
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
https://www.merl.com

Template-based Minor Embedding for Adiabatic Quantum
Optimization

Serra, Thiago; Huang, Teng; Raghunathan, Arvind; Bergman, David

TR2020-181 January 23, 2021

Abstract
Quantum Annealing (QA) can be used to quickly obtain nearoptimal solutions for Quadratic
Unconstrained Binary Optimization (QUBO) problems. In QA hardware, each decision vari-
able of a QUBO should be mapped to one or more adjacent qubits in such a way that pairs
of variables defining a quadratic term in the objective function are mapped to some pair of
adjacent qubits. However, qubits have limited connectivity in existing QA hardware. This
has spurred work on preprocessing algorithms for embedding the graph representing problem
variables with quadratic terms into the hardware graph representing qubits adjacencies, such
as the Chimera graph in hardware produced by D-Wave Systems. In this paper, we use inte-
ger linear programming to search for an embedding of the problem graph into certain classes
of minors of the Chimera graph, which we call template embeddings. One of these classes
corresponds to complete bipartite graphs, for which we show the limitation of the existing
approach based on minimum Odd Cycle Transversals (OCTs). One of the formulations pre-
sented is exact, and thus can be used to certify the absence of a minor embedding using that
template. On an extensive test set consisting of random graphs from five different classes
of varying size and sparsity, we can embed more graphs than a state-of-the-art OCT-based
approach, our approach scales better with the hardware size, and the runtime is generally
orders of magnitude smaller.

INFORMS Journal on Computing

c© 2021 MERL. This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission
to copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes provided
that all such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi
Electric Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and
all applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall
require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139

Template-based Minor Embedding for

Adiabatic Quantum Optimization∗

Thiago Serra1, Teng Huang2, Arvind Raghunathan3, and David
Bergman2

1Bucknell University
2University of Connecticut

3Mitsubishi Electric Research Laboratories

Abstract

Quantum Annealing (QA) can be used to quickly obtain near-
optimal solutions for Quadratic Unconstrained Binary Optimization
(QUBO) problems. In QA hardware, each decision variable of a QUBO
should be mapped to one or more adjacent qubits in such a way that
pairs of variables defining a quadratic term in the objective function are
mapped to some pair of adjacent qubits. However, qubits have limited
connectivity in existing QA hardware. This has spurred work on pre-
processing algorithms for embedding the graph representing problem
variables with quadratic terms into the hardware graph representing
qubits adjacencies, such as the Chimera graph in hardware produced
by D-Wave Systems. In this paper, we use integer linear programming
to search for an embedding of the problem graph into certain classes of
minors of the Chimera graph, which we call template embeddings. One
of these classes corresponds to complete bipartite graphs, for which we
show the limitation of the existing approach based on minimum Odd
Cycle Transversals (OCTs). One of the formulations presented is ex-
act, and thus can be used to certify the absence of a minor embedding
using that template. On an extensive test set consisting of random
graphs from five different classes of varying size and sparsity, we can
embed more graphs than a state-of-the-art OCT-based approach, our
approach scales better with the hardware size, and the runtime is gen-
erally orders of magnitude smaller.

∗Thiago Serra and Teng Huang were employed by Mitsubishi Electic Research Labo-
ratories during the development of this project.

1

1 Introduction

Quantum Annealing (QA) is a technique based on a system of quantum par-
ticles in which the Hamiltonian—an operator corresponding to the sum of
potential and kinetic energies—is modeled after the objective function of a
binary optimization problem (Finnila et al., 1994; Kadowaki and Nishimori,
1998). Adiabatic Quantum Computation (AQC) is a particular form of QA
that exploits the adiabatic theorem of quantum physics (Farhi et al., 2000,
2001), which states that a quantum system in the ground state evolves pre-
dominantly in the ground state—i.e., at the lowest possible energy level—if
the rate at which the system changes is sufficiently small. Hence, AQC can
approximately solve unconstrained optimization problems by slowly evolv-
ing a quantum system from a configuration in known ground state toward
a configuration in which the ground state corresponds to a solution of min-
imum value for the optimization problem.

It is possible to model many combinatorial optimization problems with
such a technique (Lucas, 2014). However, it is not known if the quantum
system can always evolve in polynomial time on the inputs in order to reach
a quantum speedup—i.e., solve a problem much faster than any classical
algorithm would (Rønnow et al., 2014). For example, there are cases in
which a linear transformation between quantum states requires exponential
time (Van Dam et al., 2001). Nevertheless, for some problems the quantum
system evolves efficiently (Farhi et al., 2000) or at least faster than classical
algorithms (Lucas, 2018). When compared with commercial optimization
software, AQC has been found to perform better in one case (McGeoch and
Wang, 2013) and comparable in another (Coffrin et al., 2019). Since the
solutions obtained through AQC are sometimes suboptimal, Dash (2013)
observes that AQC is arguably comparable to heuristics that can find opti-
mal solutions with high probability. Hence, as this technology matures, its
competitive advantage will depend on the speed of convergence as well as
on being more reliable than such heuristics.

AQC has been used to approximately solve Quadratic Unconstrained
Binary Optimization (QUBO) problems of the form

min
x∈{0,1}n

xTQx

(
or max

x∈{0,1}n
xTQx

)
1,

2

where Q ∈ Rn×n are input data and x are decision variables.2 Without
loss of generality, let Q be an upper-triangular matrix. In this paper, we
will refer to any device implementing AQC as a quantum annealer, or a QA
hardware.

While existing QA hardware may potentially be used on problems with
as many as 2048 variables, in practice only problems that are much smaller
or substantially sparse can be directly formulated. To circumvent this limi-
tation to some extent, we may use a surrogate formulation in which the op-
timal solutions can be mapped to optimal solutions of the original problem.
For defining such formulation, it is often necessary to analyze the structure
of the QA hardware and of the optimization problem that we want to solve.
That entails determining if the graph associated with the problem is a mi-
nor of the graph associated with the QA hardware, which is an NP-complete
problem in general (Johnson, 1987).

In this paper, we show that Integer Linear Programming (ILP) can be
effectively used for this preprocessing step, in which we determine how a
QUBO problem can be modeled in QA hardware if the qubits have limited
connectivity. We propose ILP formulations based on particular minors of
the QA hardware, which we denote template embeddings.

We introduce the minor embedding problem for QA hardware and pre-
vious approaches in Section 2, and then contextualize our contribution in
Section 3. We describe the template embeddings, their properties, and cor-
responding ILP formulations in Sections 4 and 5. We present experimental
results in Section 6 and final remarks in Section 7.

2 Background

In this section we describe the graph embedding problem associated with QA
hardware, in particular with Chimera graphs, and the previous approaches
to this problem.

1We regard the maximization version, which is preferred by some authors, as inter-
changeable with the minimization version by negating Q. For that reason, we only consider
the minimization version for the rest of the paper.

2According to Boros and Hammer (2002), QUBO is also known as a quadratic pseudo-
Boolean function in the literature since Kalantari (1986).

