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Abstract
This paper introduces a new class of feedback-based data-driven extremum seeking algorithms
for the solution of model-free optimization problems in smooth continuous-time dynamical
systems. The novelty of the algorithms lies on the incorporation of memory that enables the
use of information-rich data sets during the optimization process, and allows to dispense with
the time-varying dither excitation signal needed by standard extremum seeking algorithms
that rely on a persistence of excitation (PE) condition. The model-free optimization dynamics
are developed for single-agent systems, as well as for multi-agent systems with communication
graphs that allow agents to share their state information while preserving the privacy of their
individual data. In both cases, sufficient richness conditions on the recorded data, as well as
suitable optimization dynamics modeled by ordinary differential equations are characterized
in order to guarantee convergence to a neighborhood of the solution of the extremum seeking
problems. The performance of the algorithms is illustrated via different numerical examples
in the context of source seeking problems in multi-vehicle systems.
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Summary

This paper introduces a new class of feedback-based data-driven extremum seek-
ing algorithms for the solution of model-free optimization problems in smooth
continuous-time dynamical systems. The novelty of the algorithms lies on the incor-
poration of memory that enables the use of information-rich data sets during the
optimization process, and allows to dispense with the time-varying dither excitation
signal needed by standard extremum seeking algorithms that rely on a persistence of
excitation (PE) condition. The model-free optimization dynamics are developed for
single-agent systems, as well as for multi-agent systems with communication graphs
that allow agents to share their state information while preserving the privacy of
their individual data. In both cases, sufficient richness conditions on the recorded
data, as well as suitable optimization dynamics modeled by ordinary differential
equations are characterized in order to guarantee convergence to a neighborhood of
the solution of the extremum seeking problems. The performance of the algorithms is
illustrated via different numerical examples in the context of source seeking problems
in multi-vehicle systems.
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1 INTRODUCTION

The increasing availability of information-rich data sets and high-performance computing devices has motivated the develop-
ment of new data-driven algorithms for the solution of estimation, optimization, and feedback control problems1,2. Several
approaches based on linear and nonlinear parameterizations have successfully exploited these algorithms in applications that
range from industrial production to autonomous cars3. However, while areas such as machine learning, reinforcement learning,
and gradient-free optimization have made significant breakthroughs during the last years, the complex interactions that emerge
between physical and digital components in cyber-physical systems have triggered an urgent need to develop novel data-driven
algorithms with provable convergence, stability and robustness properties4,5,6.
In the context of model-free optimization, extremum seeking control has emerged as a powerful technique for the real-time

optimization of dynamical systems7. Traditionally, ES dynamics have been designed under the paradigm of exploration vs
exploitation, using an external dither signal to guarantee enough exploration on the cost function, and to facilitate the optimiza-
tion process via gradient approximations based on parameterizations, averaging techniques, or sampled-data reconstructions. In

†The material in this paper was partially presented at the 11th IFAC Symposium on Nonlinear Control Systems (NOLCOS), Vienna, Austria, 2019, and at the 58th
IEEE Conference on Decision and Control, Nice, France, 2019.
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all these approaches, the injection of the external signal is needed mainly to guarantee a uniform convergence property in the
closed-loop system, i.e., to avoid closed-loop systems with rates of convergence that depend heavily on the initial conditions
and which may not be able to recover from external disturbances and/or slows changes in the cost function8,9. Because of this,
adaptive ES dynamics rely on persistence of excitation (PE) conditions that may be difficult to satisfy in practice, specially in
applications where mechanical constraints restrict the persistent excitability of the system, or in high-performance applications
where persistent vibrations are undesirable. These limitations have motivated an active line of research that aims to dispense with
the PE condition by considering adaptive dynamics that relax the convergence properties10,11,12, or by incorporating recorded
past data into the feedback controller13,14,15. In the context of ES, this later approach is particularly appealing for applications
where a large amount of recorded data already exists, and in large-scale network multi-agent systems where the nodes of the
network are allowed to share some of their information with their neighboring agents. As a matter of fact, online learning and
optimization dynamics that incorporate recorded data have become ubiquitous in the context of experience replay16, iterative
learning17, machine learning3, and reinforcement learning18. However, in the context of ES, they remain mostly unexplored.

Literature Review
The first modern stability analysis of ES control was presented in19 using averaging and singular perturbation theory for smooth
ordinary differential equations. Later, semi-global practical results were developed in20 and further extended in21,22 for a broader
class of multi-variable gradient-based optimization dynamics modeled as ODEs and set-valued hybrid dynamical systems with
possibly non-unique solutions23. Other averaging-based ES algorithms have been studied in24,25 using Lie bracket averaging,
in26 using systems with delays, and in27 using discontinuous exploration signals. Sampled-data ES dynamics were initially
developed in28,29 using ideas from nonlinear programming, and were later generalized in30 and31 for periodic and aperiodic
sampled-data systems with discrete-time set-valued optimization algorithms. In the context of multi-agent systems, different
types of distributed ES dynamics have been presented in32,33,34, and35, to just name a few. The idea of harnessing multiple
agents in order to cooperatively and efficiently minimize a common cost function was developed in35 under the assumption of
persistent exploration35, Assumption 1. Distributed averaging-based ES dynamics for multi-agent systems were presented in36 for
static graphs, and in37 for arbitrarily switching graphs.
Following the seminal work of38, different extremum seeking controllers based on persistence of excitation (PE) conditions

have been developed during the last 20 years, including the works39,40,41 and42 for single-agent smooth systems, and43 for multi-
variable hybrid systems. Recently, the works44,45 have developed distributed multi-agent ES dynamics based on PE conditions,
and a set-point-based relaxed PE condition with sinusoids was presented in46.
While all these approaches have provided significant insight into the design of adaptive ES dynamics in different settings,

guaranteeing a priori the satisfaction of the PE condition along the trajectories of a single-agent or multi-agent system remains a
persistent challenge in many applications, e.g., optimization of wind farms, resource allocation in network and wireless systems,
and ES problems in mechanical systems with constraints. Moreover, in some cases the persistent excitation induced by the
dither signals can also generate undesirable wear and damage in critical mechanical components of the system. Additionally,
the existing ES architectures are not designed to exploit information-rich data sets that are now available in several engineering
systems such as intelligent transportation systems, healthcare systems, energy systems, heating, ventilation, and air conditioning
systems (HVAC), and manufacturing systems, to just name a few. As shown in13 and15, the information provided by these data
sets can be instrumental in the design of adaptive dynamics that dispense with the traditional PE conditions without sacrificing
the robustness properties of the controller. Moreover, as shown in47, it is possible to further relax restrictive individual excitation
conditions in multi-agent systems with communication networks by incorporating cooperative terms into the learning dynamics
of the agents. Nevertheless, to the best of our knowledge, the development and analysis of ES dynamics that use current and
past data concurrently during the learning process, as well as cooperation between agents in multi-agent systems, are absent in
the literature.

