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Abstract
In recent years, control of satellites without resorting to ground stations, i.e., autonomous
satellite control, has attracted significant interest due to the potential of providing high pre-
cision, flexibility, and reduced operating costs. In this paper we consider the autonomous
satellite control in a Sun-synchronous Sub-recurrent orbit (SSO), in Very Low Earth Or-
bit (VLEO). We propose a linear time-varying Model Predictive Control (MPC) for SSO
formulated based on Relative Orbital Elements (ROE). The MPC capabilities of handling
multi-input multi-output systems subject to constraints, its predictive nature, and the us-
age of ROE in the cost function enables to control SSO keeping and transferring based on
the ground trace, while also accounting for coasting phases where propulsion should not be
engaged. The proposed method also has limited computational burden, since linear MPC
requires solving a convex quadratic program for which efficient and compact solvers exists.
We assess the performance of the proposed method by simulations in closed-loop with both,
a nonlinear model of the satellite orbital dynamics and the GMAT simulation toolkit.
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Model Predictive Control Approach for Autonomous
Sun-Synchronous Sub-Recurrent Orbit Control

Naohiro Hayashi∗, Avishai Weiss† and Stefano Di Cairano‡

In recent years, control of satellites without resorting to ground stations, i.e., autonomous
satellite control, has attracted significant interest due to the potential of providing high pre-
cision, flexibility, and reduced operating costs. In this paper we consider the autonomous
satellite control in a Sun-synchronous Sub-recurrent orbit (SSO), in Very Low Earth Orbit
(VLEO). We propose a linear time-varying Model Predictive Control (MPC) for SSO formu-
lated based on Relative Orbital Elements (ROE). TheMPC capabilities of handlingmulti-input
multi-output systems subject to constraints, its predictive nature, and the usage of ROE in the
cost function enables to control SSO keeping and transferring based on the ground trace, while
also accounting for coasting phases where propulsion should not be engaged. The proposed
method also has limited computational burden, since linear MPC requires solving a convex
quadratic program for which efficient and compact solvers exists. We assess the performance of
the proposed method by simulations in closed-loop with both, a nonlinear model of the satellite
orbital dynamics and the GMAT simulation toolkit.

I. Introduction

Sun-synchronous Sub-recurrent Orbit (SSO), in which a satellite passes over the same ground trace at the same
Local Solar Time (LST), is one of the most commonly used orbits. SSO is useful for communication and observation,

and the keeping of ground trace and LST are the most important quality factors in SSO satellites. In recent missions,
more accurate SSO control has been required. For instance, in the case of the RADARSAT Constellation Mission
(RCM), which was launched by the Canadian Space Agency (CSA) in 2019, the three satellites are required to fly in an
orbital tube of radius 100 m while keeping a specific LST [1, 2].

In addition, in recent years the utilization of Very Low Earth Orbit (VLEO) has also been investigated. In 2017, the
Japan Aerospace Exploration Agency (JAXA) and Mitsubishi Electric Corporation launched a 400-kg-class satellite
called Super Low Altitude Test Satellite (SLATS). SLATS demonstrated orbit control at an altitude of 167.4 km using
an ion thruster and a reaction control system [3–5]. In general, VLEO satellites have several advantages such as
increased gain and reduced power consumption in communications, and increased resolution with smaller sensors in
observations. Also, VLEO satellites may be launched by smaller and less expensive vehicles. For these reasons, VLEO
holds significant potential by achieving high performance and cost reduction of earth orbiting satellites.

However, the lower the altitude satellites fly at, the more severe the air drag effects are. According to the U.S.
Standard Atmosphere 1976, the air density at an altitude of 200 km is about a thousand times higher than that of a typical
low Earth orbit at an altitude of 600 km (Fig. 1) [6]. Due to such high air density, there are two challenges for orbit control
in VLEO. The first one is high propellant consumption, as propellant is consumed proportionally to air density. To
remedy that, a possibility is to use ion thrusters that have high specific impulse. The second challenge is the requirement
for frequent and accurate control. In a conventional system, orbit control is conducted by a ground station. Since
ground-based control involves many steps, such as propagating the orbit from GPS signals, scheduling thruster ignition
while avoiding conflict with mission execution, and errors are accumulated from planning to execution, it is challenging
to control VLEO orbits with the required frequency and accuracy. However, this challenge is significantly mitigated if
the VLEO operation is controlled from on-board the satellite, i.e., autonomous satellite control is implemented.