3

2.1 Hardware and Problem Graphs

The quantum annealer solves the Ising formulation

min
y∈{−1,1}n

yTJy + hT y,

where J ∈ Rn×n and h ∈ Rn are input data and y are decision variables.
Each binary variable yi is associated with a qubit i, the basic unit of quantum
information, and its value corresponds to the magnetic spin of the quantum
transistor that physically implements the qubit (D-Wave Systems, 2019).
The linear coefficient hi for each variable yi corresponds to the bias of qubit
i. The quadratic term Jij for each pair of variables yi and yj , if nonzero,
implies the existence of a coupler between qubits i and j, and the value of Jij
represents the strength of the coupler. For each QUBO formulation, there
is a corresponding Ising formulation for which the variables with values -1
and 1 in an optimal solution of the Ising problem correspond to variables
with values 0 and 1 in an optimal solution of QUBO, which is such that the
zero elements in Q are also zero in J (Choi, 2008). Hence, we may assume
that matrices Q and J have the same nonzero elements.

In practice, the hardware graph has a sparse structure. Due to engineer-
ing limitations, each qubit can only be coupled with a limited set of other
qubits (Choi, 2008). That implies that we can only directly solve problems
with as many variables as the number of qubits if these problems follow the
same sparsity structure as the QA hardware.

A QA hardware can be modeled as an undirected graph in which the
vertices correspond to qubits and the edges to pairs of coupled qubits. We
denote it as the hardware graph H. Similarly, we consider a problem graph G
in which the vertices correspond to decision variables of an Ising formulation
and the edges to pairs of variables with a quadratic term in the objective
function. Let G = (V (G), E(G)), where V (G) := {v1, v2, . . . , vn} is the
set of vertices of G and E(G) is a set of edges in which {vi, vj} ∈ E(G)
if Ji,j 6= 0. Similarly, let H = (U(H), F (H)), where vertex ui ∈ U(H)
corresponds to qubit i and {ui, uj} ∈ F (H) implies that qubits i and j are
coupled. For convention, we will use Vi for a subset of V (G) and Ui for a
subset of vertices of H or any of its minors.

A problem can be directly solved in QA hardware if there is a subgraph
H ′ of H that is isomorphic to G, i.e., there is a bijective mapping between
the vertices of G and H ′ such that adjacent vertices in G are mapped to
adjacent vertices in H ′. However, this greatly limits the class of problems
that can be solved if the vertices of H have small degrees.

4

The class of solvable problems can be enlarged by allowing each vertex
of the problem graph G to be mapped to possibly multiple vertices in the
hardware graph H. This imposes the additional requirement that qubits
associated with a vertex in G have the same spin in the ground state. For
example, two coupled qubits corresponding to vertices ui and uj can be
induced to have the same spin in the ground state if Jij is negative and
sufficiently large in absolute value (Kaminsky and Lloyd, 2004; Kaminsky
et al., 2004). In that case, those physical qubits define a single logical qubit.
The multiplicity of physical qubits increases the number of neighbors and
make it possible to embed a graph G with higher connectivity than that
present in H. More generally, we say that G can be embedded in a hardware
graph H if G is a minor of H (Choi, 2008). A minor of a graph is any
graph that can be obtained by a sequence of vertex and edge deletions as
well as edge contractions (Bondy and Murty, 2008). In the example above,
contracting edge {ui, uj} produces a graph in which vertices ui and uj are
replaced by a vertex u′ that is adjacent to any vertex that was originally
adjacent to either ui or uj . Hence, the embedding of G in H consists of
assigning each vertex vi ∈ V (G) to a distinct set of vertices Ui ⊆ U(H) such
that the induced subgraph on Ui is connected and, for each edge {vi, vj} ∈
E(G), there exists uk ∈ Ui and ul ∈ Uj such that (uk, ul) ∈ F (H).

In the QAs that are produced and that are currently commercially avail-
able by D-Wave Systems, the hardware graph follows the structure of a
Chimera graph. Let us denote it as a graph CM,N,L such that 2MNL ver-
tices are distributed in a grid of MN cells. Each cell contains 2L vertices.
Each of those cells is a complete bipartite graph KL,L, where a left and
a right partition each contain L vertices. For ease of explanation, let us
number the vertices in each partition from 1 to L. The i-th vertex in each
left (right) partition is also adjacent to the corresponding i-th vertex of the
left (right) partition in the cell above (to the left) and below (to the right).
Figure 1 depicts C2,2,4.

The following hardware graphs have been used in QA hardware: C4,4,4

in D-Wave One, C8,8,4 in D-Wave Two, C12,12,4 in D-Wave 2X, and C16,16,4

in D-Wave 2000Q (Dattani et al., 2019). In all of those cases, the maximum
degree of a vertex is 6, which makes the problem of finding minor embeddings
crucial to leverage such AQC hardware. Since M = N in all cases, we will
follow the convention of considering Chimera graphs of the form CM,M,L.

5

Figure 1: Chimera graph C2,2,4 with a K4,4 on each cell of a 2× 2 grid.

2.2 Minor Embedding Algorithms

Early work on minor embedding into hardware graphs has focused on com-
plete graphs (or cliques). A clique Kn is a graph on n vertices in which all
vertices are adjacent to one another. If Kn can be embedded into a hardware
graph H, then any other graph G with at most n vertices can be embedded
in the same hardware graph H, since G is isomorphic to a subgraph of Kn.
The TRIAD algorithm was the first technique to embed cliques in hardware
graphs with limited connectivity of the qubits (Choi, 2011).

The TRIAD algorithm associates each vertex of the problem graph with
a chain of vertices of the hardware graph that is long enough to have at
least one vertex that is adjacent to some vertex of all other chains. These
chains can be embedded into a Chimera graph, where a clique KLM fits
into CM,M,L (Choi, 2011). In fact, it is possible to embed a clique of size
LM + 1, but no clique larger than L (M + 1), in CM,M,L (Klymko et al.,
2014). Later work by Boothby et al. (2016) generalized the form by which
such clique embeddings can be obtained and consequently showed that there
is an exponential number of such embeddings in the Chimera graph, which
can be helpful if some qubits are inoperable and thus some vertices of the
hardware graph H are missing.

Figure 2 illustrates how K32 can be embedded in C8,8,4 by dividing 32
vertices into groups of 4 vertices, which are indexed from 1 to 8. The
first group of 4 vertices is associated with all left partitions of the first
column of unit cells and also the right partition of the bottom unit cell.
The second group of 4 vertices is associated with all left partitions of the
second column, except the last one, and also with the right partitions of
the occupied cells in the second row from the bottom. Similar L-shaped

6

chains follow for the remaining 6 groups. The vertices in distinct groups are
adjacent to one another through the cells in the upper triangle of the grid,
and the vertices within each group are adjacent to one another through the
cells in the main diagonal of the grid. If we associate the remaining cells
with a single additional vertex, then we can embed K33 instead. We know
from Klymko et al. (2014) that we cannot embed K37, but it is not known
if cliques K34, K35, or K36 could be embedded in C8,8,4.

1,8

1,7

1,6

1,5

1,4

1,3

1,2

1,1

2,8

2,7

2,6

2,5

2,4

2,3

2,2

3,8

3,7

3,6

3,5

3,4

3,3

4,8

4,7

4,6

4,5

4,4

5,8

5,7

5,6

5,5

6,8

6,7

6,6

7,8

7,7

8,8

 8

 7

 6

 5

 4

 3

 2

 1

Figure 2: An embedding of K32 in C8,8,4. Each group numbered from 1 to 8
consists of four connected vertices. On the left, those numbers are associated
with left and right partitions of cells in the grid. On the right, vertical and
horizontal lines correspond to each group occupying left and right partitions,
and circles for both, following the notation in Boothby et al. (2016).