Contributions and Organization of the Paper
Motivated by the previous background, this paper presents a novel class of adaptive ES algorithms for dynamical systems. The ES
dynamics dispense with the classic PE condition by exploiting information-rich data sets and cooperation in multi-agent systems
(MAS). The proposed algorithms combine ideas from concurrent learning and robust gradient-based optimization dynamics in
order to solve real-time optimization problems in network MAS with unknown mathematical models. In particular, the main
contributions of this paper are fourfold:
First, we present a new class of data-enabled extremum seeking (DES) dynamics that integrate data into the closed-loop sys-

tem in order to solve, in a model-free way, a general class of extremum seeking problems formulated as steady state variational
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inequalities with compact constraints. Since the DES dynamics are data-driven, we provide sufficient conditions on the “rich-
ness” of the data and the optimization dynamics in order to guarantee uniform convergence of the trajectories of the algorithm
to a neighborhood of the set of solutions of the optimization problem.
Next, since it is unrealistic to assume that in large-scale network multi-agent systems every agent satisfies a richness condition

on the individual data, we introduce a new class of cooperative data-enabled extremum seeking (CODES) dynamics that integrate
data and cooperation between the agents in order to dispense with the standard individual PE assumption. In order to solve the
ES problem, we characterize a sufficient condition on the richness of the data of the overall network MAS, which can be seen as
a spatio-temporal relaxation of the standard persistence of excitation conditions. This spatio-temporal condition merges together
past data, i.e., temporal information; and cooperation between the agents, i.e., spatial information.
Third, instead of focusing our attention in one particular optimization algorithm, we characterize a general class of optimiza-

tion dynamics that can be safely interconnected with the data-driven dynamics in order to solve different types of constrained
extremum seeking problems. Moreover, suitable robustness results with respect to noise and small bounded disturbances are
established for the closed-loop system.
Finally, we show that the data-enabled dynamics considered in this paper are suitable for applications in multi-vehicle

autonomous systems in the context of source seeking. Preliminary results for staticmapswere reported in the conference papers48
and49. The current paper extends those results by addressing the complete extremum seeking problem in dynamical systems,
and by presenting the complete stability and convergence proofs of the algorithms, as well as novel robustness results and a
more general formulation of the multi-agent extremum seeking problem.
The rest of this paper is organized as follows: In Section 2 we present some definitions and preliminaries in dynamical systems.

In Section 3 we introduce the DES dynamics for single agent systems, as well as the sufficient richness conditions on the data to
guarantee convergence to a neighborhood of the set of optimizers. After this, in Section 4 we present the CODES dynamics for
network MAS. Section 5 presents the convergence analysis. Section 6 presents some numerical applications, and finally Section
7 ends with the conclusions.

2 PRELIMINARIES

The set of (nonnegative) real numbers is denoted by (ℝ≥0) ℝ. The set of (nonnegative) integers is denoted by (ℤ≥0) ℤ. We use
B to denote a closed unit ball of appropriate dimension, �B to denote a closed ball of radius � > 0, and  + �B to denote the
union of all sets obtained by taking a closed ball of radius � around each point in the set  . We use co  to denote the closed
convex hull of  ,  to denote its closure, and int() to denote its interior. We use In to denote the identify matrix of dimension
n× n. Given a vector x ∈ ℝn and a compact set ⊂ ℝn, we use |x| ∶= infy∈ |x− y| to denote the minimum distance of x to
, where | ⋅ | is the standard Euclidean norm. A function f ∶ ℝn → ℝ is said to be of class k if its ktℎ derivative is continuous.
A function �(⋅, ⋅) is said to be of class  if it is nondecreasing in its first argument, non-increasing in its second argument,
limr→0+ �(r, s) = 0 for each s ∈ ℝ≥0, and lims→∞ �(r, s) = 0 for each r ∈ ℝ≥0. The dynamics considered in this paper are
modeled by constrained "-parameterized ODEs of the form

x ∈ C, ẋ = F"(x), (1)

where x ∈ ℝn is the overall state, C ⊂ ℝn is called the flow set, F" ∶ ℝn → ℝn is called the flow map, and " > 0 is a tunable
parameter which can be a vector. Throughout this paper we will consider systems of the form (1) with a Lipschitz continuous
function x → F"(x) and a compact set C . Following the notation of23, a continuously differentiable function x ∶ dom(x)→ ℝn

is said to be a solution of (1) if: 1) x(0) ∈ C; and 2) x(t) ∈ C and dx(t)
dt

= F"(x(t)) for all t ∈ dom(x). System (1) is said
to render a compact set  ⊂ ℝn uniformly globally asymptotically stable (UGAS) if there exists a  function � such that
|x(t)| ≤ �(|x(0)|, t), for all t ∈ dom(x) and all x(0) ∈ C . System (1) is said to render a compact set  ⊂ ℝn semi-globally
practically asymptotically stable (SGPAS) as " → 0+ if there exists a  function � such that for each pair Δ > � > 0 there
exists "∗ ∈ ℝ>0 such that for each " ∈ (0, "∗) every solution of (1) with |x(0)| ≤ Δ also satisfies |x(t)| ≤ �(|x(0)|, t) + �,
for all t ∈ dom(x). If dom(x) = [0,∞), the solution x is said to be complete. A set K ⊂ ℝn is said to be forward invariant for
(1) if for all x(0) ∈ K every solution x of (1) satisfies x(t) ∈ K for all t ≥ 0.
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3 DATA-ENABLED EXTREMUM SEEKING IN SINGLE-AGENT SYSTEMS

We start by considering the standard extremum seeking problem in single-agent systems, i.e., multivariable systems where the
flow of information between states is not restricted by a communication graph. We consider a dynamical system modeled by the
following equation

�̇ = f (�, z) (2a)
y = ℎ(�, z), (2b)

where f ∶ ℝs ×ℝn → ℝs is a Lipschitz continuous function, ℎ ∶ ℝs ×ℝn is a 2 output function, � ∈ ℝs describes the states of
the plant, which are restricted to evolve in a compact set Θ ⊂ ℝs, and z ∈ ℝn is the input, which is also restricted to evolve in a
pre-defined compact set  ⊂ ℝn. The setsΘ and  can model physical constraints or feasible operational sets, and the functions
f and ℎ are assumed to be unknown.
Since the goal in extremum seeking is to optimize the steady-state input-to-output mapping of system (2) using output

measurements y, we make the following standard stability assumption on the open loop plant dynamics, see also19,20, and22.

Assumption 1. There exists a continuous function l ∶ ℝn → ℝs satisfying l( ) ⊂ Θ such that the restricted open loop plant

(�, z) ∈ Θ ×  ,
{

�̇ = f (�, z)
ż = 0

(3)

generates complete solutions from every initial condition and renders UGAS the setH ∶=
{

(�, z) ∈ ℝs+n ∶ � = l(z), z ∈ 
}

.

We define the response map of system (2) as the mapping � ∶ ℝn → ℝ given by

�(z) ∶= ℎ(l(z), z), (4)

where ℎ is the output function of (2) and l is themapping generated byAssumption 1. Themapping� is assumed to be unknown.
However, for the purpose of analysis we make the following regularity assumption on the pair (�, ).