In order to realize autonomous SSO satellite control in VLEO, we propose a Linear Time-Varying (LTV) Model
Predictive Control (MPC) with a prediction model based on Relative Orbital Elements (ROE) that uses the linear
mapping from Cartesian coordinates to ROE proposed in [7]. Since the ground trace of the SSO is geometrically
represented by the orbital elements, the LTV-MPC with cost function expressed in terms of ROE enables control of SSO
based on the ground trace.
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Fig. 1 Geometric altitude versus air density

LTV-MPC appears suitable for SSO control due to the following three features. First, MPC has the capability
of handling constraints and can exploit prediction of disturbances along its prediction horizon. In MPC, the SSO
orbital tube can be regarded as constraints, and also, thruster ignition can be scheduled based on predicted mission
operations. Second, MPC computes a finite horizon optimal control solution for a multi-input multi-output system.
In the orbit control system, the inputs are the three dimensional forces by thruters, and the outputs are the six orbital
elements. Third, the LTV-MPC can be executed in embedded control platform with a limited computational burden [8].
In fact, for a linear (time-varying) prediction model and constraints, and a positive definite quadratic cost function, MPC
requires only solving convex quadratic programs for which many algorithms with different degrees of performance and
computational requirements exist.

MPC is considered a promising approach for autonomous guidance, navigation, and control of spacecraft. In a
recent survey [9], several applications and methodologies of MPC for aerospace systems are reviewed and analyzed.
In [10, 11], the authors discussed MPC-based rendezvous and docking under constraints including sensor line-of-sight
cone, soft docking, attitude motion and obstacle avoidance. In [12, 13], the authors developed MPC for geostationary
satellite station keeping coupled with attitude control and momentum management using electric thrusters, and in [14],
LTV-MPC was used for a similar application on Earth-Moon L2 halo orbits. A large number of prior research on MPC
applications to aerospace systems is reported in recent publications [8, 9].

In this paper we develop the linear MPC-based SSO keeping and transferring where the cost function is formulated
based on the ROE. By approximating the nominal orbit as circular and Keplerian along the short prediction horizon of
MPC, the satellite orbit is expressed by the Hill-Clohessy-Wiltshire (HCW) equations with respect to such nominal orbit.
The HCW equations are linearized to obtain the satellite dynamics in Cartesian coordinates, and the linear-time varying
mapping transforming the Cartesian coordinates into ROEs provides the performance outputs weighted in the cost
function, so that the MPC optimal solution minimizes the ground trace error. Since SSO is obtained by exploiting the �2
term of the Earth gravitational perturbation, MPC must reject the air drag effects, yet at the same time it must retain the
effects of the �2 Earth gravitational perturbation. We solve this problem by introducing an ephemeris which does not
require re-propagation and re-uplink and by exploiting it for generating the target for MPC. The MPC is verified by
numerical simulation, first based on the standard nonlinear model of the orbital dynamics using simple disturbance
models, and then using the General Mission Analysis Tool (GMAT), which has been developed, verified and validated
by National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) [15, 16]. In GMAT,
the MPC is validated under a detailed atmospheric and geopotential model.

The rest of the paper is structured as follows. The simulation and MPC prediction models are introduced in Section II,
the control design is introduced in Section III, the numerical simulations are reported in Section IV, and our conclusions
are discussed in Section V.
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II. SSO Satellite Models for Simulation and Control Design

A. Equations of Motion
The equations of motion for the Earth orbiting satellite with respect to the Earth-Centered Inertial (ECI) frame are

given by
¥r = −` r

|r|3
+ f, (1)

where r ∈ R3 is the position vector, ` is the geocentric gravitational constant, and f ∈ R3 is the vector of external force
per unit mass of the satellite, representing the thrusters and orbital perturbations acting on the satellite.

The exact linearization of (1) on SSO should include non-Keplerian perturbations and consider a non-zero
eccentricity [17, 18]. In order to develop a prediction model for MPC, we make the approximations of considering a
circular nominal orbit, and of neglecting the effects of the non-Keplerian perturbations. Since the prediction model
based on such approximations is integrated only along the relatively short prediction horizon of MPC before being reset
based on actual data, the effects of the non-Keplerian perturbations are small along such short horizon, and the SSO
has small eccentricity, these approximations are appropriate for the prediction model of MPC. On the other hand, for
computing the satellite target and for the numerical simulation of its orbit, we use (1) not to neglect the above effects.