Recent work by Date et al. (2019) has focused on limiting the number of
qubits used when embedding graphs with at most ML vertices. By reducing
the number of qubits associated with each variable, their approach is able
to obtain QUBO solutions that are closer to the optimal value. Another
recent line of inquiry concerns embedding the product of graphs, which
naturally arise as the problem graph of some formulations (Zaribafiyan et al.,
2017). There are also other general-purpose approaches that break a QUBO
problem into smaller parts, for example by decomposition (Bian et al., 2016)
or fixing some variables to their likely value in optimal solutions (Karimi and
Rosenberg, 2017).

The line of work that we will explore in this paper consists of embed-
ding problem graphs with more than ML vertices without decompostion, in
particular for the case of dense problem graphs. In sparse problem graphs,
heuristics have been quite successful (Cai et al., 2014; Yang and Dinneen,
2016). Among those, one of the most widely used is the CMR algorithm (Cai
et al., 2014). In dense problem graphs, the state-of-the-art consists of using
a virtual hardware as an intermediary for the embedding. The virtual hard-
ware consists of a particular minor of the Chimera graph CM,M,L, which is

7

chosen to preserve the ability to embed large and dense graphs while making
it easy to describe the family of minors that can be obtained from it. This
idea was pioneered by Goodrich et al. (2018b) with a complete bipartite
graph KML,ML as virtual hardware, and is currently the state-of-the-art for
embedding general problem graphs in QA hardware. Figure 3 illustrates
how K64,64 can be embedded in C16,16,4: each group of 4 vertices is associ-
ated with all right partitions of a given row or with all left partitions of a
given column.

16

15

14

13

12

11

10

 9

 1

 2

 3

 4

 5

 6

 8

 7

17 18 19 20 21 22 2423 25 26 27 28 29 30 31 32

U
1

U
2

Figure 3: An embedding of K64,64 in C16,16,4 using groups of 4 vertices, the
first 16 are associated with the right partitions of cells in each row (set U1)
and the last 16 with the left partitions of cells in each column (set U2).

Any minor of KML,ML is isomorphic to a subgraph of one among ML
minors of KML,ML (Hamilton and Humble, 2017). In essence, each vertex
vi ∈ V (G) is assigned to vertices in either one or both partitions of H =
KML,ML to obtain an embedding of G, and thus edge {uj , uk} ∈ F (H) is
contracted if vertex vi is assigned to both uj and uk.

The premise in Goodrich et al. (2018b) is to assign vertices of an Odd
Cycle Transversal (OCT) of the problem graph to vertices in both partitions
of KML,ML. An OCT of a graph G is a set T such that every odd cycle in G
has at least one vertex in T , hence implying that the removal of T results in
a bipartite graph, and consequently the remaining vertices are each assigned

8

to a single vertex of KML,ML. Those authors observed that an OCT of G
having minimum size implies the minimum size of a complete bipartite graph
in which G can be embedded. If T is such a minimum size OCT and V1 and
V2 are the resulting partitions of the subset of vertices defined by V (G) \T ,
then it follows that G can only be embedded in complete bipartite graphs
having at least 2|T |+ |V1|+ |V2| vertices.

Later work in Goodrich et al. (2018a) used ILP formulations to find an
OCT of minimum size, hence minimizing |T | as an approach to determine
if a given problem graph is embeddable in KML,ML. They report that
customized algorithms can find an OCT of smaller graphs faster. However,
they also acknowledge that a general-purpose solver is more effective in cases
where the problem graphs are harder to embed. We show in this paper that
the OCT that embeds G into a complete bipartite graph is not necessarily
of minimum size. This serves as a motivation for considering a different
optimization approach.

2.3 Related Work

Some authors have been exploring how to solve a broader class of optimiza-
tion problems with QA hardware. Recent work by Dridi et al. (2018) uses
Groebner bases to represent optimization problems involving polynomial
functions of higher order on binary domains as QUBO problems, which can
then potentially be solved by existing QA hardware. Subsequent work by
Alghassi et al. (2019) uses Graver bases to achieve the same with integer
non-linear optimization problems, which may also include constraints. A
number of other quadratizations that can be applied to such problems is
summarized by Dattani (2019).

One can also solve a QUBO using integer linear programming, since
the quadratic terms on binary variables can be linearized with an extended
formulation (Padberg, 1989). In recent work, Coffrin et al. (2019) uses ILP
to verify the solutions generated by QA hardware.

3 Contributions of This Paper

We show how Integer Linear Programming (ILP) can be used as an effec-
tive preprocessing step in AQC, especially for problem graphs with more
vertices than the largest embeddable cliques. Note that we are not inter-
ested in solving minor embedding problems that could be nearly as difficult
as the corresponding QUBO problem. We focus instead on how classical op-
timization algorithms could leverage the potential of quantum optimization

9

algorithms. Hence, we strive for a balance between computational speed and
the ability to embed larger problem graphs by defining simple formulations
that exploit the structure of Chimera graphs. In each of these formulations,
we cluster the vertices of a minor of the Chimera graph in some partitions
and formulate a problem of deciding how to assign vertices of the problem
graph to one or more of such partitions. In summary, our main contributions
are:

(i) We propose Template Embeddings (TEs) as a generalization of the
virtual hardware concept. Each template embedding is a minor of
the Chimera graph that can embed a variety of problem graphs with
few edge contractions. We study two classes of those: the Bipartite
TE (BTE), as the virtual hardware in Goodrich et al. (2018b); as well
as the Quadripartite TE (QTE), as a generalization of the former.

(ii) We show that every embedding in BTE is associated with an OCT,
but OCTs of minimum size do not certify that a given problem graph
cannot be embedded in BTE.

(iii) We present ILP formulations to determine how to embed a problem
graph on the minor of each template embedding with competitive re-
sults. For BTE, the formulation provides a certificate of embeddability
or lack thereof.

4 Bipartite Template Embedding

For a Chimera graph CM,M,L, BTE consists of the minor KML,ML used as
virtual hardware by Goodrich et al. (2018b), in which the vertices of the
hardware graph are partitioned into sets U1 and U2 of size ML each. The
construction of BTE is described in Figure 3.

In order to embed a problem graph G in BTE, we need to determine
which vertices of V (G) should be assigned to partitions U1 and U2. A vertex
assigned to a single partition should only be adjacent to vertices assigned
to the other partition. If assigning all vertices is proven impossible, then
G cannot be embedded in BTE. If all vertices are assigned to at least one
partition, then the solution defines a valid embedding.

Before formulating the embeddability of a problem graph G in BTE, we
discuss how BTE embeddings relate to OCTs and OCTs of minimum size.

10

4.1 OCTs and Bipartite Embedding

In this section, we characterize the relationship between OCTs of a graph
G and the embedding of G in a complete bipartite graph Km1,m2 . More
specifically, we show that the set of vertices assigned to both partitions
contains an OCT, but that the size of the partitions may imply that other
vertices have to be assigned to both partitions.

Proposition 1. For any embedding of a graph G in Km1,m2, the set of
vertices S ⊆ V (G) assigned to both partitions of Km1,m2 is such that there
is an OCT T of G for which T ⊆ S. In some cases, T ⊂ S in every possible
embedding.

