, we only need to draw Np samples
from the object frame, i.e., E(X

(i)
k−1)+σk at the first iteration

to avoid redundant computations.
The kinematic prediction is the same as (30), (33). With the

assumption that the object extent is time-invariant, the object
extent prediction is given by X̂k|k−1 = X̂k−1|k−1.

VI. PERFORMANCE EVALUATION

In this section, we first describe the HTG model learning
using the nuScenes dataset [20], a real-world public auto-
motive radar dataset. Then we present the simulation results
on synthetic data generated using the learned HTG models.
Finally, experimental validation on the nuScenes dataset is
presented.

A. Data Preprocessing and Model Training

The large-scale public nuScenes dataset contains multi-
modal measurements from a full sensor suite including LI-
DAR, camera, global positioning system (GPS), and radar. Par-
ticularly, annotated keyframes are provided at a sample rate of
2-Hz for 1000 scenes of 20-second duration. The ego vehicle
is mounted with five 77-GHz frequency modulated continuous
wave (FMCW) long-range radars at the four corners and the
front bumper of the ego vehicle. Each radar sensor has a 13-Hz
capture frequency and a maximum range of 250 meters.
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(a) x′ ∈ [−π/8, π/8) (b) x′ ∈ [−π/8, π/8) (c) x′ ∈ [5π/8, 7π/8) (d) x′ ∈ [5π/8, 7π/8)

Fig. 5. Histograms of radar detection points and probability density functions of learned HTG models, conditioned on different aspect angle ranges.

(a) (b)
Fig. 6. Simulated scenario: (a) ground truth with the simulated trajectory and (b) average GWDs over time with synthetic measurements.

To accumulate radar detection points for vehicles, we first
extracted the set of objects labeled as car, and then for
each object we extracted all radar points within its annotated
bounding box with a scaling ratio of 1.5. This is to account
for the spread of the measurements around object edges. To
reduce the number of clutter points in the training dataset, we
utilized the annotation information to only include detection
points with unambiguous radial velocity and probability of
being an artifact less than 25%. After the clutter removal,
each radar point was transformed to the unit frame using the
annotated object size and concatenated with its corresponding
aspect angle (14). This resulted in a training dataset with a
total of 175760 detection points.

A set of 8 HTG models were trained based on subsets of
radar points conditioned on the aspect angle χ of (14) in the
equally spaced intervals [−π, π] in the unit frame [23]. Two
of the 8 learned HTG models are shown in Fig. 5.

B. Performance Evaluation on Synthetic Data

We consider a scenario of a rectangular object (4-m long and
1-m wide) maneuvering with a nonlinear motion for 60 time
steps. The object is represented by an ellipse with the major
and minor axes matching with the length and, respectively,
width of the object. The sensor position is fixed with its orien-
tation pointing towards the object center. The tracking scenario
is illustrated in Fig. 6 (a). The number of measurements at each

time step is drawn from a Poisson distribution with a mean
of 12. The measurements are randomly generated using the
offline trained HTG models conditioned on the aspect angle
with a sampling frequency of 2-Hz. The kinematic vector is
given as xk = [pk,x, pk,y, νk, φk, ωk]T where νk is the object
velocity, and the framed turn motion model is used with
standard deviations of polar and angular acceleration noises
σν̇ = 0.5 and σω̇ = 0.1, respectively. The explicit expressions
for the transition model fk,k−1(·) and process noise covariance
matrix QKS

k can be found in [34].
For tracking performance comparison, 5 EOT algorithms

are considered:

1) random matrix approach with FFK update [10];
2) random matrix approach with RBP update [27];
3) random matrix approach for HTG model with GIW den-

sity and online truncation bounds estimation (referred to
as HTG-OBE) [24], [25];

4) random matrix approach for HTG model with GIW den-
sity and offline learned structural parameters (referred to
as HTG-GIW) presented in Section IV;

5) random matrix approach for HTG model with RBP den-
sity representation and offline learned structural param-
eters (referred to as HTG-RBP) presented in Section V.

All the algorithms are initialized using the true kinematic state
and extent matrix X0 = I2. To implement with GIW density,
the initial degree of freedom in the IW density is chosen as
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(a) (b)
Fig. 7. Average GWD error per time step versus (a) the number of particles and (b) the number of iterations used in the iterative state update.

v0 = 1000, and the tuning parameter in extent prediction (33)
is set to α = +∞ to model time-invariant object extent [9].
For implementations using RBP, the number of particles is set
to 100 and, in the importance distribution (36), the standard
deviations for the major and minor axes are σl1 = 0.4 and
σl2 = 0.15, respectively. For implementations not using offline
learned structural parameters, the scaling factor is fixed to
ρ = 0.25 and the measurement noise covariance matrix is
Rg = diag([0.04, 0.04]). Finally, for HTG implementations,
the number of iterations used for iterative state update is 10.

