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Abstract
We consider the design of a compact freeform optical surface that uniformly irradiates an
arbitrary convex polygonal region from an extended light source while controlling spill. This
problem has attracted a large literature, mainly treating highly symmetric special cases or
cases where the solution is approximated by a zero-étendue design based on a point source.
Practical versions of this illumination design problem will likely feature large asymmetric
LEDs, compact lenses, and irregular targets on angled projection surfaces. For these settings,
we develop a solution method based on an edge ray mapping that routes maximally off-axis
rays from the edges of the source through the edge of the optic to the edges of the target
polygon. This determines the sag and normals along the boundary of the freeform surface. A
"spill-free" surface is then interpolated from the boundary information, and optimized to uni-
formize the irradiance while preserving the polygonal boundary. Highly uniform irradiances
(relative standard deviation < .01) can be attained with good control of spill, even when the
exit surface is < 3 source diameters from the embedded source.
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Abstract: We consider the design of a compact freeform optical surface that uniformly irradiates
an arbitrary convex polygonal region from an extended light source while controlling spill. This
problem has attracted a large literature, mainly treating highly symmetric special cases or cases
where the solution is approximated by a zero-étendue design based on a point source. Practical
versions of this illumination design problem will likely feature large asymmetric LEDs, compact
lenses, and irregular targets on angled projection surfaces. For these settings, we develop a
solution method based on an edge ray mapping that routes maximally off-axis rays from the edges
of the source through the edge of the optic to the edges of the target polygon. This determines
the sag and normals along the boundary of the freeform surface. A "spill-free" surface is then
interpolated from the boundary information, and optimized to uniformize the irradiance while
preserving the polygonal boundary. Highly uniform irradiances (relative standard deviation
< .01) can be attained with good control of spill, even when the exit surface is < 3 source
diameters from the embedded source.
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1. Introduction

Illumination trends favor large LEDs for brightness and small lenses for compactness and cost.
This has stimulated much interest in the problem of tailoring freeform optics to uniformly irradiate
polygonal targets from extended sources. Early approaches ignored the geometry of the light
source and numerically solved the Monge-Ampère problem, or equivalent formulation, for a
point light source located on or near the true source [1, 2] (also see [3] for a review). This can
be viable for low-étendue problems where the source is very small relative to the optic, but as
is well known (and demonstrated in Figure 6, a significantly extended source will substantially
degrade both the uniformity and perimeter of the irradiance. This can be somewhat ameliorated
in a feedback loop where intensities in a point-source target distribution are repeatedly rescaled
to compensate for extended-source irradiance defects as revealed by Monte Carlo simulation,
e.g., [4–6]. However, significant nonuniformities and spills persist in the published results, which
are also hard to assess because Fresnel losses are ignored.
For smaller optics or larger sources, it is necessary to incorporate the geometry and radiance

of the extended source directly into the optimization problem. Some specialized methods have
been proposed for highly symmetric problems, e.g., for circular sources, freeforms, and targets,
tailoring can be treated as an essentially 1D problem with a correction for skew rays [7, 8].
Relatively few design principles have been proposed for low- or no-symmetry problems. A
recent wavefront tailoring approach [9] raises the possibility of generating two-surface freeforms
directly from constraints on wavefronts from the source corners, but the only worked example
maps a square Lambertian emitter to a square target.

The most general approach is to directly model the full flux field by tabulating light arriving at
each target point from each direction. This enormously expensive calculation can be approximated
by backward ray tracing [6, 10] or by integrating flux through a thin cone [11] or tube [12] that



connects a region of the lens to a region of the target plane. These calculations, which can
be faster and more informative than forward Monte Carlo, set the stage for optimization. For
example, backward ray tracing with local surface perturbations was used to make finite-difference
estimates of the irradiance error gradient error [10], and used to design lenses that produce
blurry but recognizable irradiance patterns, with blur depending on the size of the source. More
globally, an algebraic relation between surface curvature and irradiant intensity was characterized
for general light fields in [12] and used to demonstrate that it is possible to obtain nontrivial
sharp-edged irradiance patterns in very high-étendue settings.