Proof. Proof. First we show that the set of vertices S assigned to both
partitions in any embedding is a superset of an OCT T . Let us suppose,
for contradiction, that none of the vertices incident to an odd cycle of G,
say v1v2 . . . vkv1 for k ≥ 3 and odd, are in S. Since each of those vertices
is assigned to one partition of Km1,m2 , whereas consecutive vertices should
necessarily be in different partitions, then one partition is assigned to each
vi with even i and the other partition is assigned to each vi with odd i.
However, since vk and v1 are adjacent and assigned to the same partition,
then we do not have a valid embedding, and we reach a contradiction. Hence,
S contains at least one vertex of every odd cycle in G and is indeed an OCT.
This proves the first claim.

Next we show that the embedding of certain graphs implies that we
assign to both partitions a vertex that is not incident to any odd cycle.
In particular, let us consider a star graph K1,m, where a single vertex v is
adjacent to all the other vertices and consequently the only OCT is an empty
set. If m > max{m1,m2} but m ≤ m1 + m2 − 2, then we can only embed
K1,m in Km1,m2 if vertex v is assigned to both partitions, in which case
each of the remaining m vertices can then be assigned to either partition of
Km1,m2 .

In other words, there is always an OCT in the set of vertices S that
should be assigned to both partitions of Km1,m2 . However, that set may
also contain other vertices. Proposition 1 shows that some of those vertices
may not be incident to any OCT. In what follows, we illustrate that the
remaining vertices may define an OCT that is not of minimum size.

Consider the graph G in Figure 4, where vertices v1 and v2 are adjacent
and each is also adjacent to all vertices in set VA := {v4, v5, v6, v7}, whereas
v3 is adjacent to all vertices in sets VA and VB := {v8, v9, v10, v11}. Vertices

11

v1 and v2 are incident to all odd cycles of G, such as v1v4v2v1, and conse-
quently we only need to remove one of them to obtain a graph with no odd
cycles. In addition, v3 is incident to some odd cycles, such as v1v4v3v5v2v1.
Hence, {v1} and {v2} are OCTs of minimum size, but {v1, v3} is also an
OCT.

 V
A

V
B

v
4

v
1

v
2 v

5

v
7

v
8

v
9

v
11

v
3

v
10

v
6

Figure 4: Example of a graph G for which assigning vertices in an OCT of
minimum size to both partitions of a bipartite graph H may not suffice to
obtain a valid embedding of G in H.

V
A

..
.

v
4

v
7

v
3

v
2

v
1

v
1

V
B

..
.

v
8

v
11

V
A

..
.

v
4

v
7

v
2

v
1

v
1

V
B

..
.

v
8

v
11

v
3

v
3

Figure 5: Embeddings of graph G from Figure 4 in a bipartite graph. On
the left, we assign only the vertices of a minimum size OCT {v1} to both
partitions and consequently minimize the number of vertices used in both
partitions to 12. On the right, we assign the vertices of a larger OCT {v1, v3}
to both partitions and consequently reduce the largest number of vertices
assigned to either partition from 9 to 7.

Let us first consider what happens if we only assign an OCT of minimum

12

size to both partitions of Km1,m2 , which would imply S = T = {v1} or
S = T = {v2}. Since G − v1 and G − v2 are isomorphic, we only consider
assigning v1 to both partitions and the vertices in G−v1 to a single partition
each. In that case, vertex v2 and the vertices in set VA are necessarily in
different partitions. Since vertex v3 is adjacent to the vertices in VA, it
follows that v3 is in the same partition as v2. Since the vertices in VB are all
adjacent to v3, then the vertices in VB are in the same partition as those in
VA. Consequently, we need to assign {v2, v3} to one partition and VA ∪ VB
to the other partition. Therefore, we can only embed graph G in Km1,m2

by assigning the vertices in a minimum size OCT to both partitions and the
rest to a single partition each if m1 ≥ 3 and m2 ≥ |VA| + |VB| + 1 = 9 or
vice-versa. This is illustrated on the left of Figure 5.

Now let us consider what happens if we assign a larger OCT to both
partitions of Km1,m2 , say {v1, v3}. In the graph G \ {v1, v3}, vertex v2
and the vertices in VA are again in different partitions. Since the vertices
in VB are not adjacent to the other remaining vertices, then one possible
partitioning of the remaining vertices is {v2} ∪ VB and VA, hence implying
that we can embed G in Km1,m2 if m1 ≥ |VB|+3 = 7 and m2 ≥ |VA|+2 = 6
or vice-versa. This is illustrated on the right of Figure 5.

If m1 = m2 = 8, then assigning only the vertices of a minimum size
OCT {v1} to both partitions and assigning VA ∪ VB to a single partition
is not feasible since no partition has 9 vertices. However, it is possible to
assign only the vertices of the OCT {v1, v3} to both partitions and obtain
an embedding, since in such case we only need to assign 7 vertices to one
partition of Km1,m2 and 6 vertices to the other partition.

The rationale for finding an OCT T of minimum size is that it allows G
to be embedded in the smallest complete bipartite graph, regardless of the
size of each partition in which we are embedding. However, the size of the
partitions matter. If we denote the partitions of G\T as the sets of vertices
V1 and V2, then G can only be embedded with such partitions in Km1,m2

if min(m1,m2) ≥ |T | and max(m1,m2) ≥ |T | + |V1| + |V2|. The graph in
Figure 4 can be embedded with an OCT of minimum size in K3,9, which
has only 12 vertices. It can also be embedded with a larger OCT in K6,7,
which has 13 vertices. If we were to consider a Chimera graph C16,16,4 and
tried to embed a similar graph in which |VA| = |VB| = 32, only the second
embedding above would be possible in BTE.

13

4.2 Exact Bipartite Embedding

The formulation below determines if a problem graph G is embeddable in
BTE.

Decision Variables For each vertex vi ∈ V (G) and k ∈ {1, 2}, let yi,k ∈
{0, 1} be a binary variable for whether vertex vi is assigned to partition Uk
and let y′i ∈ {0, 1} be a binary variable denoting whether vi is assigned to
any partition.

Objective Function The following expression aims at assign as many
vertices as possible:

max

n∑
i=1

y′i.

If the ILP solver reports an upper bound lower than n, then it is not possible
to embed G in BTE.

Constraints For each vertex vi ∈ V (G), we associate both types of deci-
sion variables as follows:

y′i ≤ yi,1 + yi,2. (1)

For each partition Uk, k ∈ {1, 2}, no more than ML vertices of V (G)
should be assigned to it:

n∑
i=1

yi,k ≤ML. (2)

For each edge {vi, vj} ∈ E(G), i < j, vertices vi and vj should not be
assigned to a single and same partition:

yi,1 + yj,1 − yi,2 − yj,2 ≤ 1 (3)

yi,2 + yj,2 − yi,1 − yj,1 ≤ 1. (4)

The constraints above are the canonical cuts on the unit hypercube defined
by the binary variables (Balas and Jeroslow, 1972). Each corresponds to
the tightest single inequality on such space because it separates a single
combination of values for those variables and is tight for each combina-
tion of values that differs in only one variable. For example, the first in-
equality above separates (yi,1, yi,2, yj,1, yj,2) = (1, 0, 1, 0) from the feasible set
while holding at equality for the adjacent assignments (yi,1, yi,2, yj,1, yj,2) =
(0, 0, 1, 0), (1, 1, 1, 0), (1, 0, 0, 0), and (1, 0, 1, 1).