Assumption 2. The set  is compact, convex, and nonempty. The function � is convex and continuously differentiable on an
open set D ⊃  .

Based on Assumptions 1-2, the extremum seeking problem is characterized by the following constrained steady-state
optimization problem:

minimize �(z)
subject to z ∈  ,

(5)

where z is the input to system (2). Since the mathematical models of the plant dynamics (2) and the mapping � are unknown,
problem (5) needs to be solved in a model-free way.

Remark 1. While the smoothness and compactness conditions of Assumption 2 are fundamental for our results, in certain cases
it is possible to relax the convexity assumption. However, to simplify our presentation in this paper we assume that (5) is a
well-posed convex optimization problem. Extensions to non-convex problems will be developed in the future by using hybrid
extremum seeking dynamics50.

Under Assumption 2, every solution z⋆ of problem (5) is also a solution to the following variational inequality (VI):

(z − z⋆)⊤∇�(z⋆) ≥ 0, ∀ z ∈  , (6)

where ∇� is the gradient of �. Moreover, by51, Thm 6.12, every point z⋆ that satisfies (6) is also a solution of (5). Thus, the
constrained convex extremum seeking problem (5) can be equivalently cast as regulating the input of system (2) towards the set

 ∶= {z⋆ ∈ K ∶ (z − z⋆)⊤∇�(z⋆) ≥ 0, ∀ z ∈ }, (7)

by using only measurements of the output of the plant dynamics. By Assumption 2 and52, Corolloray 2.2.5, the set  is nonempty
and compact. Moreover, by continuity and Assumptions 1-2, we have that limt→∞ z(t) →  ⇐⇒ y(t) → y⋆ ∶= �(). Thus,
regulating the input z towards also maximizes the output of the system at steady state.

Remark 2. Unlike traditional offline optimization problems, in extremum seeking control it is fundamental to design feedback-
based optimization algorithms with suitable stability and robustness properties with respect to noisy measurements and
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small bounded external disturbances. Because of this reason, traditional numerical optimization approaches with no stability
guarantees are not suitable for ES in dynamical systems.

3.1 Uniform Approximation of the Response Map and Its Gradient
In order to solve problem (5), we consider the following approximation of the response map � of system (2) on the compact set
 :

�(z) = b(z)⊤w⋆ + �(z), ∀ z ∈  , (8)
where � ∶ ℝn → ℝ is an approximation error, w⋆ ∈ ℝp is a vector of ideal weights, and b ∶ ℝn → ℝp is a continuously
differentiable pre-defined vector of admissible basis functions. The admissible basis function b ∶= [b1, b2,… , bj ,… , bp]⊤ should
be selected such that the functions bj ∶ ℝn → ℝ define a complete independent basis set for � in the set  . Typical choices of
bj include polynomial functions, radial basis functions, or sigmoid functions, see53,54,55 for details on universal approximation
properties of different types of functions.
We shall need the following technical assumption on the approximation (8).

Assumption 3. For any admissible basis function b and any p ∈ ℤ>0 the approximation error z → �(z) in (8) is continuously
differentiable.

Using the smoothness of �, b, and �, we can compute the gradient of ∇� as follows:

∇�(z) = ∇b(z)⊤w⋆ + ∇�(z), ∀ z ∈  , (9)

where∇b is the Jacobian matrix of b. Since  is compact and the mappings∇�(z) and∇"(z) are continuous, by the Weierstrass
high-order approximation theorem56, Thm. 2.4.11, the approximation errors � and ∇� converge to zero as the number of basis p
increases, i.e., �(x)→ 0 and ∇�(z)→ 0 as p→∞, uniformly on  . Moreover, due to Assumption 3, the compactness of  and
the fact that b ∈ 2, we have that b(z), ∇b(z), �(z), and ∇�(z) are all uniformly bounded in  . Thus, for any � > 0 there exists
p ∈ ℤ>0 such that the ideal weights w⋆ satisfy

sup
z∈

(

|�(z) − b(z)⊤w⋆
| + |∇�(z) − ∇b(z)⊤w⋆

|

)

≤ �. (10)

To simply our presentation, and without loss of generality, we assume that the optimal weight w⋆ in (8) is unique. However,
extensions to settings where the optimal weights are not unique and characterized by an optimal compact set could also be
considered in our framework.

Remark 3. The approximation errors � and ∇� can be made arbitrarily small by increasing the number of basis functions bj in
the approximation (8). However, in certain cases the number of basis functions needed to achieve small approximation errors
may be prohibitively large. In order to deal with this limitation, it has been shown in54 that composite multi-layer basis functions
can generate suitable approximations with a smaller set of hyperparameters w⋆.

Remark 4. Approximations of the form (8) are usually referred to as single-layer neural networks, and they have become ubiq-
uitous in neuro-adaptive control57,55 and approximate reinforcement learning-based control58,59,60. Similar approximations have
also been studied in the context of adaptive control61 and extremum seeking control, see for instance38.

In order to solve problem (5), let �̂ be an approximation of the response map (8), defined as

�̂(z) ∶= b(z)⊤ŵ, (11)

where ŵ ∈ ℝp is an auxiliary state. Let w̃ ∶= ŵ − w⋆ be the parameter estimation error. Using equations (8) and (11) we can
define the approximation error of the response map as

ess(z) ∶ = �̂(z) − �(z)
= b(z)⊤ŵ − b(z)⊤w⋆ − �(z)
= b(z)⊤w̃ − �(z).

(12)
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Similarly, the approximation error of the gradient of the response map can be computed as
∇ess(z) = ∇�̂(z) − ∇�(z)

= ∇b(z)⊤ŵ − ∇b(z)⊤w⋆ − ∇�(z)
= ∇b(z)⊤w̃ − ∇�(z).

Thus, if w̃ = 0, the approximation error in the response map and its gradient will be of order (�), where � > 0 can be
made arbitrarily small by increasing the dimension of the basis vector. However, while it is well-known that several estimation
dynamics ̇̂w can be implemented to minimize the parameter estimation error, a persistence of excitation (PE) condition needs
to be satisfied by the basis functions in order to achieve uniform convergence62. Namely, there must exist T > 0 and  > 0 such
that

t+T

∫
t

b(�)b(�)⊤d� ≥ I, (13)

for all t ≥ 0. Nevertheless, in many practical applications it is difficult to certify a priori the satisfaction of the PE condition (13)
along the trajectories of the system. Additionally, in system (2) the function � is not available for online measurements.