Under the stated approximations the relative position vector of the satellite can be expressed with respect to the
rotating frame (Hill’s frame) in a circular nominal orbit (chief orbit) as

rd = r − rc, (2)

where rc ∈ R3 is the position vector of the origin of Hill’s frame, and the subscripts 2 and 3 indicate the origin (chief) in
the circular orbit and satellite (deputy) respectively. For |rd | � |rc |, the relative motion of the satellite can be linearized
to the HCW equations

x′(g) = Ax(g) + Bf (g), (3)

where the prime ′ indicates differentiation with respect to the mean anomaly of the chief circular orbit g = =cC,
x = [G H I G ′ H′ I′]T is the vector of relative positions and relative velocities of the satellite with respect to Hill’s
frame, and

A =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
3 0 0 0 2 0
0 0 0 −2 0 0
0 0 −1 0 0 0


, B =

1
=c

[
0
I

]
,

where =c =

√
`

|rc |3
is the mean motion of the chief circular orbit. By formulating the HCW equations as a differential

equation of g, the positions and velocities in Hill’s frame can be transformed into ROE by a linear time-varying
mapping [7, 19] as shown next.

B. Relative Orbital Elements
Relative orbital elements are one way of representing relative motion with respect to the Hill’s frame and a linear

(time-varying) mapping from the Cartesian coordinates of the HCW equations state to ROE exists [7, 20, 21]. ROE
have been previously utilized for relative orbital motion control and formation flying [22, 23]. The ROE are defined as

z(g) = 0c



Δ0/0c

Δ_

Δ4G

Δ4H

Δ8G

Δ8H


= 0c



(0d − 0c)/0c

qd − qc + (Ωd −Ωc) cos 8c
4dG − 4cG

4dH − 4cH

8d − 8c
(Ωd −Ωc) sin 8c


, (4)
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where Δ0 is the relative semi-major axis, Δ_ is the relative longitude, Δ4G and Δ4H are the components of the relative
eccentricity vector, and Δ8G and Δ8H are the components of the relative inclination vector. Also, 0 is the semi-major
axis, q is the argument of latitude, Ω is the Right Ascension of Ascending Node (RAAN), 8 is the inclination, 4 is the
eccentricity. The Hill’s frame and ROE are shown in Fig. 2.
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Fig. 2 Hill’s frame and relative orbital elements

The transformation from the state in the HCW equations to the ROE is expressed as

z(g) = E(g)x(g), (5)

where

E(g) =



4 0 0 0 2 0
0 1 0 −2 0 0

3 cos g 0 0 sin g 2 cos g 1
3 sin g 0 0 − cos g 2 sin g 0

0 0 sin g 0 0 cos g
0 0 − cos g 0 0 sin g


, (6)

is the linear time-varying mapping transforming the HCW equations state into ROE.

C. Ground Trace Tracking Condition
In order to develop ground-trace-based control, we determine the conditions according to which the satellite tracks

the ground trace of the target orbit. When formulating the conditions with respect to ROEs, these result to be linear
conditions. From the definition (4), the relative argument of latitude and relative RAAN are expressed as

Δq = Δ_ − ΔΩ cos 8c

ΔΩ =
Δ8H

sin 8c
.

(7)

Geometrically, the ground trace tracking conditions are expressed as

Δ0 = 0
Δ4G = 0
Δ4H = 0
Δ8G = 0
Δq

=2
+ ΔΩ

=Erot − =Erev
= 0,

(8)

where =Erot is the angular velocity of Earth’s rotation about its axis and =Erev is the angular velocity of Earth’s revolution
about the Sun.

4



The fifth condition in (8) relates the angular movement of the deputy Δq to that of Earth ΔΩ, ensuring that the
ground trace below the target is moved to the nadir of the deputy by Earth’s rotation, as shown in Fig. 3. From (7), the
fifth condition is re-formulated as

=gΔ_ + Δ8H = 0, (9)

where =g =
(=Erot − =Erev) sin 8c

=c − (=Erot − =Erev) cos 8c
.
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Satellite (Deputy)