14

Proposition 2 (Certificate of Embeddability). Graph G is embeddable in
BTE if and only if there is a solution to the ILP formulation with objective
value |V (G)|.

Proof. Proof. We start with the premise of assigning vertices to partitions.
In order to embed G in BTE, every vertex v of G should be assigned to
one or more vertices of BTE. If v is assigned to vertices u1 and u2 in BTE
and those vertices are in the same partition, then u1 and u2 have the same
neighbors and we can obtain an equivalent embedding by assigning v to only
one of them. Therefore, every embedding of G in BTE can be reduced to
an embedding in which each vertex of G is assigned to at most one vertex
of each partition and the premise of assigning vertices of G to partitions of
BTE is valid.

Next we show that any graph G that can be embedded in BTE defines
a solution to the ILP formulation. Based on the discussion above, for any
such graph we can define a mapping of every one of its vertices to partitions
U1 and U2 of BTE that corresponds to an embedding of G in BTE, which
implies that yi,k = 1 if vi ∈ V (G) is assigned to partition Uk, k ∈ {1, 2},
and yi,k = 0 otherwise. By definition, we can infer that three constraints
of the ILP formulation are always satisfied with such a mapping. First,
no more than ML vertices of G are assigned to either U1 or U2 in any
embedding in BTE because that is the number of vertices in each of those
partitions, and thus any such embedding satisfies constraint (2). Second, no
pair of adjacent vertices in G are assigned only to the same partition in BTE
because the corresponding vertices in BTE would not be adjacent, and thus
any embedding in BTE would not assign any such pair only to partition U1 as
prevented by constraint (3) or to partition U2 as prevented by constraint (4).
In addition, since every vertex vi ∈ V (G) is assigned to at least one partition,
then it follows that yi,1+yi,2 ≥ 1 and thus there is a feasible solution in which
y′i = 1 ∀vi ∈ V (G) and the objective function value of |V (G)| is attainable
because constraint (1) is not violated by such assignments. Therefore, there
is a solution of value |V (G)| for every embedding of G in BTE.

Finally, we show that any graph G for which we cannot find such a solu-
tion to the ILP formulation cannot be embedded in BTE. Since a solution
with all variables equal to zero is feasible, we just need to consider the case
in which the optimal value is less than |V (G)|. We will prove this by contra-
diction. Suppose, for contradiction, that there is an optimal solution with
value |V (G)| for a graph G that cannot be embedded in BTE. That would
imply that each vertex of G is assigned to at least one partition due to con-
straint (1) and optimality. Further, no more than ML vertices are assigned

15

to each partition due to satisfaction of constraint (2), and adjacent vertices
are not assigned solely to vertices in U1 due to satisfaction of constraint (3)
or to vertices in U2 due to satisfaction of constraint (4). Consequently, such
a solution would contradictorily define a valid embedding of G. Therefore,
the value of any solution to the ILP formulation associated with a graph G
that is not embeddable in BTE is less than |V (G)|.

An important implication of Proposition 2 is that we can terminate the
search process and conclude that G is not embeddable in BTE once the
search determines that there is no solution with objective value |V (G)|.
Search algorithms incorporate a number of domain reduction techniques,
which lead to considerable pruning of the search space, and this can be
favorably exploited to produce a certificate of non-embeddability. Further-
more, any solution with objective value |V (G)| is an optimal solution, and
the search can be terminated if one of those is found.

5 Quadripartite Template Embedding

We define the Quadripartite Template Embedding (QTE) as a minor of
the Chimera graph with vertices partitioned into sets U1, U2, U3, and U4.
Each vertex in U1 is adjacent to all vertices in U2, those in U2 are also each
adjacent to a distinct vertex in U3, and those in U3 are also adjacent to all
vertices in U4. In other words, the subgraph induced on U1∪U2 and U3∪U4

are both complete bipartite graphs, and the subgraph induced in U2 ∪ U3

is a perfect matching. In fact, embedding on QTE generalizes embedding
on BTE, since BTE is a minor of QTE after contracting all edges between
sets U2 and U3: U1 ∪ U4 defines one partition of BTE in that case and the
other partition is defined by the vertices resulting from contracting the edges
between U2 and U3. For a Chimera graph CM,M,L with M even and thus
P := M/2 integer, the size of those partitions are: |U1| = PL, |U2| = ML,
|U3| = ML, and |U4| = PL. Figure 6 illustrates that minor of C16,16,4.

The set of minors of QTE is a superset of the minors of BTE. QTE’s
minors include some larger graphs with fewer adjacencies that would not be
possible to embed in BTE. In fact, BTE is a minor of QTE in which the
edges between vertices in partitions U2 and U3 are contracted. QTE offers
the flexibility that two adjacent vertices in U2 and U3 can be mapped to
distinct vertices in G.

QTE can be obtained from CM,M,L as follows. Set U1 consists of P
groups of L vertices, each group obtained by contracting the L vertices of
the right partitions of one of the top P rows of the M ×M grid. Set U2

16

u
97

U
1

U
2

U
3

U
4

u
33

u
1

..
.

.....
.

..
.

u
2

u
32

u
34

u
96

u
161

u
162

u
192

u
98

u
160

Figure 6: QTE minor of Chimera graph C16,16,4.

consists of M groups of L vertices, each group obtained by contracting the
L vertices of the left partitions in the top P rows of one of the M columns
of the grid. Set U3 consists of M groups of L vertices, each group obtained
by contracting the L vertices of the left partitions in the bottom P rows of
one of the M columns of the grid. Set U4 consists of P groups of L vertices,
each group obtained by contracting the L vertices of the right partitions of
one of the bottom P rows of the grid. Figure 7 illustrates QTE in C16,16,4.

In order to embed a problem graph in QTE, each vertex should be as-
signed to a sequence of adjacent partitions and each pair of adjacent vertices
vi and vj should be assigned to vertices ui and uj that are adjacent in QTE.
For simplicity, we only consider that vi and vj have been assigned to vertices
ui and uj that are adjacent in QTE if those vertices are in distinct partitions
that together induce a complete bipartite graph, i.e., U1 and U2 or U3 and
U4. Hence, we ignore the possibility of assuming ui and uj adjacent if one
of these vertices is in partition U2 and the other vertex is in partition U3.
Otherwise, we would need to explicitly assign the vertices of the problem
graph to specific vertices in those partitions instead of merely deciding that
the vertices of the problem graph are assigned to some vertex in the parti-
tion, which would make the formulation considerably more complex. More
specifically, we could potentially decide the particular vertex of the harware
graph H that is associated to each vertex assigned to sets U2 and U3 in
order to leverage the fact that each vertex of U2 is adjacent to a vertex
of U3. However, the number of decision variables would be substantially
larger in that case. Given our aim for simplicity, the formulation below does
not provide a certificate of embeddability in QTE because we only exploit
adjacencies between U2 and U3 if a same vertex is assigned to both.

17

16

15

14

13

12

11

10

 9

 1

 2

 3

 4

 5

 6

 8

 7

17 18 19 20 21 22 2423 25 26 27 28 29 30 31 32

34 35 36 37 38 4039 41 42 43 44 45 46 47 4833

U
1

U
2

U
4

U
3

Figure 7: QTE in C16,16,4, defining partition U1 with the top 8 horizontal
groups, U2 with the top 16 vertical groups, U3 with the bottom 16 vertical
groups, and U4 with the bottom 8 horizontal groups. Each group has 4
vertices.