3.2 Data-Driven Approximation of Response Maps
To dispense with the PE condition (13), and motivated by the increasing number of available information-rich data sets in
engineering systems, we consider a class of data-enabled extremum seeking dynamics (DES) that use concurrently real-time
and recorded measurements of the input and output of system (2). The recorded data used by the DES dynamics is characterized
by a finite sequence of inputs and outputs {(zk, yk)}Jk=1, where k ∈ {1, 2,… , J} denotes the time index of a data point, i.e.,
zk ∶= z(tk), and {tk}Jk=1 is a sequence of measurement times t0 ≤ t1 ≤ … tJ . Let b(zk) be the basis function evaluated at the
point zk. The estimation error of the response map induced by the input data collected at time tk is given by

ess(zk) ∶ = �̂(zk) − �(zk), (14)
= w̃⊤b(zk) − �(zk).

By definition, the parameter estimation error w̃ depends on the current value of ŵ. Therefore, as a function of time, the response
map’s estimation error can be written as

ess(tk, t) = w̃(t)⊤b
(

z(tk)
)

− �
(

z(tk)
)

, (15)

for all tk ∈ {1, 2,… , J} and all t ≥ 0. In order to achieve extremum seeking, we will need input recorded data that is “sufficiently
rich”. This is formalized by the following definition.

Definition 1. A sequence of data
{

xk
}J
k=1, with xk ∈ ℝp, satisfying the inequality

J
∑

k=1
xkx

⊤
k ⪰ Ip, (16)

is said to be (, J )-sufficiently rich (SR).

Based on Definition 1, the data
{

xk
}J
k=1 is (, J )-SR if its elements form a basis in ℝp during the window of discrete time

{1, 2,… , J}. Indeed, by defining the following matrix of data:

D ∶=
[

x1, x2,… , xk,… , xJ
]

∈ ℝp×J , (17)

we can write the left hand side of inequality (16) as
∑J
k=1 xkx

⊤
k = DD⊤ ∈ ℝp×p. Since rank(DD⊤) = rank(D), it follows that

inequality (16) holds for some  > 0 if and only if rank(D) = p. Thus, the matrix of data must have as many linearly independent
columns as the dimension of the data points. For a given application with available information-rich data, this condition can be
verified a prori.

Remark 5. Condition (16), originally presented in13, and recently used in48 for ES in static maps, can be seen as a finite time
persistently exciting condition. A similar richness condition was used in63 for dead-beat parameter estimation inmodel predictive
control, and in2 in the context of data-driven predictive control.
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3.3 Data-Enabled Extremum Seeking: Algorithms and Convergence Result
We are now ready to present the data-enabled extremum seeking (DES) dynamics for the solution of problem (5). The DES
dynamics are modeled by the following ODE:

̇̂w =
"1
"2
Fŵ(ŵ, z, y), (18a)

ż = "1Fz(g, z), (18b)

where ŵ is the auxiliary state used in the approximation (11), z ∈ ℝn is the input of the plant dynamics (2), and g is a place
holder for the vector g = ∇b(z)⊤ŵ. The function Fw is defined as:

Fŵ ∶= −�1Ψ(z)(�̂(z) − y) − �2
J
∑

k=1
Ψ(zk)(�̂(zk) − yk), �1, �2 > 0, (19)

where the mapping y → Ψ(y) is defined as
Ψ(y) ∶=

b(y)
(

1 + b(y)⊤b(y)
)2
. (20)

The pairs (z, y) and (zk, yk) correspond to real-time and recorded input-output data of the plant dynamics (2), respectively.
The dynamics of ŵ, characterized by equation (19), have two main components: The first component is driven by real-time

measurements of the output of the plant, and it can be seen as a normalized gradient descent aiming to minimize the square error
e2. The second component is driven by the recorded error e(zk), which depends on the sequence of inputs-outputs

{

(zk, yk)
}J
k=1.

As noted in12, when system (2) is a static map, the data-driven term of (19) can be seen as a type of �-modification used to
relax the PE condition, see also8, Ch. 5. Figure 1 shows a scheme illustrating the DES dynamics interconnected with the plant
dynamics (2).
In order to solve the extremum seeking problem (5) in a data-driven way, the input and output data

{

(zk, yk)
}J
k=1 must satisfy

the following assumption:

Assumption 4. For each �̃ > 0 there exist input-output data {(zk, yk)}Jk=1 of system (2), with zk = z(tk) and yk = y(tk),
satisfying

|

|

|

y(tk) − ℎ(l(z(tk)), z(tk))
|

|

|

≤ �̃
J
, (21)

for all k ∈ {1, 2,… , J}.

In words, Assumption 4 asks that the data {(zk, yk)}Jk=1 used by the DES dynamics must be consistent, in the sense that for
each k ∈ {1, 2,… , J} the data point yk is a measurement of the output of (2) that is �̃-close to a steady state condition induced
by the input zk. By Assumption 1, this type of data can always be collected during a training phase where only a finite amount
of representative inputs zk are used to excite the plant dynamics (2) in order to collect output measurements at steady state.

The type of functions Fz used by the DES dynamics in equation (18b) are application dependent and must be designed to
stabilize the set of optimizers under the assumption of having access to the gradient information of the response map �:

Assumption 5. The constrained ODE
z ∈  , ż = Fz(∇�(z), z), (22)

satisfies:

(a) The function Fz(⋅, ⋅) is Lipschitz continuous with respect to both arguments.

(b) The set  is UGAS.

(c) For each bounded continuous function d ∶ ℝ≥0 → ℝn, and each z(0) ∈  , the perturbed system

z ∈  , ż = Fz(∇�(z) + d, z), (23)

generates complete solutions.

In words, Assumption 5 asks that the constrained ODE (22) is a well-posed optimization algorithm with suitable stabilizing
properties with respect to the compact set , and rendering forward invariant the set  under bounded disturbances on the
gradient. While conditions (a) and (b) are common in averaging21,22 and sampled-data based ES dynamics30,31, condition (c)
is somehow stronger since it requires forward invariance of the set  under non-necessarily small bounded disturbances on the
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DATA
ż = ε1Fz(g(z, ŵ), z) ˙̂w = ε1

ε2

Fŵ(ŵ, z, y)

θ̇ = f(θ, z)

y = h(θ, z)

DES
t

z(t)

t

y(t)

z tk

z(tk), y(tk)

t0 t1 tJt2
. . .

FIGURE 1 Schematic representation of the data-enabled extremum seeking dynamics for static maps. The feedback-based
optimization mechanism implements real-time and past recorded data concurrently during the seeking process.

gradient. Luckily, there exist several algorithms in the literature that satisfy the conditions of Assumption 5, including Lipschitz
projected gradient systems that can handle different types of convex optimization problems modeled as VIs of the form (6).

Example 1 (Lipschitz Projected Gradient Descent). A class of optimization dynamics that satisfy Assumption 5 corresponds
to the Lipschitz projected gradient descent64,65, given by

z ∈  , ż = −z + P (z − ∇�(z)). (24)

where P ∶ ℝn →  is the Eucliean Lipschitz projection operator

P (z) ∶= arg min
y∈

|z − y|. (25)

As shown in64, when ∇� ∶ ℝn → ℝn is a smooth and strongly monotone mapping, and Assumption 2 holds, system (24)
renders exponentially stable the set of solutions of the VI (6), which is a singleton under strong monotonicity of �. Indeed, under
Assumption 2, the dynamics (24) render UGAS the compact set  provided ∇� ∶ ℝn → ℝn is monotone65, Thm. 3. Forward
invariance of  is guaranteed by the projection operator. Simple explicit forms for the projection operator (25) can be computed
for common sets  , such as those describing box and sphere constraints.