Fig. 3 Ground trace tracking condition

D. Perturbations
In the SSO, the dominant perturbations are air drag and Earth’s anisotropic geopotential. The air drag applied to the

satellite with respect to the Earth-Centered Rotational (ECR) frame is given by

fair = −
1
2
d | ¤r|2�drag

�area
<

¤r
| ¤r| , (10)

where d is the air density, �drag is the drag coefficient, �area is the cross-sectional area, and < is the mass of the satellite.
The �2 term of the Earth gravitational perturbation causes a secular perturbation on the RAAN [18]. The secular

perturbation of RAAN by �2 is given by

¤Ω = − 3�2=

2(1 − 42)2
( 0E
0

)2
cos 8, (11)

where 0E is the Earth equatorial radius. Also, the resonance of �2 and �3 causes a secular perturbation on the eccentricity
and argument of perigee [18]. These secular perturbations are given by

¤4 = − 3�3=

2(1 − 42)2
( 0E
0

)3
sin 8

(
1 − 5

4
sin2 8

)
cosl

¤l = 3�3=

(1 − 42)2
( 0E
0

)2
sin 8

(
1 − 5

4
sin2 8

) (
1 + �3

2�2 (1 − 42)
0E
0

sin 8 sinl
4

)
.

(12)

Other perturbations such as the gravity of the Sun, the Moon and the other planets also influence the SSO, albeit
their effects are smaller than the previously described perturbations. While detailed models for those can be obtained, in
this paper they are regarded as unmodeled disturbances that the satellite controller compensates for by feedback.

E. Sun-synchronous Sub-recurrent and Frozen Condition
In a sun-synchronous orbit, the orbital plane rotates by 360 degree in each sidereal year. The sun-synchronous

condition is expressed as
=Erev = ¤Ω. (13)
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In a sub-recurrent orbit, the ratio of the satellite revolution to the Earth rotation is a rational number, which implies that
the satellite repeats its ground trace. The sub-recurrent condition is expressed as

= = " (=Erot − ¤Ω), (14)

where " ∈ Q is the number of revolutions per day. The SSO is an orbit which has both features, i.e., it satisfies (13)
and (14). To avoid consuming fuel for rotating the orbital plane, the SSO secular perturbation of RAAN obtained
from (11) is used to satisfy (13) and (14) by appropriately determining 0 and 8. In this way, the SSO is generated by �2,
i.e., the perturbation is actually exploited to achieve the desired orbit.

Although the secular perturbation of the eccentricity vector (12) is not dominant, over long periods it perturbs the
SSO and causes propellant consumption. In order to avoid that, the SSO is designed to be a frozen orbit, where the
eccentricity vector is fixed. Since ¤4 and ¤l are given by (12), the frozen condition is expressed as

4 = − �30E
2�20

sin 8

l =
c

2
.

(15)

When 4 and l satisfy (15), the secular perturbation of the eccentricity vector does not perturb the SSO.
Summarizing, in this paper the target orbit is selected to satisfy the conditions (13), (14) and (15), and the chief

circular orbit is selected to have the same semi-major axis (the same orbital period) as the target orbit.

III. Model Predictive Control Design

A. Prediction model for SSO Keeping
The general form of LTV prediction model for the MPC is the discrete time model given by

x̄:+1 = Ā: x̄: + B̄: ū:
ȳ: = C̄: x̄: + D̄: ū:
z̄: = Ē: x̄: ,

(16)

where x̄: , ȳ: , z̄: and ū: are the state, constrained output, performance output, and input vector at the sampling instant
: ∈ N, respectively. For controlling the satellite motion described by (1), in this paper we build the prediction model (16)
based on the HCW equations (3) that approximate (1), and we define the performance output vector by the ROE (4), (5).
For (3), (4), (5), the vectors and matrices in (16) are

x̄: = x(g: ), ȳ: = z(g: ), z̄: = z(g: ), ū: = u(g: ),

Ā: = AD, B̄: = BD,

C̄: = E(g: ), D̄: = 0, Ē: = E(g: ),

where u ∈ R3 is the thrust, AD ∈ R6×6 and BD ∈ R6×3 are the matrices obtained of the discrete-time representation
of (3), and g: indicates mean anomaly of the chief at the : sampling period. However, this base prediction model
is extended with additional ancillary states and dynamics. In order to achieve offset-free tracking of the orbit in the
presence of disturbances, we introduce a disturbance prediction model, formulate the control input in incremental form,
and add integral action on the performance output. The matrices and vectors of the resulting prediction model (16) are