It should be noted that for extended sources, the irradiance tailoring problem is often infeasible
and nonconvex, meaning that production of a target irradiance is physically impossible and
iterative improvement will only converge to a local optimum of a merit function. Consequently,
finding a good approximate solution depends on starting with a favorable initial surface.
Prior approaches for obtaining initial surfaces depend on obtaining a ray mapping (point to

point correspondence) from the entire optical surface to the projection plane and then solving for
an optical surface that (approximately) yields the desired mapping. The ray mapping may be an
arbitrary map (e.g., [13–17]) or obtained via optimal transport algorithms (e.g., [1, 2, 18, 19]).
We find that an edge ray mapping — a smooth 1-to-1 mapping from points on the lens

boundary to points on the irradiance boundary — is sufficient to determine the entire solution.
By incorporating information about the geometry of the extended light source, the edge ray
mapping determines a spill-free freeform boundary; the rest of the initial surface can be obtained
via interpolation and then irradiance-uniformized by curvature adjustments. We will present the
method in three steps:

1. Construct an edge ray mapping that determines sag and normals along the optical surface
boundary to illuminate the polygon perimeter (§2.1).

2. Interpolate the boundary to produce an optical surface that smoothly illuminates the
polygon interior via polyharmonic splines, extended to differential constraints (§2.2).

3. Uniformize the irradiance via light field tailoring [12], augmented to maintain the irradiance
perimeter (§2.3).

The method is flowcharted in Figure 7. As demonstrated in §3, this method produces highly
uniform and — when physically possible — sharp-edged illumination patterns, even when the
source subtends a large angle from the point of view of the exit surface. No symmetries are
assumed; Fresnel losses are correctly modelled; and spill can be strictly controlled. All these
points are departures from the literature.

2. Method

For simplicity of exposition, we consider an optical system comprised of a square Lambertian
led embedded in a circular lens whose exit surface will be tailored to illuminate a polygonal
region on a flat projection surface orthogonal to the optical axis. None of these assumptions are
essential; the light source can have any geometry and radiance pattern, the lens can be polygonal,
there can be an entrance surface to increase collection angle, the projection surface can be angled,
et cetera.

2.1. Determining the optical surface boundary

First we determine sag and surface normals along the optical surface boundary, such that all
rays from the extended source will refract through the optical surface boundary to illuminate the
target boundary without spill, as depicted in Figure 1. This is feasible over most but not all of the
target boundary, e.g., acute corners of a triangular target cannot be illuminated from a square



Fig. 1. Edge ray mapping in axial, 3/4, and side views. Each point on the lens boundary
(circle) is put into correspondence with a point on the target boundary (irregular pentagon)
and with a farthest point on the light source boundary (central square) to determine an edge
ray path (blue line) and surface normal (magenta arrow) that keeps the point-refracted image
of the source (distorted square) on the correct side of that target boundary edge. Boundary
sag and normals are then refined to be mutually consistent while preserving the mapping.

source without spill, because the irradiance is ultimately a superposition of images of the source.
It is, however, possible to guarantee a weaker condition: That the cone of light through any point
on the optical surface boundary is touching and otherwise interior to at least one edge of the
target boundary. In practice the interior guarantee can usually be upgraded to all edges.

The initial optical surface boundary is a simple ring of constant sag. Boundary design begins
with a provisional mapping in which each point b on the optical surface boundary is assigned to a
point t on the target irradiance boundary. Both boundaries are arc-length parameterized and put
into correspondence by proportional arc-length. As can be seen in the left panel of Figure 1, this
concentrates energy toward the corners of the target. This provides a favorable initial condition
for uniformization (§2.3) which will redistribute flux along the boundary and interior.1
To incorporate light source geometry, each optic boundary point b is then assigned a source

point s on the light source boundary, and s and t are adjusted to make b “spill-free,” meaning
that when the optic refracts a ray from s thru b to t on an edge of the irradiance target, all other
extended-source rays refracted thru b will land on the irradiance-interior side of that edge. This
can be accomplished in two steps: First, we pick a provisional source point s that lies farthest
from b on a circle circumscribing the light source, and calculate a provisional surface normal n
at b that will bend a ray from s through b toward t according to the vector refraction law

n ∝ n
b − s
‖b − s‖

−
t − b
‖t − b‖

, (1)

with n being the ratio of refractive indices before and after b. Second, rays from vertices of the
light source boundary are refracted through b and projected to the target plane, giving the convex
hull of the projected source. To prevent spill, these vertex projections need to be shifted so that
their hull touches the irradiance target edge without crossing it. To do so, the projected vertex that
is least interior to the irradiance polygon with respect to the target edge is orthogonally projected
onto that edge, yielding an updated target point t. The corresponding source vertex becomes the
updated source point s, and the normal n is recalculated. This shifts the projection of the source
to the target edge but not along it.