The estimation performance is evaluated using the Gaussian
Wasserstein distance (GWD) metric [35]. The GWD between
two state estimates ξ1 = (x1, X1) and ξ2 = (x2, X2) is [36]

W2(ξ1, ξ2)2 = ||x1−x2||22+Tr{X1+X2−2(X1X2)
1
2 }. (39)

The GWDs over time, averaged over 1000 Monte Carlo trials,
are depicted in Fig. 6 (b). It is seen that FFK presents the worst
estimation performance followed by RBP. As both FFK and
RBP are algorithms developed for Gaussian spatial densities,
they suffer from measurement model mismatch. Within the
HTG approaches, HTG-GIW outperforms HTG-OBE because
the measurements are generated using the trained HTG mod-
els. HTG-RBP shows improved estimation performance over
HTG-GIW at the expense of higher computational complexity.

The performance sensitivity of RBP and HTG-RBP with
respect to the number of particles is shown in Fig. 7 (a).
The results show that the estimation performance improvement
of HTG-RBP is less than 10% by increasing the number of
particles from 100 to 1000. Therefore the number of particles
of 100 may be advisable in terms of computational efficiency.

Similarly, the performance sensitivity of HTG-OBE, HTG-
GIW and HTG-RBP with respect to the number of iterations
used in the iterative state update is shown in Fig. 7 (b). The
results show that, on average, HTG-OBE converges within
3 iterations, while HTG-GIW and HTG-RBP take up to 6
iterations for convergence. The reason that HTG-OBE con-
verges faster than HTG-GIW and HTG-RBP is because the
HTG model used in HTG-OBE is defined in the global frame,
independent of the object size. When applied in practical

applications, the number of iterations of 10 may be advisable
for HTG-GIW and HTG-RBP.

C. Performance Evaluation on Experimental Data

To further evaluate performance using the real-world
nuScenes dataset, we consider 1) HTG-OBE [24], [25]; 2)
HTG-GIW presented in Section IV; 3) HTG-RBP presented in
Section V; 4) probability multiple hypothesis tracker (PMHT)
with offline learned GMM (referred to as GMM-PMHT) [23];
and 5) Cartesian B-spline model-based approach for vehicle
tracking [8]. We exclude the conventional random matrix
approaches with FFK and RBP updates as they were reported
to give worse performance than the GMM-PMHT and B-spline
approaches for the nuScene dataset [23]. In GMM-PMHT, the
measurement spatial densities conditioned on different aspect
angles in the unit frame are modeled as Gaussian mixtures,
and an EM formulation of the PMHT for single time steps
is used for state update. The B-spline model allows for a
good approximation of the object contour features such as the
rounded corners of cars. Compared to random matrix-based
approaches, the object extent in the GMM-PMHT and B-spline
model is explicitly represented using object length and width
in an augmented kinematic state.

For the nuScenes dataset, we only consider annotated tra-
jectories of cars that are continuously covered by at least one
radar point for a duration no less than 10 time steps. This
results in a total of 300 selected trajectories. It is noted that
the radar measurements in the nuScenes dataset are sparse:
the average number of radar measurements per sensor per
time step is less than 2. The coordinate turn motion model
is used. For each trajectory, we use the standard deviations of
the true object polar and angular accelerations as the standard
deviations of polar acceleration noises σν̇ and σω̇ , respectively.
For all considered algorithms, the initial kinematic state is set
to the same as the first annotated object state and the initial
extent state is determined by the average size of objects (4.5-m
long and 2-m wide).

For HTG implementations, the same parameter setting was
used as in the simulation study. For the GMM-PMHT and B-
spline model, the EKF is used for state prediction and update,
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TABLE I
MEANS AND STANDARD DEVIATIONS OF ESTIMATION ERRORS PER TIME STEP, AVERAGED OVER 300 SELECTED TRAJECTORIES.