x̄: = [x(g: )T fT
a u(g:−1)T *(g: )T]T, ȳ: = [z(g: )T u(g: )T]T,

z̄: = [z(g: )T *(g: )T]T, Δū: = u(g: ) − u(g:−1),

Ā: =


AD BD BD 0
0 I 0 0
0 0 I 0

E(g: ) 0 0 I


, B̄: =


BD

0
I
0


,
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C̄: =

[
E(g: ) 0 0 0

0 0 I 0

]
, D̄: =

[
0
I

]
, Ē: =

[
E(g: ) 0 0 0

0 0 0 I

]
,

where fa ∈ R3 is the predicted disturbance which is assumed constant in the prediction horizon, Δū ∈ R3 is the thrust
increment with respect to a previous step, and * ∈ R6 is the integral of the performance output z. Since fa cannot be
directly measured, it must be estimate. While there are many ways to assume the disturbance, here we estimate fa from
observed effects at the previous step,

fa = B̃−1
D (x̃(g: ) − ÃDx̃(g:−1)) − u(g:−1), (17)

where the tilde ˜ indicates lower half part of the matrix or vector, i.e., x̃ = [G ′ H′ I′]T.
For the controller to minimize the ground trace tracking error, we modify the performance output to represent the

left hand side of (8), where the fifth condition is modified into (9). As a result we replace E by

Eg (g) =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 =g 0 0 0 1


E(g), (18)

According to Eg, the performance output z becomes

zg (g) = 0c [Δ0/0c Δ_ Δ4G Δ4H Δ8G =gΔ_ + Δ8H]T,

The initial state of the MPC controller is obtained from (1) based on the following transformations, that correct
for the approximations in using the HCW equations (3) as prediction model instead of (1). First, since the SSO plane
rotates 360 degrees in each sidereal year, whereas the Hill’s frame orbital plane (chief orbital plane) is fixed in the ECI
frame, the orbital plane in Hill’s frame is rotated by the same angle as the SSO plane. Here, the inertial force by the
rotation is ignored, considering that the error of such an approximation is relatively small and will be compensated by
the feedback action of the controller. Second, while the air drag must be cancelled, the Earth gravitational perturbation
must not be cancelled since it provides the secular perturbation needed by the SSO. Thus, an ephemeris, which contains
the time series of target position and velocity is propagated under the Earth gravitational perturbation, and the difference
between the state in (1) and ephemeris is used as in the initial state of the MPC prediction model. Thus, the state of the
MPC prediction model G(g) is

x(g) =


R�
�
(C) 0

0
1
=c

R�
�
(C)


[

r(C) − re (C)
(¤r(C) − nc × r(C)) − (¤re (C) − nc × re (C))

]
, (19)

where
R�� (C) = RI (−=cC)RG (−8c)RI (− ¤ΩC),

is the transformation from the ECI frame to the plane-rotating Hill’s frame at the time C, andRI ∈ SO(3) andRG ∈ SO(3)
are the rotations about I and G axis, respectively, where SO(3) is the special orthogonal group in dimension 3. Also,
nc = [0 0 =c]T, and re and ¤re are the position vector in the ephemeris, respectively.

Summarizing, while the MPC prediction model is based on the Hill’s equations under the approximations of a
circular chief orbit which neglects non-keplerian perturbations, the initial condition is computed by the difference
between the deputy orbit and the target orbit described by the ephemeris also accounting for the SSO orbital plane
rotation. Note that although the ephemeris computation is in general very computationally demanding, since the
ephemeris is the same over every repeat cycle for SSO, re-computation and re-uplink are not required. Also, the target
orbit represented by the ephemeris, satisfies the conditions (13), (14) and (15).
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B. Modifications to achieve also SSO Transferring
For transferring the SSO, a new ephemeris would normally need to be generated, but the re-propagation and re-uplink

of it would require significant computational load and large data transfer volume. However, since the ephemeris is a
time series dataset propagated under I-axially symmetrical gravity, time offsetting and rotation can be applied without
the need of entire re-propagation, hence also avoiding re-uplink. The target angles Δq and ΔΩ are defined based on the
ground trace, and the new ephemeris can generated by modifying (19) into

x(g) =


R�
�
(C) 0

0
1
=c

R�
�
(C)


[

r(C) − RI (ΔΩ)re (C − ΔCq)
(¤r(C) − nc × r(C)) − RI (ΔΩ) (¤re (C − ΔCq) − nc × re (C − ΔCq))

]
, (20)

where ΔCq =
Δq

=c
represents the difference between the target LST and nominal LST. In this paper, we call the maneuver

defined by Δq as “in-trace maneuver” and ΔΩ as “out-of-trace maneuver”. An advantage of using (20) is that the
computations are relatively simple, so that they can be operated on board the satellite.