Finally, all boundary sags and normals are jointly updated to be mutually consistent with each
other and with their associated source and target points. This is accomplished by alternately
solving for each normal n given its corresponding boundary point b as in Eq. (1), and then for

1We find this optimization is accelerated by further concentrating target points toward the polygon corners, e.g., if a
target edge is arc-length parameterized −1 ≤ x ≤ 1, target points can be moved according to a sigmoid map such as
x → λ(3x − x3)/2 + (1 − λ)x with best results around λ = 1/2.
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Fig. 2. Polyharmonic splines: (a) Schematic of a spline surface determined from boundary
normals (blue arrows) to refract edge rays from far points on the source (yellow square) to
the target perimeter. (b,c) Countour maps of a spline that provides a nonuniform irradiance
with a square boundary (Figure 3(a)), in (b) plan and (c) axonometric views.

the sag components of all boundary points b given all normals n, using the fact that boundary
normals must be orthogonal to the boundary’s azimuthal derivative:

n>
db
dθ
= 0 , discretized as ∀i n>i (bi+1 − bi−1) = 0 , (2)

to yield a linear system of equations for the sag component of discrete control points bi evenly
spaced around the optical surface boundary. In the examples below (§3), alternating solutions of
Eq. (1) and Eq. (2) typically converged in 2–4 iterations.

2.2. Determining the optical surface interior

We then use polyharmonic splines [20] to determine an optical surface from its boundary sag
curve and normals. A polyharmonic spline f of order m minimizes the deformation energy

Um[ f ] =
∫
S⊂Rd

|∇2m f |2 dx , (3)

on region S while interpolating a set of control points {(xi, f (xi))}i . The m = 1 case selects an
minimum-variation surface and m = 2 selects a minimum bending energy surface. Conveniently,
Eq. (3) is minimized with exact interpolation of control points by an affine combination of radial
basis functions ψ(‖x − xi ‖):

f (x) =
∑

i ψ(‖x − xi ‖)wi + v>x + c with ψ(r) � rm log(r)(m+1 mod 2) , (4)

where the parameters wi , v, and c are obtained by solving a system of linear equations, each an
instance of Eq. (4) with x set to one control point xj . We note that one can also control derivatives
fx, fy, fxx, fyy, . . . at additional points by differentiating some of these equalities before solving
the linear system. Splines of order m accommodate derivative constraints up to order m − 1 and
are optimally smooth with respect to the mth Laplacian off the control points.
To obtain an initial optical surface with the desired edge ray mapping, we seek to interpolate

the sag values f and surface gradients ∇f = ( fx, fy) at the lens boundary as determined in §2.1,
therefore we typically use the biharmonic (m = 2) spline. Figure 2(b,c) shows a spline surface that
smoothly but nonuniformly illuminates a square, yielding the irradiance pattern in Figure 3(a).
It is also desirable (but not strictly necessary) that the interpolated surface does not produce

any caustics (ray crossings) which might slow subsequent tailoring of the interior irradiance. The
biharmonic solution is usually noncaustic, and a caustic-free surface can always be obtained as a
linear combination of harmonic (m = 1) and biharmonic splines. It is also possible to directly
spline a “mostly uniform irradiance” freeform using triharmonic (m = 3) interpolation with
additional constraints that force some points on the interior of the surface to mimic the Laplacian
curvatures ∇2f = fxx + fyy of a similar sized asphere that uniformly irradiates a circular spot
from a Lambertian point source (explicit sag function given in [21]).



2.3. Uniformizing the irradiance

Light field tailoring [12] is then adapted to uniformize the irradiance provided by the splined
surface. The general method is motivated by the observation that, locally, the curvature of the
optical surface changes the curvature of the wavefront, thereby controlling beam dilations that
dilute the intensity of the irradiance. Therefore a field of irradiance errors can be related to a
field of curvature corrections g(x, y), which is then applied to the optical surface by solving a
Poisson problem ∇2s = g for a field of sag adjustments s(x, y). For zero-étendue (point) sources,
the relationship is pointwise and direct. For positive-étendue sources (extended light sources
and more generally light fields), the relationship is indirect but can be determined by solving a
sparse linear system which reveals how credit for irradiance errors should be distributed over the
curvature correction field. Both cases allow for parallel implementations and can tailor lenses and
mirrors to produce uniform irradiance as well as photograph-like irradiance patterns. However,
the irradiance only approximates the target, because most extended-source irradiance tailoring
problems do not admit exact solutions. Of the many possible approximate solutions, light field
tailoring prioritizes fidelity to the interior the target irradiance rather than the boundary, simply
because the interior accounts for most of the flux. This turns out to be a liability for the polygonal
irradiance problems contemplated here, where the quality of the boundary weighs more heavily
in the desirability of the result. Consequently the algorithm can be improved for this particular
application.
Since the desired irradiance boundary is already provided by the boundary slopes of the