GWD Localization (m) Heading (rad) Length (m) Width (m) Execution time (s)
Algorithm mean std mean std mean std mean std mean std mean std
HTG-OBE 1.3531 0.4164 1.2659 0.3961 0.0661 0.1463 0.3311 0.2836 0.1257 0.0957 0.0191 0.0084
HTG-GIW 1.0072 0.5446 0.9211 0.5178 0.0638 0.0686 0.3372 0.2761 0.1271 0.0938 0.0054 0.0031
HTG-RBP 1.0056 0.5401 0.9183 0.5131 0.0637 0.0676 0.3346 0.2819 0.1271 0.0965 0.1252 0.0282

GMM-PMHT 1.0409 1.1975 0.7503 0.6434 0.2721 0.6661 0.3040 0.2719 0.5811 0.4362 0.0259 0.0104
B-spline 2.5164 2.5919 2.0832 2.0071 0.4136 0.7766 0.5572 0.3750 0.4140 0.4196 0.0015 0.0015

(a) (b)
Fig. 8. Examples of maneuvering vehicle tracking using HTG-GIW for two nuScenes trajectories illustrated at every two time steps.

the initial covariance matrix on object length and width is
diag([0.16, 0.225]), the additional process noise on the object
size is zero, and the sensor fusion is performed by sequentially
processing the measurements from each sensor. For the GMM-
PMHT, a set of eight GMMs were trained based on the same
division of radar points used in the HTG model training6, and
the number of EM iterations used in state update is also 10.
Finally, for the B-spline model and HTG-OBE, the measure-
ment noise covariance matrix is Rg = diag([0.25, 0.25]).

The experiment results7 on 300 selected trajectories are
summarized in Table I and two examples of maneuvering
vehicle tracking using HTG-GIW are illustrated in Fig. 8. The
overall estimation performance is assessed using the GWD
metric. For the GMM-PMHT and B-spline model, the extent
matrix can be reconstructed using

Xk = M(φk) diag([l21/4, l
2
2/4])M(φk)T (40)

where l1 and l2 are the object length and width, respectively.
Table I shows clear performance improvements in terms

of mean GWD error from the HTG-OBE and B-spline ap-
proaches that do not explore offline training datasets to the
learning-based approaches (HTG-GIW, HTG-RBP and GMM-
PMHT). Among the learning-based approaches, HTG-GIW is
about 5 times faster than GMM-PMHT and about 20 times
faster than HTG-RBP. HTG-GIW uses the approximate mea-
surement mean and spread for state update, and therefore its
computational complexity scales well with the number of mea-
surements. The B-spline model has the lowest computational

6Same as the model training described in [23], the variational estimation
model from the sklearn Gaussian mixture library [37] was used to learn the
GMMs, in which 20 components were chosen for the learning process.

7All the implementations are in MATLAB, run on a laptop with 2.7-GHz
Intel Core i5 processor.

cost but also the worst estimation performance. The B-spline
model in [8] neglects the sensor state and uses a greedy method
to associate measurements to object contour, and therefore it
may not work well when there are few measurements or when
measurements do not always appear around the object contour.
GMM-PMHT has the best localization performance, but it also
gives less accurate estimates to the object heading and width
when compared to HTG implementations.

For automotive radar sensors, the measurements may appear
on sides of the object that are not in sight of the sensors due to
multi-path propagation. If the multi-path measurements only
make up a tiny fraction of the entire training data as in the
nuScenes case, fully data-driven models may present degraded
estimation performance when the online measurements are
sparse. This effect can be observed from relatively large
standard deviations of all estimation errors for the GMM-
PMHT and B-spline model in Table I. Particularly, the large
standard deviations were contributed by those trajectory es-
timates produced by the GMM-PMHT and B-spline model
that sometimes diverge from the ground truth. On the other
hand, by having fewer model parameters in the learned model,
the HTG implementations presented good robustness against
the multi-path measurements, which is a crucial factor in
automotive applications.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a new measurement model
for extended object tracking with automotive radar by mod-
eling the measurement spatial density as a HTG, which can
be learned from real-world automotive radar data. We have
also presented two modified random matrix update methods
for the learned HTG model based on two different density
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(a) (b)

(c) (d)

Fig. 9. Probability density functions of (a) a truncated Gaussian centered at the origin with l = 4.7, w = 1.8, a1 = b1 = 2.14, a2 = b2 = 0.75; (b) a
HTG with R = 0.09I2 in the object centered frame. Both horizontal and vertical axes are in the unit of meters; (c) a HTG with a2 = 0.75, b1 = 2.14 and
a1 = b2 = +∞; (d) a HTG with a1 = 2.14, a1 = b1 = b2 = +∞.

representations. The effectiveness of the proposed approaches
have been validated on both synthetic and experimental data.