Optimization problems with coupled equality constraints can also be handled by systems of the form (22).

Example 2 (Smooth Dynamics for Resource Allocation). Consider a resource allocation problem where the goal is to optimally
allocate a resource R (e.g., traffic demand) into n different subsystems (e.g., available routes). In this case, we can define  ∶=
{

z ∈ ℝn
≥0 ∶

∑n
i=1 zi = R

}

, and we can consider the following Lipschitz continuous dynamics that update the itℎ component of
the state z as follows:

z ∈  , żi = max
{

0, z⊤∇�(z) −
)�(z)
dzi

}

−
zi
R

n
∑

j=1
max

{

0, z⊤∇�(z) −
)�(z)
dzj

}

. (26)

By the results in66, Ch. 6, these dynamics render forward invariant the set  under bounded inputs on the gradient, and also render
UGAS the set of solutions of the VI (6) whenever � is strictly convex.

Other approaches that can be used to guarantee forward invariance of compact sets in ODEs include barrier functions, safety
functions, or switched gradient flows.
Having characterized the data-driven parameter estimation function (19), as well as the optimization dynamics (22), we are

ready to state the first main result of this paper.

Theorem 1. Suppose that:

(a) The plant dynamics (2) satisfy Assumptions 1, 2, and 3.

(b) There exists input-output data {zk, yk}Jk=1 satisfying Assumption 4, and the sequence of data
{

b̃(zk)
}J
k=1 with k

tℎ entry
given by

b̃(zk) ∶=
b(zk)

1 + b(zk)⊤b(zk)
, (27)

is (, J )-SR.
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(c) The optimization dynamics (18b) satisfy Assumption 5.

Then, for each pair Δ > � > 0 there exists p ∈ ℤ>0 and "⋆2 ∈ ℝ>0 such that for each "2 ∈ (0, "⋆2 ) there exists "
⋆
1 such that for

each "1 ∈ (0, "⋆1 ) there exists T ∈ ℝ>0 such that all the trajectories of the closed-loop system given by equations (2) and (18),
with |ŵ(0) −w⋆

| ≤ Δ, satisfy

|z(t)| ≤ �, |ŵ(t) −w⋆
| ≤ �, |�(t)|l() ≤ �, |y(t) − y⋆| ≤ �, (28)

for all t ≥ T .

Theorem 1 establishes convergence in finite time to any arbitrarily small �-neighborhood of the set of optimizers  and the
optimum y⋆, from initial conditions on Δ-compact sets defined a priori, provided the parameters ("1, "2) are sufficiently small
and appropriately tuned.

Remark 6. Unlike the PE condition (13), which applies to the past and future behavior of the functions b evaluated along the
trajectories of the system, the richness condition (16) needs to be verified only for a finite recorded data

{

b̃(zk)
}J
k=1. This feature

allows to exploit information-rich data sets that are available in applications with periodic behaviors and repetitive patterns,
e.g., transportation systems, health care systems, manufacturing systems, energy systems, etc. The data can also be obtained by
performing repetitive experiments, or by exciting the system during an initial finite amount of time.

Remark 7. Unlike the standard adaptive ES architectures considered in the literature38,46, the DES dynamics do not require
the injection of a time-varying dither signal, which, as shown later in Section 6, can generate trajectories with less oscillatory
behavior in numerical experiments.

The following Corollary establishes suitable robustness properties for the DES dynamics.

Corollary 1. Suppose that all the conditions of Theorem 1 hold, and let Δ, �, p, "1 and "2 be fixed such that the conclusion of
Theorem 1 holds. Then there exists �⋆ > 0 and T ′ > 0 such that for all measurable perturbations � ∶ ℝ≥0 → ℝn satisfying
supt≥0 |�(t)| ≤ �⋆ and all solutions of the perturbed dynamics

�̇ = f (� + �, z + �) + � (29a)
̇̂w =

"2
"1
Fŵ(ŵ + �, b(z + �), y + �) + �, (29b)

ż = "1Fz(g + �, z + �) + �, (29c)

with |ŵ(0) −w⋆
| ≤ Δ, the trajectories of the closed-loop system satisfy

|z(t)| ≤ 2�, |ŵ(t) −w⋆
| ≤ 2�, |�(t)|l() ≤ 2�, |y(t) − y⋆| ≤ 2�, (30)

for all t ≥ T ′.

Corollary 1 establishes the existence of a strictly positive margin of robustness with respect to noisy state measurements
or perturbations on the DES dynamics. As noted in9, these margins of robustness are critical for the safe implementation of
feedback-based algorithms, and they may not exist unless the optimization dynamics satisfy certain regularity and stability
properties.

4 COOPERATIVE DATA-ENABLED EXTREMUM SEEKING FOR MULTI-AGENT
SYSTEMS

The data-enabled extremum seeking dynamics considered in Section 3 depend on a sequence of data that satisfies the richness
condition (16).While this richness condition can be easily verified in small-scale engineering systems such as engines, individual
wind turbines, photovoltaic converters, mobile robots, etc, it may be difficult to guarantee the individual satisfaction of the
richness condition (16) in large-scale multi-agent systems (MAS) comprised of several subsystems with no centralized agent.
Motivated by these limitations, we now extend the results of Section 3 to MAS with communication networks characterized by
a graph  = ( , ), where  ∶= {1,… , N} is the set of vertices or agents, and  ⊂  ×  is the set of communication links
between agents, i.e., the edges. For simplicity, we assume that the communication graph is time-invariant, undirected, connected,
and unweighted, i.e., all the entries of the adjacency matrix of the graph satisfy aij ∈ {0, 1}, where aij = 0 if and only if there
is no communication link between agents i and j.
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Each agent of the MAS represents a dynamical system

�̇i = fi(�, zi) (31a)
yi = ℎi(�i, zi), (31b)

where fi ∶ ℝsN × ℝn → ℝs is a Lipschitz continuous function characterizing the dynamics of the itℎ agent, and ℎi ∶ ℝs × ℝn

is a 2 output function characterizing its output. While the function fi is written as a general mapping that depends on the
overall vector �, the dynamics of each agent only depend on its individual state �i and the state �j of its neighboring agents
j ∈i ∶= {j ∈  ∶ (i, j) ∈ }, that is, the mapping fi already incorporates the communication graph .

In order to have a well-defined extremum seeking problem, and similar to Section 3, we assume that the dynamics of the
agents are stable and have a well-defined quasi-steady state manifold. In particular, let z = [z⊤1 , z

⊤
2 ,… , z⊤N ]

⊤ ∈ ℝnN be the
overall input of the MAS, which is now restricted to a compact set c ⊂ ℝnN , and let � ∶= [�⊤1 , �

⊤
2 ,… , �⊤N ]

⊤ be the overall state,
which is restricted to a set Θc ⊂ ℝnN . The following assumption establishes open-loop stability of the MAS under constant
inputs implemented by the agents of the system.