Decision Variables For each vertex vi ∈ V (G) and k ∈ {1, 2, 3, 4}, let
yi,k ∈ {0, 1} be a binary variable for whether vertex vi is assigned to partition
Uk, and let y′i ∈ {0, 1} be a binary variable denoting whether vi is assigned to
any partition. For each edge {vi, vj} ∈ E(G), assuming i < j, let zki,j ∈ {0, 1}
be an auxiliary binary variable implying that the adjacency between vertices
vi and vj is ensured by assigning vertex vi to partition Uk and vertex j to
the partition in which all vertices are adjacent to those in Uk.

Objective Function We maximize vertices assigned:

max

n∑
i=1

y′i.

18

Constraints The first constraint associates the first two types of variables
for each vertex vi ∈ V (G), as in BTE:

y′i ≤
4∑

k=1

yi,k.

For each partition Uk, k ∈ {1, 2, 3, 4}, the number of vertices assigned to
Uk is bounded by the size of that partition:

n∑
i=1

yi,k ≤ |Uk|.

For each vertex vi ∈ V (G), we want the set of partitions to which vi
is assigned to be pairwise contiguous. We formulate that with constraints
preventing each possible discontinuity: (i) assigning vi to U1 and U3 implies
that vi is also assigned to U2; (ii) assigning vi to U1 and U4 implies that vi is
also assigned to U2 and U3; and (iii) assigning vi to U2 and U4 implies that
vi is also assigned to U3. Hence, we use canonical cuts on the unit hypercube
in the corresponding subspaces to exclude the assignments (yi,1, yi,2, yi,3) =
(1, 0, 1) for (i); (yi,1, yi,2, yi,4)) = (1, 0, 1) and (yi,1, yi,3, yi,4)) = (1, 0, 1) for
(ii); and (yi,2, yi,3, yi,4) = (1, 0, 1) for (iii):

yi,1 + yi,3 − yi,2 ≤ 1

yi,1 + yi,4 − yi,2 ≤ 1

yi,1 + yi,4 − yi,3 ≤ 1

yi,2 + yi,4 − yi,3 ≤ 1.

For (ii), it would suffice to exclude (yi,1, yi,2, yi,3, yi,4) = (1, 0, 0, 1) with yi,1+
yi,4 − yi,2 − yi,3 ≤ 1 because the other cases are covered. However, by
summing the two inequalities used for (ii) we obtain the implied inequality
2yi,1 + 2yi,4− yi,2− yi,3 ≤ 2, which is stronger than yi,1 + yi,4− yi,2− yi,3 ≤ 1
on continuous domains in [0, 1] and excludes additional fractional values
such as (yi,1, yi,2, yi,3, yi,4) = (1, 0.5, 0.5, 1). Note that a formulation that
has a smaller feasible set when the binary variables on {0, 1} are relaxed to
continuous variables on [0, 1] is considered as stronger and often is solved
faster.

For each edge {vi, vj} ∈ E(G), i < j, we want vertex vi assigned to at
least one partition Uk such that vertex vj is assigned to the corresponding
partition Ul where the set of vertices Uk ∪ Ul induces a complete bipartite

19

graph. In other words, we want vi and vj respectively assigned to either (i)
U1 and U2; (ii) U2 and U1; (iii) U3 and U4; or (iv) U4 and U3:

yi,1 ≥ z1i,j , yj,2 ≥ z1i,j

yi,2 ≥ z2i,j , yj,1 ≥ z2i,j
yi,3 ≥ z3i,j , yj,4 ≥ z3i,j
yi,4 ≥ z4i,j , yj,3 ≥ z4i,j

4∑
k=1

zki,j ≥ 1.

Note that the first two inequalities above imply yi,1 + yj,2 ≥ 2z1i,j , which
alone would also be a valid formulation for (i), and the same follows for
conditions (ii), (iii), and (iv). However, having a pair of inequalities instead
makes the formulation stronger since it excludes fractional solutions such as
(yi,1, yj,2, z

1
i,j) = (0.5, 0.5, 1). Those constraints also imply that each vertex

incident to at least one edge should be assigned to a partition, and thus an
non-embeddable problem graph may lead to an infeasible solution.

6 Experiments

We implemented the ILP formulations for the template embeddings in C16,16,4

and C20,20,4 using Gurobi 9.0.0. We compare our results with those obtained
with Fast-OCT-Reduce (FOR) using the source code from Goodrich et al.
(2018b), which is the state-of-the-art for embedding general graphs in QA
hardware. In other words, we test on the hardware graph currently commer-
cialized by D-Wave Systems (C16,16,4) and a larger hardware graph (C20,20,4)
to compare the scalability of both approaches.

We use five random generators of graphs with a density parameter p =
.25 for Low density, p = .5 for Medium density, and p = .75 for High density.
Four generators are from Goodrich et al. (2018b): Barabási-Albert, Erdős-
Rényi, Regular, and Noisy Bipartite. We implement Percolation based on
long-range percolation graphs (Coppersmith et al., 2002). For each vertex
vi, we draw a random number χi ∈ [0, 1) and we include edge {vi, vj} with

probability min
{

1, p
|χi−χj |

}
.

Since TRIAD can easily generate a clique of size 64 for C16,16,4, we
generate 5 random graphs from each generator and with each density for
number of vertices ranging from 65 to 128. Likewise, TRIAD can easily

20

generate a clique of size 80 for C20,20,4, and for that case the number of
vertices ranges from 81 to 160 in the experiments. The maximum sizes for
the tested graphs come from assuming that each vertex would be assigned
to a single partition. In the case of low and medium density, the expected
number of edges of the random graphs is smaller than the number of edges of
the template embeddings. In the case of high density, the expected number
of edges would exceed

(
ML
2

)
if the number of vertices is sufficiently large.

Hence, we have limited the experiments with random graphs having high
density to at most 105 vertices in the case of C16,16,4 and at most 131 vertices
in the case of C20,20,4. In total, we tried to embed 4,225 graphs in C16,16,4 and
5,275 graphs in C20,20,4. The time required to embed problems is currently
the bottleneck in solving problems on QA hardware. With an eye towards
cases that would benefit from our classical approach as a presolve for AQC,
we set a time limit of 60 seconds as a satisficing threshold to identify what
graphs can be embedded by each approach. We also complement our analysis
with plots that compare runtimes in order to identify the most effective
approach. All experiments were conducted on a single thread in an Intel(R)
Xeon(R) CPU E5-2640 v3 @ 2.60GHz and 128 GB RAM.

We begin by comparing the total number of graph instances that can be
embedded by the different algorithms in Figure 8. For C16,16,4, Fast-OCT-
Reduce (FOR) can embed 694 instances while BTE and QTE can embed 717
and 670, respectively. Thus, BTE improves on FOR marginally while QTE
embeds fewer instances than FOR. For C20,20,4, BTE can embed significantly
more instances as compared to FOR (798 vs. 575, respectively). QTE also
does much better than FOR in this case (575 vs. 671).

Our next analysis in Figure 9 aims to identify the unique strengths of
each algorithm beyond the total number of instances that are successfully
embedded. We count the instances that are embedded by only one approach
or template embedding, i.e. that no other approach was able to embed.
From this analysis, we see that every graph that is embedded by FOR is
also successfully embedded by either BTE or QTE. Among the template
embeddings, BTE embeds more instances than QTE.