To apply the proposed methods in more practical applica-
tions, follow-up directions include the integration of range rate
measurements, see, e.g., [12] and the extension to multiple
extended object tracking, see, e.g., [32], [38]. It would also be
interesting to generalize the measurement updates for HTG
models to other random matrix based update equations for
Gaussian spatial densities [12], [32], [38]–[40].

APPENDIX A

In this appendix, we show examples of pdfs of truncated
Gaussian and HTG introduced in [24], [25].

The truncated Gaussian distribution illustrated in Fig. 9 (a)
is a truncated version of N (02×1,diag([l2/4, w2/4])). The
HTG distributions illustrated in the other three plots are all
based on the truncated Gaussian in Fig. 9 (a) but with different
truncation bounds.

APPENDIX B

In this appendix, we present the pseudo code for sampling
the HTG distribution illustrated in Fig. 2.

Algorithm 3 Sampling a HTG distribution
Input: HTG parameters a1, b1, a2, b2, r1, r2, ρ, θ.
Output: Sample u.

1: y ∼ N (02×1, ρI2).
2: while a1 < yx < b1 and a2 < yy < b2 do
3: y ∼ N (02×1, ρI2).
4: end while
5: u ∼ N (y,diag([r1, r2])).
6: u = M(θ)u.

APPENDIX C

In this appendix, we derive (12).

We start with the univariate case. Suppose that ũ ∼ N (y, r)
a Gaussian distribution with mean y and variance r. Also,
suppose that y ∼ T N (0, ρ, [−a, b]) a truncation of Gaussian
distribution with mean 0 and variance ρ on the interval [−a, b].
The pdf of y is

p(y) =
N (y; 0, ρ)1[−a,b](y)∫ b

−aN (y; 0, ρ)
=

N (y; 0, ρ)1[−a,b](y)

Φ(bρ−1/2)− Φ(−aρ−1/2)
.

(41)
As p(ũ|y)p(y) = p(y|ũ)p(ũ), we have that

N (ũ; y, r)N (y; 0, ρ)1[−a,b](y)

Φ(bρ−1/2)− Φ(−aρ−1/2)

=
N
(
y; ũρ

r+ρ ,
rρ
r+ρ

)
N (ũ; 0, r + ρ)1[−a,b](y)

Φ(bρ−1/2)− Φ(−aρ−1/2)
. (42)

Using (42), the pdf of hierarchical truncated Gaussian variable
ũ can be written as

p(ũ) =

∫
p(ũ|y)p(y)dy (43)

=
N (ũ; 0, r + ρ)

∫ b
−aN

(
y; ũρ

r+ρ ,
rρ
r+ρ

)
dy

Φ(bρ−1/2)− Φ(−aρ−1/2)

=

N (ũ; 0, r + ρ)

(
Φ

(
b− ũρ

r+ρ√
rρ
r+ρ

)
− Φ

(
−a− ũρ

r+ρ√
rρ
r+ρ

))
Φ(bρ−1/2)− Φ(−aρ−1/2)

.

We proceed to consider the bivariate case. Suppose that u ∼
N (y,M(θ) diag([r1, r2])M(θ)T) and y ∼ T N (02×1, ρI2)
a truncated Gaussian distribution with density support D
specified by B = (a1, a2, b1, b2) and θ as illustrated in Fig.
2 (a). We also write ũ = M(−θ)u. The pdf of hierarchical
truncated Gaussian variable u is

p(u) =

∫
p(u|y)p(y)dy (44)

=
1

cD

(∫
N (ũ; y,diag ([r1, r2]))N (y; 02×1, ρI2) dy
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−
∫
R2\D

N (ũ; y,diag ([r1, r2]))N (y; 02×1, ρI2) dy

)

=
1

cD

(
N (ũx; 0, r1 + ρ)N (ũy; 0, r2 + ρ)

−N (ũx; 0, r1 + ρ)

∫ b1

−a1
N
(
y;

ũxρ

r1 + ρ
,
r1ρ

r1 + ρ

)
dy

×N (ũy; 0, r2 + ρ)

∫ b2

−a2
N
(
y;

ũyρ

r2 + ρ
,
r2ρ

r2 + ρ

)
dy

)
where

cD = 1− cR2\D

= 1−
(
(Φ(b1ρ

−1/2)− Φ(−a1ρ−1/2))

× (Φ(b2ρ
−1/2)− Φ(−a2ρ−1/2))

)
.