Assumption 6. There exists a function lc ∶ ℝnN → ℝsN satisfying lc(z) = lc,1(z1)×lc,2(z2)×…×lc,N (zN ) and lc( ) ⊂ Θc
such that the open-loop MAS

(�, z) ∈ Θc × c
{

�̇ = f̃ (�, z) ∶= f1(�, z1) × f2(�, z2) ×… × fN (�, zn)
ż = 0

(32)

renders UGAS the setH ∶=
{

(�, z) ∈ ℝN(s+n) ∶ � = lc(z), z ∈ c
}

.

Based on Assumption 6, the response map �i ∶ ℝn → ℝ of each agent i can be defined as

�i(zi) ∶= ℎi(lc,i(zi), zi). (33)

The distributed extremum seeking problem considered in this paper is characterized by the following homogeneity assumption
on the mappings (33).

Assumption 7. The response map �i satisfies �i = � for all i ∈  , where � ∶ ℝn → ℝ is a smooth and convex function.

According to Assumption 7, all agents have a response map �with identical mathematical form. However, this does not imply
that all agents have the same dynamics (31) since different combinations of mappings fi and ℎi can generate the same response
map �.

Remark 8. Examples of extremum seeking problems where agents have homogenous response maps include source seeking
problems in multi-vehicle systems35,67, cooperative surveillance with constraints68, and resource allocation problems in energy
systems with identical generators69.

Let  ∶ ℝN → ℝ be an application-dependent real-valued function known by all agents of the system. The distributed
extremum seeking problem is defined as

minimize 
(

�(z1), �(z2),… , �(zN )
)

subject to z ∈ c .
(34)

Similar to Section 3, our standing assumption is that the mathematical form of � and its gradient ∇� are unknown to all agents.
However, agents have access to individual real-time measurements of �, and are also allowed to share information with their
neighboring agents. We make the following regularity assumption on problem (34).

Assumption 8. The function  ∶ ℝN → ℝ is smooth and convex, and c ⊂ ℝNn is compact and convex.

The formulation of problem (34) is quite general, and encompasses distributed coupled and uncoupled optimization problems.

Example 3 (Source seeking with bounded navigation sets). The problem of locating the source of a signal � by using only
measurements of its intensity has been studied in67,35,32 and70 using extremum seeking controllers for single and multi-vehicle
systems. Since the signal � is homogeneous to all the agents, the source seeking problem can be modeled as (34). Moreover, by
defining the feasible set c as c = 1 × 2 ×… × N , bounded individual navigation sets i can be assigned to each vehicle
of the system. To achieve individual source seeking, the function  in (34) can be defined as  (s1, s2,… , sn) ∶=

∑N
i=1 si,
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which guarantees that the solution of (34) is the same as the solution ofN uncoupled source seeking problems with individual
navigation sets.

Example 4 (Distributed Resource Allocation). Let us consider again the resource allocation problem of Example 2. Suppose
now that each road is an agent controlling its own traffic flow zi ∈ ℝ, and interacting with neighboring roads j ∈ i. In this
case, we can define again  (s1, s2,… , sn) ∶= −

∑N
i=1 si, with si = �(zi), and c =

{

z ∈ ℝN
≥0 ∶

∑N
i=1 zi = R

}

, where R > 0 is
the available traffic demand to be allocated. Therefore, distributed optimization problems with coupled constraints can also be
modeled as (34). However, the existence of a communication graph limiting the flow of information between nodes precludes
the implementation of the centralized dynamics (26).

Since it is unrealistic to assume that every agent of theMAS has enough information-rich data, as well as access to the states of
all other agents of the system, the DES dynamics considered in Section 3 are not applicable anymore. Instead, we now consider
a class of cooperative data-enabled extremum seeking (CODES) dynamics that will rely on data that is only cooperatively
sufficiently rich.

4.1 Individual Approximation of Response Maps and Richness of the Network Data
In order to implement the CODES dynamics, each agent runs an individual estimate of the homogenous cost function �, given
by

�̂i(zi) = bi(zi)⊤ŵi, (35)
where ŵi ∈ ℝp is an auxiliary individual state, and bi ∶ ℝn → ℝp is a vector of basis functions. Since c is compact, there
exists M > 0 such that c ⊂ MB. Thus, since � is smooth and c is compact, by the Weierstrass high-order approximation
theorem53 we know that for any � > 0 there always exist basis functions bi and weights w⋆ ∈ ℝp such that

sup
zi∈MB

(

|�(zi) − bi(zi)⊤w⋆
| + |∇�(zi) − ∇b(zi)⊤w⋆

|

)

≤ �, (36)

for all i ∈ {1, 2,… , N}. In many cases, the simplest way to satisfy this bound is by endowing each agent of the network with
the same basis function bi, i.e., bi = bj for all i, j ∈ {1, 2,… , N}. However, this is not a necessary condition since the error
approximation bounded by � gives room to consider different basis functions that may generate errors with similar bounds using
the same ideal weights w⋆. Thus, each agent can approximate the cost function � as

�(zi) = bi(zi)⊤w⋆ + �i(zi), (37)

where supzi∈MB |�i(zi)| ≤ �. By defining w̃i ∶= ŵi − w⋆, the individual response map’s estimation error and its gradient can
be computed as

ess,i(zi) ∶ = �̂i(zi) − �(zi)
= bi(zi)⊤w̃i − �(zi),

and
∇ess,i(zi) = ∇�̂i(zi) − ∇�(zi)

= ∇bi(zi)⊤w̃i − ∇�i(zi).

In order to guarantee uniform convergence of ŵi to w⋆ by minimizing the square of the error ei, traditional approaches require
restrictive individual PE conditions on the basis functions. On the other hand, if each agent of the MAS has data {bi(zi,k)}Jk=1
that satisfies the (, J )-SR condition, the DES dynamics (18) could be individually implemented by the agents in order to solve
problem (34). However, this is a restrictive assumption for large-scale MAS since it requires the satisfaction of the full rank
condition for N different matrices of data Di ∶=

[

b̃i(zi,1), b̃i(zi,2),… , b̃i(zik),… , bi(ziJ )
]

, where i ∈ {1, 2,… , N}. Therefore,
in order to dispense with the standard PE assumption as well as the individual (, J )-SR condition, we consider the following
“cooperative” richness condition.

Definition 2. A collection ofN sequences of data points
{

{xi,k}Jk=1 ∶ xi,k ∈ ℝn, i ∈ 
}

satisfying the inequality
J
∑

k=1

N
∑

i=1
xi,kx

⊤
i,k ⪰ I, (38)

is said to be (, J ,N)-Cooperative Sufficiently Rich (CSR).
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DATA

żi = ε1Fzi(∇b(zi)
⊤ŵ, z) ˙̂wi =

ε1

ε2
Fŵi

θ̇i = fi(θ, z)

yi = hi(θ, z)

CODES ith
t

zi(t)

t

yi(t)

zi tk

zi(tk), yi(tk)

t0 t1 tJt2 . . .