C. Extensions for Handling Predictive Coasting and Underactuated Control
Usually, orbit control is disabled when the satellite instrumentation is operating, not to disturb the execution of the

mission. However, external perturbations occur also during such time intervals, and may lead to the satellite being
excessively far from its nominal orbit, preventing the mission success, given that the control is disabled. However, since
the mission schedule is pre-determined, the MPC can exploit its prediction capabilities to minimize the impact of the
perturbations before hand, by pre-compensating for the expected effect of the disturbances during the coasting phase.
For allowing to represent also the coasting sections, the prediction model in the MPC (16) is modified again into

Ā: =


AD BD BDS(g: ) 0
0 I 0 0
0 0 S(g: ) 0

E(g: ) 0 0 I


, B̄: =


BDS(g: )

0
S(g: )

0


,

where S ∈ R3×3 is the matrix defined as

S(g) =

(G (g) 0 0

0 (H (g) 0
0 0 (I (g)

 ,
and (G , (H and (I represent each component of the thrust u being active or not. For a coasting section scheduled from
gs to ge, since all components of thrust are turned off, the elements of S are

(G (g), (H (g), (I (g) =
{

0 (gs ≤ g ≤ ge)
1 (g ≤ gs, g ≥ ge).

(21)

Although this is not common in standard missions, equation (21) allows for selectively disabled. For instance, the
orbit control can be conducted without G component of the thrust, in which case for de-activating DG from gs to ge, the
elements of S are

(G (g) =
{

0 (gs ≤ g ≤ ge)
1 (g ≤ gs, g ≥ ge)

, (H (g) = 1, (I (g) = 1.
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D. LTV-MPC for SSO
At each sampling instant g: , MPC solves the finite horizon constrained optimal control problem

min
ΔU(g: )

x̄T
# |:Px̄# |: +

#−1∑
9=0

z̄T
9 |:Qz̄ 9 |: + ΔūT

9 |:RΔū 9 |: (22a)

s.t. x̄ 9+1 |: = Ā 9 |: x̄ 9 |: + B̄ 9 |:Δū 9 |: (22b)
z̄ 9 |: = Ē 9 |: x̄ 9 |: (22c)
ȳ 9 |: = C̄ 9 |: x̄ 9 |: + D̄ 9 |:Δū 9 |: (22d)
Δūmin ≤ Δū 9 |: ≤ Δūmax (22e)
ȳmin ≤ ȳ 9 |: ≤ ȳmax (22f)
x̄0 |: = [x(g: )T fT

a u(g:−1)T *(g: )T]T (22g)

where # ∈ N is the prediction horizon, ΔU(g: ) = [Δū0 |: · · · Δū#−1 |: ], (22a) is the cost function, Q ∈ R12×12, Q ≥ 0,
R ∈ R3×3, R > 0 are positive (semi)definite weight matrices and P ≥ 0 is the positive semidefinite terminal cost matrix,
which can be designed to achieve local stability [8], (22b), (22c) are the prediction model dynamics and performance
outputs obtained as in Sections III.A, III.C, (22g) sets the state at the beginning of the prediction horizon where G(g: )
obtained as in Sections III.A or III.B, and (22d), (22e), (22f) are the constrained output equation, and input and output
constraints, respectively, to formulate constraints on thrust magnitude and rate, and possibly to define allowed ranges for
the ROE. The notation - 9 |: denotes the prediction of - based on data at g: for 9 sampling periods ahead, i.e., -:+ 9 .
Thus, the matrices and vectors of the prediction model implemented here are obtained based by predicting the orbital
conditions based on the nominal orbit as

x̄ 9 |: = [x(g:+ 9 )T fT
a u(g:+ 9−1)T *(g:+ 9 )T]T, ȳ 9 |: = [z(g:+ 9 )T u(g:+ 9 )T]T,

z̄ 9 |: = [zg (g:+ 9 )T *(g:+ 9 )T]T, Δū 9 |: = u(g:+ 9 ) − u(g:+ 9−1),

Ā 9 |: =


AD BD BDS(g:+ 9 ) 0
0 I 0 0
0 0 S(g:+ 9 ) 0

Eg (g:+ 9 ) 0 0 I


, B̄ 9 |: =


BDS(g:+ 9 )

0
S(g:+ 9 )

0


,

C̄ 9 |: =

[
Eg (g:+ 9 ) 0 0 0

0 0 I 0

]
, D̄ 9 |: =

[
0
I

]
, Ē 9 |: =

[
Eg (g:+ 9 ) 0 0 0

0 0 0 I

]
.