Tables 1 and 2 show the largest graph that each algorithm could respec-
tively embed in C16,16,4 and C20,20,4 within the time limit for each type of
random generator and density, with the largest numbers of each row in bold.
This helps to identify the type of random graph generators and densities for
which one approach is superior to the the others.

Table 3 provides a breakdown of the number of graphs embedded in
C16,16,4 and C20,20,4 by the graph classes considered. This is a dissection
of the results in Figure 8, which also complements the results reported in

21

Tables 1 and 2 by quantifying the total number of graphs embedded.
Figures 10 and 11 respectively show the performance profiles of each ap-

proach as well as the combination of all template embeddings in comparison
with the OCT-based approach in C16,16,4. In other words, we see the cumu-
lative number of graphs embedded over time for each case. Figures 12 and
13 show the same type of performance profiles with respect to embedding
into C20,20,4. The performance profiles evidence that the use of template
embeddings results in runtimes that are orders of magnitude faster than
FOR.

In some of these figures and tables, we respectively denote C16,16,4 and
C20,20,4 as C16 and C20 for brevity.

One noticeable difference between the template embeddings is whether
we can determine if the embedding problem is feasible or not by the time
limit. In the case of BTE, we were able to find a feasible embedding or
determine that none exists by the time limit. In the case of QTE, it was not
possible to determine if an embedding was infeasible by the time limit. That
speaks to the importance of having models that are as simple as possible,
and also highlights the fact that an ILP formulation can reliably determine
if a graph can be embedded in a complete bipartite graph for the sizes that
we tested.

QTE

BTE

Fast−OCT−Reduce 694

727

670

C16

575

798

671

C20

Figure 8: Number of graphs embedded by Fast-OCT-Reduce and each tem-
plate embedding in C16 and C20.

6.1 Analysis

The ILP formulations based on template embeddings can embed 5% and
39% more graphs than the OCT-based approach in C16,16,4 and C20,20,4, re-
spectively. More importantly, these graphs can be embedded substantially
faster. Furthermore, every graph embedded by the OCT-based approach
is also embedded by one of the template embeddings. Out of the 30 dif-
ferent combinations of random graph, density, and hardware graph, BTE
embeds the largest graph in all 30 of them. Meanwhile, FOR embeds the

22

FOR: 0

BTE or QTE: 35 BTE: 24

QTE: 4

FOR: 0

BTE or QTE: 105 BTE: 67

QTE: 0

Figure 9: Graphs uniquely embedded by each approach or a specific template
embedding in C16 (left) and C20 (right).

Table 1: The largest graph embedded by each algorithm per generator and
density in C16.

Random Graph Density FOR BTE QTE

Percolation
low 67 68 68

medium 66 66 66
high 66 66 66

Barabási-Albert
low 77 78 76

medium 72 72 71
high 69 69 69

Erdős-Rényi
low 79 80 77

medium 71 72 72
high 69 69 68

Regular
low 78 78 77

medium 72 72 72
high 69 69 69

Noisy Bipartite
low 92 92 92

medium 85 85 82
high 81 81 80

23

Table 2: The largest graph embedded by each algorithm per generator and
density in C20.

Random Graph Density FOR BTE QTE

Percolation
low 81 84 83

medium 82 82 82
high 82 82 82

Barabási-Albert
low 85 95 92

medium 86 89 87
high 85 85 84

Erdős-Rényi
low 97 97 94

medium 89 89 88
high 85 86 85

Regular
low 95 95 94

medium 88 88 87
high 85 85 84

Noisy Bipartite
low 110 111 111

medium 100 102 99
high 99 100 96

largest graph in 19, and QTE in 11. The results are particularly favor-
able with the larger hardware graph, in which we can often embed more
graphs with template embeddings and fewer with the OCT-based approach.
That evidences the scalability of the proposed approach. While BTE is a
special case of QTE, the simpler formulation allowed BTE to embed more
Barabási-Albert, Erdős-Rényi, regular, and noisy bipartite graphs within the
time limit in both hardware graphs. QTE performed comparatively better
with Percolation graphs of lower density. While BTE dominates the perfor-
mance profile curves, we note that QTE helped embedding extra graphs as
the runtime increased.

Our main takeaway is that solving a simpler embedding problem yields
better results. Because of its relatively small formulation, BTE led to very
fast and scalable results. In addition, as conjectured, QTE showed favorable
results with lower density graphs.

7 Conclusion and Future Work

We proposed the concept of template embeddings to map quadratic un-
constrained binary optimization problems into quantum annealers. Each

24

Table 3: Number of graphs embedded by Fast-OCT-Reduce (FOR) and
Template Embeddings (TE) in C16 and C20.

C16 C20
Random Graph FOR TE FOR TE

Percolation 35 37 24 38
Barabási-Albert 114 126 67 138
Erdős-Rényi 128 139 90 150
Regular 127 129 112 140
Noisy Bipartite 290 301 282 332

Total 694 732 575 798

template embedding corresponds to a minor of the Chimera graph that can
embed a variety of large and dense graphs. We also introduced integer linear
programming formulations to find such mappings and showed that one of
these formulations is exact, and thus certify if a given graph can be embed-
ded in the corresponding minor. Experimental results clearly demonstrate
the potential of the proposed approach, especially to embed problems hav-
ing more variables than the maximum embeddable clique in the Chimera
graph corresponding to the QA hardware.

Interestingly, our approach makes a better use of quantum annealers by
leveraging classical optimization algorithms as a preprocessing step. The
performance of solvers for mixed-integer linear programming has improved
by orders of magnitude in the past decades (Bixby, 2012). We believe that
there is potential for further coordination between classical and quantum
algorithms for discrete optimization.

In future work, we intend to investigate template embeddings that are
adaptive to problem sparsity and incorporate knowledge of faulty qubits in
the formulations. We should also consider improvements to the formulation
of template embeddings and solving strategies to scale up this approach as
the size of the hardware graph increases in future releases.

Another line of work consists of extending the template-based approach
to minors of Pegasus, the proposed hardware graph for future QA hardware
by D-Wave Systems (Dattani et al., 2019). However, we note that the con-
tributions of this work are also valid for Pegasus, as observed in a technical
report by D-Wave (Boothby et al., 2019):

Much of the embedding support that exists for the Chimera topol-
ogy may be extended to the Pegasus family of topologies with
relative ease. Known constructions for Chimera embeddings of

25

Figure 10: Performance profile of graphs embedded by Fast-OCT-Reduce
and each template embedding in C16.

structured problems translate to Pegasus without modification,
because Chimera occurs as a subgraph of Pegasus.

References

Hedayat Alghassi, Raouf Dridi, and Sridhar Tayur. Graver bases via quan-
tum annealing with application to non-linear integer programs. arXiv,
abs/1902.04215, 2019.

E. Balas and R. G. Jeroslow. Canonical cuts on the unit hypercube. SIAM
Journal on Applied Mathematics, 23:61–69, 1972.

Zhengbing Bian, Fabian Chudak, Robert Brian Israel, Brad Lackey,
William G. Macready, and Aidan Roy. Mapping constrained optimiza-
tion problems to quantum annealing with application to fault diagnosis.
Frontiers in ICT, 3:14, 2016.

Robert E. Bixby. A brief history of linear and mixed-integer programming
computation. In Documenta Mathematica, Extra Volume: Optimization
Stories, pages 107–121. 2012.