LOCAL

ŵi ŵj
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zj(t)

FIGURE 2 Left. Schematic representation of the cooperative data-enabled extremum seeking dynamics for the itℎ agent of the
MAS. Each agent implements a feedback-based optimization mechanism that uses real-time and past recorded data concurrently.
Right. A network MAS where agents have access to individual dataDi and measurements �(zi) of a homogenous cost function
� whose level sets are shown. Information is shared among the agents via a connected undirected graph.

Condition (38) will guarantee that the data in the overallMAS contains “sufficiently” rich information. Since the summation
is taken over all agents of the network and over a finite number of times, condition (38) relaxes the (, J )-richness condition of
Definition 1, as well as the cooperative PE conditions considered in the literature of adaptive control47, see Remark 9 below. As
a matter of fact, condition (38) can be satisfied even if some agents of the network have no recorded data at all, provided other
agents of the network compensate with sufficiently rich data.

Example 5. Consider a systemwith 2 agents using individual basis functions b1(z1(t)) = [sin(t), 0]⊤ and b2(z2(t)) = [0, cos(t)]⊤.
Note that none of these signals satisfy the classic PE condition (13). Consider now a sequence of measurement times {tk}Jk
satisfying tk = (k − 1)� + �∕4, for all k. Then, the individual sequence of measurements {bi(zi,k)} satisfy

J
∑

k=1
b1(z1(tk))b⊤1 (z1(tk)) =

[ J
2
0

0 0

]

for agent 1, and
J
∑

k=1
b2(z2(tk))b⊤2 (z2(tk)) =

[

0 0
0 J

2

]

for agent 2,

which are not (, J )-SR for any  > 0 and any J > 0. However, the overall multi-agent system satisfies condition (38), since
J
∑

k=1

N
∑

i=1
bi(zi(tk))b⊤i (zi(tk)) =

[

J
2
0

0 J
2

]

⪰ J
2
I,

for any J ∈ ℤ>1.

It is important to note that even if the amount of memory in the nodes of a MAS is unbounded, condition (38) may not
necessarily hold if the sampling times or the basis functions are not carefully selected.

Example 6. For the same 2-agent system of Example 5, consider now two sequences of data {bi(zi(tk))}Jk=1, i ∈ {1, 2}, which
satisfy

J
∑

k=1

2
∑

i=1
bi(zi,k)b⊤i (zi,k) =

[
∑J
k=1 sin(tk)

2 0
0

∑J
k=1 cos(tk)

2

]

.

Then, for any sequence of measurement times {tk}Jk=1 satisfying tk = (k − 1)� or tk =
�(2k+1)

2
for all k, there is no  > 0 and

J ∈ ℤ>0 such that condition (38) holds.

As shown in Example 6, satisfying the (, J ,N)-CSR condition is not trivial even if the amount of data is unbounded. However,
suitable training experiments can be designed a priori in order to gather a finite amount of data that satisfies the richness condition
(38). These approaches are common in the context of reinforcement learning71, transfer learning72, and concurrent learning18.

4.2 Cooperative Data-Enabled Optimization Dynamics
Let ̃ (z) ∶=  (�(z1), �(z2),… , �(zN )) and letc ⊂ c denote the set of solutions of problem (34), that is

c ∶= {z⋆ ∈ c ∶ (z − z⋆)⊤∇T̃ (z⋆) ≥ 0, ∀ z ∈ c}. (39)

In order to guarantee that the overall state of theMAS converges to a neighborhood ofc by using only individual data and online
measurements of the outputs yi, each agent implements the following cooperative data-enabled extremum seeking (CODES)
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dynamics:
̇̂wi =

"1
"2
Fŵi

(ŵi, ŵj , bi(zi), yi), (40a)

żi = "1Fzi(gi, gj , zi, zj), (40b)

where zi ∈ ℝn is the input of the itℎ agent (31), and gi is a place holder for gi = ∇bi(zi)⊤ŵi. The functionFzi already incorporates
the communication graph of the MAS, and the function Fŵi

is now defined as follows:

Fŵi
∶= −�1Ψi(zi)

(

�̂i(zi) − yi
)

− �2
J
∑

k=1
Ψi(zi,k)

(

�̂i(zi,k) − yi,k
)

− �3
∑

j∈i

aij(ŵi − ŵj), (41)

where �1, �2, �3 > 0 are tunable parameters and where the mapping y → Ψ(y) is defined as in (20). The dynamics (40a) allow
each agent to share their state ŵi with neighboring agents via the last term of equation (41). However, it is important to note
that agents do not share their individual data. Thus, the CODES dynamics are suitable for applications where privacy of data
is relevant. Figure 2 shows a scheme representing the CODES dynamics and a cooperative ES problem with homogenous cost
functions.
The class of functions Fzi characterizing the dynamics of equation (40b) are again application dependent and characterized

by the following assumption.

Assumption 9. Suppose that the overall MAS implements the following ideal optimizing dynamics:

z ∈ c , ż = Fz(∇�, z), (42)

where z = [z⊤1 , z
⊤
2 ,… , z⊤N ]

⊤ and Fz ∶= Fz1 × Fz2 ×… × FzN . Then, system (42) satisfies the conditions of Assumption 5 with
respect to the setsc and c .

As in Assumption 5, the conditions of Assumption 9 ask for Lipschitz continuity of the mapping Fz, UGAS of the compact
set c , and forward invariance of the set c under bounded disturbances on the gradient.

Example 7. For the source seeking problem with bounded navigation sets considered in Example 3, consider a quadratic poten-
tial field � and simple stable linear vehicle dynamics of the form �̇i = −Ai�i+Biui, withAi = Bi ≻ 0. Then, under Assumptions
6, 7, and 8, the projected dynamics (24) can be used to steer the position of the vehicles towards the point that maximizes the
intensity �(zi) subject to bounded navigation sets i. Thus, satisfying Assumption 9.

Example 8. In order to solve in a distributed way the resource allocation problem described in Example 4, we can now consider
the distributed dynamics given by

żi =
∑

j∈i

zj max
{

0,
)�(zj)
)zj

−
)�(zi)
)zi

}

− zi
∑

j∈i

max
{

0,
)�(zi)
)zi

−
)�(zj)
)zj

}

. (43)

As shown in73, Thm. 3, whenever the function � is smooth and bounded, the dynamics (43) render forward invariant the simplex
c =

{

zi ∈ ℝN ∶
∑N
i=1 zi = R

}

. Moreover, they render UGAS the optimal setc whenever � is strictly convex.

The following theorem, corresponding to the second main result of this paper, establishes the convergence properties of the
CODES dynamics (40) applied to the MAS (31).