For LTV-MPC the optimal control problem (22) can be formulated as a quadratic program, for which fast and memory
efficient solvers exists [8]. Here we use the solver proposed in [24], which is very compact and still achieves the solution
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in less than 0.05 seconds in our laptop, which is much smaller than the sampling period for the controller, hence
indicating that the algorithm may take a small amount of the on-board computational capabilities.

Then, the MPC applies as control input to the satellite the command obtained from the first element of the optimal
solution ΔU∗ (g: ) of (22),

u(g: ) = u(g:−1) + Δū∗0 |: . (23)

The resulting overall control architecture for the LTV-MPC for SSO is shown in Fig. 4.

IV. Satellite Simulations in Closed-loop with MPC for SSO Control
The behavior of the satellite controlled in closed-loop with LTV-MPC for SSO is verified by numerical simulations.

The simulation conditions are shown in Table 1. The target orbit is a typical VLEO at an altitude of 274 km, for which
the orbital period is 90 minutes, and the MPC prediction horizon is 108 minutes, slightly longer than one orbit, and the
sampling period is 3 minutes, giving # = 36, which is in general appropriate [8].

Table 1 Simulation Conditions

Parameters Values
Mean Altitude 274 km
Orbital Period 90 min
Repeat Cycle 1 day

Satellite Weight 500 kg
Cross-Sectional Area 15 m2

Drag Coefficient 2.2
Maximum Thrust 0.1 N (Each Direction)

MPC Sampling Period 3 min
MPC Horizon 108 min (# = 36)

In Section IV.A, IV.C and IV.B, the simulation is based on the standard nonlinear models, in which it is assumed
that the air density is constant and the gravitational perturbations are only �2, �3 and �4. The ephemeris is calculated
under �2, �3 and �4 satisfying the SSO conditions (13) and (14) and the frozen condition (15). In Section IV.D, the orbit
propagator, atmospheric model and geopotential model are provided by GMAT where we use the parameters shown in
Table 2. The ephemeris is calculated under the geopotential model satisfying the conditions (13), (14), (15). In all
cases, the initial state is set by r(0) = re (0), ¤r(0) = ¤re (0). In the following results, it should be noted that the ROE
represents the difference between the deputy orbit and the target orbit.

Table 2 GMAT Settings

Parameters Values
Propagator PrinceDormand78

Atmospheric Model MSISE90
Geopotential Model EGM96

Other Bodies Sun, Moon

A. Simulation of SSO Keeping
The comparison of time history of ROE, thrust and ground trace without control (free motion) and with control are

shown in Fig. 5. Without control, the ROE were perturbed by the air drag. As a result, the relative semi-major axis Δ0
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decreases, and the satellite moves ahead due to the shorter period of the lower orbit. When the LTV-MPC is applied,
after the initial transient where the predicted disturbance model and the integral action settle, the orbit is successfully
kept within 1 meter. In the ground trace plots, the start position and end position are marked with circles. Without
control, the satellite did not return to the start position due to the air drag perturbations, whereas the end position
accurately matched the start position when MPC controls the satellite.

Fig. 5 Time history of ROE, thrust and ground trace. Left: without control (free motion). Right: with control.

The time history of ROE, thrust and ground trace for 3 days with control using a 1 day long ephemeris is shown
in Fig. 6. Since the ephemeris is not dynamically continuous at the joint, the ROE show some deviations at the
multiples of 24 hours. However, the MPC continued operating properly with the shifted ephemeris, which do not require
re-computation and re-uplink.

Fig. 6 Time history of ROE, thrust and ground trace for 3 days with control using 1 day long ephemeris.

B. Simulation of SSO Transferring
Next we simulated in-trace and out-of-trace SSO transfers. On an in-trace maneuver, the satellite should be shifted

only in the along-trace direction, and the ground trace should be tracked due to the effect of (8). The comparison of
time history and ground trace error for an in-trace maneuver when the ROE are considered as performance output, i.e.,
E as in (6), versus considering as performance output the ground trace tracking conditions (8), (9) formulated on ROE,
i.e., Eg in (18) are shown in Fig. 7. Here, Δq = 0.05 deg was applied at C = 4 hours. Since the ROE represents the
difference from the target orbit, the ROE jumped at C = 4 hours due to the change of target orbit. Although in both cases
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the in-trace maneuver was completed successfully and the end point was shifted by 0.05 deg as requested, the impact on
the the out-of-plane element Δi was different. Fig. 7 shows that the maximum ground trace error was reduced when Eg
was used, compared to the when E was used.