J. A. Bondy and U. S. R. Murty. Graph Theory. Springer, 2008.

26

Figure 11: Performance profile of graphs embedded by Fast-OCT-Reduce
and any template embedding in C16.

Kelly Boothby, Paul Bunyk, Jack Raymond, and Aidan Roy. Next-
generation topology of d-wave quantum processors. Technical Report
14-1026A-C, D-Wave Systems Inc., 2019.

Tomas Boothby, Andrew D King, and Aidan Roy. Fast clique minor gener-
ation in chimera qubit connectivity graphs. Quantum Information Pro-
cessing, 15(1):495–508, 2016.

Endre Boros and Peter L Hammer. Pseudo-boolean optimization. Discrete
applied mathematics, 123(1-3):155–225, 2002.

J. Cai, W. G. Macready, and A. Roy. A practical heuristic for finding graph
minors. arXiv, abs/1406.2741, 2014.

Vicky Choi. Minor-embedding in adiabatic quantum computation: I. the
parameter setting problem. Quantum Information Processing, 7(5):193–
209, 2008.

Vicky Choi. Minor-embedding in adiabatic quantum computation: Ii. minor-
universal graph design. Quantum Information Processing, 10(3):343–353,
2011.

Carleton Coffrin, Harsha Nagarajan, and Russell Bent. Evaluating ising
processing units with integer programming. In Louis-Martin Rousseau

27

Figure 12: Performance profile of graphs embedded by Fast-OCT-Reduce
and each template embedding in C20.

and Kostas Stergiou, editors, Integration of Constraint Programming, Ar-
tificial Intelligence, and Operations Research, pages 163–181. Springer In-
ternational Publishing, 2019.

Don Coppersmith, David Gamarnik, and Maxim Sviridenko. The diameter
of a long-range percolation graph. Random Struct. Algorithms, 21(1):
1–13, 2002.

D-Wave Systems. Introduction to the D-Wave Quantum Hard-
ware. https://www.dwavesys.com/tutorials/background-reading-
series/introduction-d-wave-quantum-hardware, 2019. Accessed: 2019-05-
03.

Sanjeeb Dash. A note on QUBO instances defined on Chimera graphs.
arXiv, abs/1306.1202, 2013.

Prasanna Date, Robert Patton, Catherine Schuman, and Thomas Potok.
Efficiently embedding qubo problems on adiabatic quantum computers.
Quantum Information Processing, 18(4):117, 2019.

Nike Dattani. Quadratization in discrete optimization and quantum me-
chanics. arXiv, abs/1901.04405, 2019.

Nike Dattani, Szilard Szalay, and Nick Chancellor. Pegasus: The second

28

Figure 13: Performance profile of graphs embedded by Fast-OCT-Reduce
and any template embedding in C20.

connectivity graph for large-scale quantum annealing hardware. arXiv,
abs/1901.07636, 2019.

Raouf Dridi, Hedayat Alghassi, and Sridhar Tayur. A novel algebraic ge-
ometry compiling framework for adiabatic quantum computations. arXiv,
abs/1810.01440, 2018.

Edward Farhi, Jeffrey Goldstone, Sam Gutmann, and Michael Sipser. Quan-
tum computation by adiabatic evolution. arXiv, abs/quant-ph/0001106,
2000.

Edward Farhi, Jeffrey Goldstone, Sam Gutmann, Joshua Lapan, Andrew
Lundgren, and Daniel Preda. A quantum adiabatic evolution algorithm
applied to random instances of an NP-complete problem. Science, 292
(5516):472–475, 2001.

AB Finnila, MA Gomez, C Sebenik, C Stenson, and JD Doll. Quantum an-
nealing: A new method for minimizing multidimensional functions. Chem-
ical physics letters, 219(5-6):343–348, 1994.

Timothy D Goodrich, Eric Horton, and Blair D Sullivan. Practical graph
bipartization with applications in near-term quantum computing. arXiv,
abs/1805.01041, 2018a.

29

Timothy D Goodrich, Blair D Sullivan, and Travis S Humble. Optimizing
adiabatic quantum program compilation using a graph-theoretic frame-
work. Quantum Information Processing, 17(5):118, 2018b.

Kathleen E. Hamilton and Travis S. Humble. Identifying the minor set
cover of dense connected bipartite graphs via random matching edge sets.
Quantum Information Processing, 16(4):1–17, 2017.

David S. Johnson. The NP-completeness column: An ongoing guide. Journal
of Algorithms, 8(3):438–448, 1987.

Tadashi Kadowaki and Hidetoshi Nishimori. Quantum annealing in the
transverse ising model. Physical Review E, 58(5):5355, 1998.

Bahman Kalantari. Quadratic functions with exponential number of local
maxima. Operations Research Letters, 5(1):47–49, 1986.

W. M. Kaminsky and S. Lloyd. Scalable architecture for adiabatic quantum
computing of NP-hard problems. In A. J. Leggett, B. Ruggiero, and P. Sil-
vestrini, editors, Quantum Computing and Quantum Bits in Mesoscopic
Systems, pages 229–236. Springer US, Boston, MA, 2004.

W. M. Kaminsky, S. Lloyd, and T. P. Orlando. Scalable superconduct-
ing architecture for adiabatic quantum computation. arXiv, abs/quant-
ph/0403090, 2004.

Hamed Karimi and Gili Rosenberg. Boosting quantum annealer performance
via sample persistence. Quantum Information Processing, 16(7):166, 2017.

Christine Klymko, Blair D Sullivan, and Travis S Humble. Adiabatic quan-
tum programming: minor embedding with hard faults. Quantum Infor-
mation Processing, 13(3):709–729, 2014.

Andrew Lucas. Ising formulations of many np problems. Frontiers in
Physics, 2:5, 2014.

Andrew Lucas. Hard combinatorial problems and minor embeddings on
lattice graphs. arXiv, abs/1812.01789, 2018.

Catherine C. McGeoch and Cong Wang. Experimental evaluation of an
adiabiatic quantum system for combinatorial optimization. In Proceedings
of the ACM International Conference on Computing Frontiers, CF ’13,
pages 23:1–23:11, 2013.

30

Manfred Padberg. The boolean quadric polytope: Some characteristics,
facets and relatives. Mathematical Programming, 45(1):139–172, 1989.

Troels F. Rønnow, Zhihui Wang, Joshua Job, Sergio Boixo, Sergei V. Isakov,
David Wecker, John M. Martinis, Daniel A. Lidar, and Matthias Troyer.
Defining and detecting quantum speedup. Science, 345(6195):420–424,
2014.

W. Van Dam, M. Mosca, and U. Vazirani. How powerful is adiabatic quan-
tum computation? In Proceedings of the 42nd IEEE Symposium on Foun-
dations of Computer Science, FOCS ’01, pages 279–287, 2001. ISBN 0-
7695-1390-5.

Z. Yang and M. J. Dinneen. Graph minor embeddings for d-wave computer
architecture. Technical Report CDMTCS-503, Centre for Discrete Math-
ematics and Theoretical Computer Science, The University of Auckland,
2016.

Arman Zaribafiyan, Dominic J. J. Marchand, and Seyed Saeed Changiz
Rezaei. Systematic and deterministic graph minor embedding for cartesian
products of graphs. Quantum Information Processing, 16(5), 2017.

31

	Title Page
	page 2

	/projects/www/html/my/publications/docs/TR2020-181.pdf
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31