polyharmonic spline, we modify the sag correction step to preserve this aspect of the optical
surface geometry. To do so, we note that the solution of the Poisson problem ∇2s = g is not
unique; one may add any saddle surface of the form

s̃(x, y) = a1(x2 − y2) + a2xy + a3x + a4y

to s, because ∇2(s + s̃) = ∇2s + ∇2 s̃ = ∇2s + 0 = g. On each iteration of curvature correction,
we solve for coefficients a1,a2,a3,a4 of a saddle that cancels out unwanted boundary slope
modifications, e.g., those that shift edge rays off the target perimeter. This is a small but
overconstrained system of linear equations and so is solved in a minimum squared-error sense.
Adding the saddle to the sag corrections effectively chooses, from a space of equivalent irradiance
improvements, the one that least degrades the irradiance boundary. Together with the initial
surface from §2.2, this consistently results in faster convergence to better results than obtained
from the generic light field tailoring algorithm.

3. Examples

In this section we review several examples as a way of illustrating the trade-offs inherent in
extended-source irradiance tailoring. Generally, the designer faces a choice between a target with
“hard” edges, which will force ringing artifacts due to the bandlimited source, or “soft” edges,
which ameliorate the ringing, but make more noticeable the asymmetric fall-offs that occur when
some target edges are better aligned with the edges of the light source than others. The trade-off
becomes less severe with larger lens apertures, e.g., compare Figure 3(b-c) below.
All examples are circular lenses with embedded sources, meaning there is a single refraction

at the lens-air interface, where the index of refraction ratio is n = 1.5. The sources are 1 mm
square Lambertian leds. The distance from the source to the projection plane is 1200 mm in all
cases. The source-vertex distance is denoted v; since the source is embedded this is also the lens
thickness. Sin and Sout are the side lengths of the uniform interior and of the entire illumination
pattern, respectively. The optimization goal is a uniform interior, a fall-off "skirt" of < 1/2
the led spot size (except Figure 3(d)), and negligible spill outside the skirt. Compute time is
typically a few seconds for construction of the edge ray mapping and splined surface, and a few
minutes for uniformization using a 128 × 128 grid of sag values to represent the surface.



(a) (b) (c) (d) (e)

Ø, v (mm): 10, 8.12 40, 28.5 4, 5.16 10, 11.7
Sin, Sout (mm): 1030, 1750 1770, 1980 720, 742 1410, 1690

uniformity: 0.946 0.988 0.924 0.95

Fig. 3. Uniformization with respect to a 1mm2 extended source (§2.3): (a) Initial irradiance
due to a polyharmonic spline lens surface and (b) after uniformization. (c) Sharper-edged
irradiance attained with a larger lens. (d) Sharp-edged irradiance due a very small lens
where the target is an integer multiple of the led spot size. (e) Irradiance due to a lens
designed for an projection plane tilted 15.0◦ from orthogonal.
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Sin, Sout (mm): 1000, 1200 680, 1070 2400, 2500
uniformity: 0.978 0.991 0.906

Fig. 4. Irradiances obtained from targets with soft and hard edges.

As in [13, 15, 16, 18], uniformity is scored as u = 1 − σ/µ— one minus the coefficient of
variation (also known as relative standard deviation) of the irradiance in the polygonal target
region (where irradiance should be constant). Here σ and µ are the standard deviation and mean
of the irradiance.

Squares: Figure 3 shows several irradiances obtained when the alignment of the led edges and
the target edges makes the trade-off between uniformity and sharpness more favorable. Very high
uniformities are achieved with no spill outside the anticipated fall-off skirt. Figure 3(d), a special
case where a very small lens provides an "unskirted" irradiance, is discussed at the end of this
section. Figure 3(e) demonstrates an off-axis design which also achieves high uniformity, however
fall-off varies along the boundary because the spot size image of the led varies significantly.