Fig. 7 Time history of ROE, thrust, ground trace and ground trace error. Left: in-trace maneuver with E.
Right: in-trace maneuver with Eg.

The time history of ROE, thrust and ground trace for an out-of-trace maneuver and for the combination of in-trace and
out-of-trace maneuver are shown in Fig. 8, where ΔΩ = 0.05 deg and ΔΩ, Δq = 0.05 deg were applied at C = 4 hours,
respectively. Both maneuvers were successfully completed, and the out-of-trace maneuver end point shifted by 0.05 deg
in the longitude direction, while for the combined in-trace and out-of-trace maneuver the end point shifted by 0.05 deg
in both the along-trace and longitude directions.

Fig. 8 Time history of ROE, thrust and ground trace. Left: out-of-trace maneuver. Right: combination of
in-trace and out-of-trace maneuver.
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C. Simulation of Predictive Coasting and Underactuated Control
The comparison of time history and ground trace of coasting without prediction and with prediction are shown

in Fig. 9. Here, 30 minutes long coasting sections were applied at C = 4.00, 5.25, 6.25, 7.00 hours, as shown by the
shaded sections in Fig. 9. Without prediction, the coasting section S were not defined in the prediction model yet the
trust was cut off in the sections. As a result, the perturbations on the ROE would not be immediately compensated during
these sections. On the other hand, when prediction information on the coasting sections is used, the MPC could reduce
the maximum ROE error by maneuvering before the coasting sections. Also, the propellant consumption (amount of
thrust) decreased due to the error reduction.

Fig. 9 Time history of ROE, thrust and ground trace. Left: coasting without prediction. Right: coasting with
prediction.

We also evaluated the case where for a section starting at C ≥ 4.00 hour, the G component of thrust was disabled yet
the MPC can predict this. The result is shown in Fig. 10 where the section in which the G thrust is disabled is shown by
the red shade. Due to the lack of DG , the errors in ROE increased compared to Fig. 9. However, the MPC could still
control the satelllite despite it being underactuated.

Fig. 10 Time history of ROE, thrust and ground trace of coasting with underactuated control, both predicted.

D. Simulations in closed-loop with GMAT Model
Next, we show the results of validating some of the maneuvers previously simulated with the nonlinear model (1) by

using MPC in closed-loop with the simulation model in GMAT obtained according to the parameters in Table 2. The

13



time history of ROE, thrust and ground trace for 3 days using a 1 day long ephemeris simulated is shown in Fig. 11.
Also, the results of the combination of in and out-of-trace maneuver and coasting with prediction are shown in Fig. 12.
Due to the detailed atmospheric model (MSISE90), geopotential model (EGM96) and other bodies’ gravity, the orbit
was periodically disturbed, and the thrust oscillated. However, the orbit was successfully kept within 15 meters. Also,
although the transient was slightly longer than the result based on the simple nonlinear model (1), SSO transferring and
predictive coasting were properly conducted. These results, based on a more detailed and validated model, provide
additional indications of the effectiveness of the LTV-MPC approach for SSO.

Fig. 11 Time history of ROE, thrust and ground trace for 3 days with control using 1 day long ephemeris for
MPC simulated in closed-loop with GMAT.

Fig. 12 Time history of ROE, thrust and ground trace for MPC simulated in closed-loop with GMAT. Left:
combination of in-trace and out-of-trace maneuver. Right: coasting with prediction.

V. Conclusions
In this paper, we have proposed a design for satellite control on SSO by the LTV-MPC using ROE. In order for the

controller to reject the air drag perturbation while still exploiting the �2 term of the Earth gravitational perturbation to
achieve SSO, we have introduced ephemeris, and the plane-rotating Hill’s frame transformation for computing the initial
condition for the MPC prediction at each sampling instant.

The MPC enables orbit keeping and transferring, and the predictive features of MPC allow for minimizing the
impact of the perturbations during the coasting sections where the mission is usually carried out. By properly
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formulating the performance output with respect to the ROE, the ground trace error can be reduced and the LST can be
precisely controlled. Since the MPC only requires solving convex quadratic program, it appears suitable for on-board
implementation and hence it appears appealing for autonomous satellite control, especially in VLEO, without needing
to resort to the ground stations.
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