(45)

We then take the sum of negative logarithm of p(uj) for j =
1, . . . , N , which finally yields the objective function in (12).

APPENDIX D
In this appendix, we show how to use coordinate descent

optimization to solve (12).
Let the multivariate function to be minimized in (12) be

f(x) where x = (ρ, θ, r1, r2, a1, b1, a2, b2), let the ith variable
in x be xi, let the value of x at the tth iteration be xt and let
the constrained space on the ith variable be Ci. We start with
some initial values x0. For the tth iteration, we pick frame
i from i = 1, 2, . . . , 8 and solve the constrained univariate
optimization problem

xt+1
i = arg min

xi∈Ci
f(xt1, . . . , x

t
i−1, xi, x

t
i+1, . . . , x

t
8). (46)

If at some point, f(xt)− f(xt+1) is smaller than a threshold
at every frame direction, then we assume that the optimum is
reached.

As the objective function is not strictly smooth and con-
vex, the algorithm does not necessarily converge to a global
optimum. Instead, we use an empirical study to show that
the ML estimate obtained is precise with moderate amount
of training data. Suppose that the training data consists of
10000 data points randomly generated using the HTG model
illustrated in Fig. 2. The objective is to see how close the
ML estimates of the model parameters obtained via coordinate
descent optimization are to the ground truth.

In the simulation, each constrained optimization subproblem
is solved using fmincon in MATLAB (with default options),
the convergence threshold is set to 10−6 and the initial values
are x0 = (0.25, 0, 0.04, 0.04, 0.5, 0.5, 0.5, 0.5). The estimation
errors obtained over 100 Monte Carlo runs are summarized in
Table II. The results show that the ML estimate of HTG model
parameters obtained via coordinate descent optimization can
be considered precise enough.

TABLE II
MEAN/MAXIMUM ML ESTIMATION ABSOLUTE ERRORS

ρ θ r1 r2 a1 b1 a2 b2
Mean 0.004 0.012 0.005 0.004 0.008 0.014 0.005 0.010
Max 0.019 0.034 0.022 0.018 0.043 0.069 0.015 0.057

APPENDIX E
In this appendix, we compute the mean and covariance of
T N (yck; 02×1, ρI2, Dc

k) where Dc
k = R2 \Dk. An illustration

of the pdf of T N (yk; 02×1, ρI2, Dk) is given in Fig. 2 (a).
We start with transforming truncated Gaussian random

variable yck to a new frame by ỹck = M(−θ)yck, such that the
orientation of the truncation area is now aligned with the axes.
After the transformation, the computations of the mean and
covariance of ỹck can be decomposed into the computations of
the mean and variance of two univariate truncated Gaussians.
Specifically, we have that

ỹck,x ∼ T N (0, ρ, [−a1, b1]), (47a)

ỹck,y ∼ T N (0, ρ, [−a2, b2]). (47b)

Let αi = −aiρ−1/2 and βi = biρ
−1/2 for i ∈ {1, 2}. Also, let

ϕ(·) denote the pdf of the standard normal distribution. The
mean and variance of ỹck,x and ỹck,y are [41, Sec. 10.1]

E
[
ỹck,x

]
= ρ1/2

ϕ(α1)− ϕ(β1)

Φ(β1)− Φ(α1)
, (48a)

E
[
ỹck,y

]
= ρ1/2

ϕ(α2)− ϕ(β2)

Φ(β2)− Φ(α2)
, (48b)

Var
[
ỹck,x

]
= ρ

(
1 +

α1ϕ(α1)− β1ϕ(β1)

Φ(β1)− Φ(α1)

−
(
ϕ(α1)− ϕ(β1)

Φ(β1)− Φ(α1)

)2
)
, (48c)

Var
[
ỹck,y

]
= ρ

(
1 +

α2ϕ(α2)− β2ϕ(β2)

Φ(β2)− Φ(α2)

−
(
ϕ(α2)− ϕ(β2)

Φ(β2)− Φ(α2)

)2
)
. (48d)

After compensating the frame transformation, the mean and
covariance of yck can be written as

E [yck] = M(θ)
[
E
[
ỹck,x

]
,E
[
ỹck,y

]]T
, (49)

Cov [yck] = M(θ) diag
([

Var
[
ỹck,x

]
,Var

[
ỹck,y

]])
M(θ)T.
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