Other regular polygons: Figure 4 shows hexagonal, pentagonal, and triangular irradiances
obtained with different constraints on the edge sharpness. The hexagonal and triangular targets
were designed with sharp edges, resulting in irradiances (a,c) somewhat lower uniformity than
obtained (b) for a soft-edged target such as the pentagon; ringing is apparent in the intensity
transects (d,f). Note that because none of the edges are aligned with the led edges, the attained
fall-off varies between edges of different orientations and at the vertices.
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Fig. 5. Irregular polygon: (a) target and (b) actual irradiance, with irradiance plotted along
the indicated (c) horizontal and (d) diagonal transects. Attained uniformity is u = 0.996 for
Ø = 40.0 mm, v = 25.2 mm, average Sin = 1690 mm, and average Sout = 3070 mm. At
right, top and axonometric views of the lens.
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Fig. 6. The uniformized irradiance due to a small lens (Ø = 4 mm, v = 3.88 mm,
Sin = 726 mm, Sout = 1800 mm). (a) The entire irradiance pattern, with uniformity
u = 0.995. (b) Transects along the indicated line before and after uniformization. (c) Top
view of contours and led, which subtends 21 − 25◦ as viewed from the freeform surface.

Irregular polygon: Figure 5 shows the target and obtained irradiance for an irregular polygon.
The target was translated to place its centroid on-axis before constructing the edge ray mapping.
For this example, we found that uniformization converged significantly faster if the splined
surface was first tailored for a point light source.

Very small lenses: Figure 6 demonstrates the difference between point-source tailoring and
the method presented herein. We optimized a small (Ø = 4.00 mm, v = 3.88 mm) pentagon-
producing lens to produce a u > 0.999 uniform pentagonal irradiance from a point source, then
ray-traced from a 1.00 mm square extended source to find that the interior uniformity of the
irradiance is substantially degraded (arched blue line in Figure 6(b)). We then uniformized the
irradiance as in all previous examples, restoring uniformity to u = 0.995. Note that the vertex of
this lens is less than 3 source diameters from the source.

There is one notable exception to uniformity-versus-sharpness trade-off: In some special cases
the target irradiance can be approximated by tiling multiple focused images of the light source.
Figure 3(d) shows such an irradiance, where 2 × 2 led spots are partially focused to form a
sharp irradiance boundary, and partially defocused to uniformize the interior irradiance. The



lens is not completely focusing because the tiled images are radially distorted due to off-axis
projection and therefore cannot pack together neatly to cover the target (this also prevents perfect
uniformization). Nonetheless, a union of focusing surfaces provides a good initial surface, and
this can be accomplished by constraining the initial splined surface to reproduce local curvatures
taken from four tilted Cartesian ovals. Despite its small size – the vertex is less than 4 source
diameters from the source – the uniformized lens provides one of the sharpest irradiance fall-offs
in our experiments.

4. Conclusion

We have shown that an edge ray mapping suffices to determine a freeform lens that uniformly
illuminates a target polygon from an extended light source. The key tools are surface interpolation
(§2.2) and extended-source irradiance tailoring methods (§2.3) that preserve the edge ray mapping
(§2.1). We demonstrated several results with very high uniformity, including challenging problems
such as targets with no symmetry, irradiance patterns with sharp edges, and lenses not much
bigger than their encapsulated leds. For every example above, the edge ray mapping and saddle
correction provided faster convergence to a visibly better result than the generic light field
tailoring algorithm.
One limitation of this approach is that the construction of the lens perimeter from the edge

ray mapping is based on the assumption that rays from the far side of the source can be always
refracted to the target. This limits the collection angle, but also eliminates the possibility of TIR
bounces within the lens, which would contaminate the irradiance pattern.

The next step is to incorporate an entry surface into calculations so that collection angles can
be increased without risking TIR. Since light-field tailoring can accommodate arbitrary radiance
functions, this may reduce to a matter of characterizing the radiance through a plane after the
entry surface. Future research will consider mixed TIR/refractive optics and nonconvex target
polygons (whose feasibility is uncharacterized).

A. Flowchart

Map: 
 source circumcircle to  

lens boundary to  
target boundary

Adjust source and target 
points to eliminate spill

Estimate boundary normals 
from mappings and sag

Estimate boundary sag 
from boundary normals

Interpolate polyharmonic 
spline from boundary

Calculate surface curvature 
corrections from irradiance 

errors

Add saddle correction to 
preserve irradiance 

boundary

Converged?

Input: source, target, & 
initial lens boundaries.

Output: Surface and 
boundary of final lens

Converged?

Y

Y

Fig. 7. Flowchart of the tailoring process. The left hand column outlines construction of the
edge ray mapping; the right hand, interpolation and optimization of the surface.
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