Theorem 2. Suppose that:

(a) The plant dynamics (31) and problem (34) satisfy Assumptions 6, 7, and 8, and the approximation error �i in (37) satisfies
the conditions of Assumption 3 for all i ∈  .

(b) For each �̃ > 0 each agent has access to input-output data {zi,k, yi,k}Jk=1 that satisfies condition (21) for all k ∈ {1, 2,… , J},
and the collection of data

{

{b̃i(zk)}Jk=1 ∶ i ∈ 
}

, with ktℎ entry of the itℎ sequence given by

b̃i(zi,k) ∶=
bi(zi,k)

1 + bi(zi,k)⊤b(zi,k)
, (44)

is (, J ,N)-CSR.

(c) The optimizing dynamics (40b) satisfy Assumption 9.
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Then, for each pair Δ > � > 0 there exists p ∈ ℤ>0 and "⋆2 ∈ ℝ>0 such that for each "2 ∈ (0, "⋆2 ) there exists "
⋆
1 > 0 such

that for all "1 ∈ (0, "⋆1 ) there exists a T ∈ ℝ>0 such that the trajectories of the closed-loop system given by equations (31) and
(40) with |ŵi(0) −w⋆

| ≤ Δ for all i ∈  , satisfy

|z(t)|c
≤ �, |ŵi(t) −w⋆

c | ≤ �, |�(t)|l(c ) ≤ �, |yi(t) − y⋆i | ≤ �, (45)

for all t ≥ T and all i ∈  .

Theorem 2 says that by selecting a sufficiently large vector of basis functions for each agent, by inducing enough time scale
separation in the closed-loop system, and by using data that is cooperative sufficiently rich and consistent with input-output
behaviors at steady state, the CODES dynamics converge in finite time to an arbitrarily small �-neighborhood of the optimal
set c . Moreover, by continuity and stability, the CODES dynamics also satisfy the robustness result of Corollary 1, i.e., there
exists a �⋆ > 0 such that any measurable additive perturbation � satisfying supt≥0 |�(t)| ≤ �⋆, and acting on the states and
dynamics of the system, does not dramatically modify the convergence properties of the algorithm.

Remark 9. In the context of classic adaptive parameter estimation and stabilization, the work47 introduced a cooperative
persistence of excitation condition of the form

t+T

∫
t

N
∑

i=1
b̃i(�)b̃⊤i (�)d� ≥ I, (46)

which has also been used in74 to study neuro-adaptive learning controllers for multi-agent systems. While the (, J ,N)-CSR
condition is similar to this excitation condition, inequality (46) needs to be verified for all past and future times. Therefore, the
(, J ,N)-CSR condition (38) can be seen as a data-driven relaxation of (46) that can be verified a priory.

We finish this section by pointing out that when the number of agents in the MAS is N = 1, the CODES dynamics reduce
to the DES dynamics and the (, J ,N)-CSR condition (38) reduces to the (, J )-SR condition (16). However, whenN > 1 the
requirements on the data and the optimizing dynamics for the CODES dynamics and the DES dynamics are in general different.

5 ANALYSIS

In this section we present the convergence analysis of the DES dynamics and the CODES dynamics. Since some steps are
identical, we present the repeated steps only once.

5.1 Analysis of the DES Dynamics
The analysis of the DES dynamics is based on two main parts. First, we will establish suitable convergence properties for the
data-driven dynamics (18) under the assumption that the plant (2) is at steady state. After this, we will show that the closed-loop
system with plant dynamics is stable provided the parameters ("1, "2) are orderly chosen sufficiently small with respect to the
transient behavior of the agents.
The following four lemmas will be instrumental for our results:

Lemma 1. Let b ∶ ℝn → ℝp be a continuous function. Then,

|Ψ(z)| =
|

|

|

|

|

|

b(z)
(

1 + b(z)⊤b(z)
)2

|

|

|

|

|

|

≤ 1 (47)

for all z ∈ ℝn.

Proof. We have that |b(z)| ≤ 1 + |b(z)|2 for all z ∈ ℝn. Adding |b(z)|2 and |b(z)|4 to the right hand side of this inequality we
obtain:

|b(z)| ≤ 1 + 2|b(z)|2 + |b(z)|4 =
(

1 + |b(z)|2
)2 , (48)

for all z ∈ ℝn. Thus,
|

|

|

|

|

|

b(z)
(

1 + b(z)⊤b(z)
)2

|

|

|

|

|

|

= 1
(

1 + |b(z)|2
)2
|b(z)| ≤ 1, (49)



Poveda ET AL 15

for all z ∈ ℝn.

Lemma 2. Suppose that Assumption 3 holds and that the recorded data is (, J )-SR. Then, for each pair (�̄, c) ∈ ℝ2
>0 with

�̄ <
√

2c there exists a sufficiently large p ∈ ℤ>0 and �̃⋆ > 0 such that for each �̃ ∈ (0, �̃⋆) the perturbed dynamical system

(ŵ, x) ∈
(

{w⋆} +
√

2cB
)

×  ,
{ ̇̂w = −�1Ψ(z)

(

�̂(z) − �(z)
)

− �2
∑J
k=1Ψ(zk)

(

�̂(zk) − �(zk) + �̃
)

ż = 0
(50)

renders UGAS a compact set ⊂
(

{w⋆} + �̄B
)

×  .

Proof. The proof follows similar ideas as the proofs in13 and55. Fix the pair �̄, c > 0 and the constants �1, �2 > 0. Let the pair
(, J ) be generated by the (, J )-SR assumption, and define

�̄ ∶= max{�1, �2}, � ∶= min{�1, �2}. (51)

Define the constants �̃⋆ > 0 and � > 0 as
� = �̃⋆ =

�̄�
4(1 + J )�̄

, (52)

Let theWeierstrass high-order approximation theorem generate sufficiently many basis functions bi ∶ ℝn → ℝ, i ∈ {1, 2,… , p},
such that (10) holds with � given by (52). Define a function � ∶ ℝn → ℝn as:

�(z) ∶= �1
b̃(z)

1 + b(z)⊤b(z)
�(z) + �2

J
∑

k=1

b̃(zk)
1 + b(zk)⊤b(zk)

�(zk) + �2
J
∑

k=1
Ψ(zk)�̃, (53)

where b̃ is defined as in (44). By Lemma 1 and the triangle inequality it follows that

|�(z)| ≤ (1 + J )�̄(� + �̃)
= (1 + J )�̄(2�),

for all z ∈  . Define the following matrix-valued function:

P (z) ∶= �1b̃(z)b̃(z)⊤ + �2
J
∑

k=1
b̃(zk)b̃(zk)⊤. (54)

Since the data is (, J )-SR, we have that
J
∑

k=1
b̃(zk)b̃(zk)⊤ ⪰ Ip, (55)

and since the matrix �1b̃(z)b̃(z)⊤ in (54) is symmetric and positive semidefinite for all z ∈  , the matrix-valued function P
satisfies

P (z(t)) ≻ �Ip, (56)
along any trajectory z generated by system (50). Let w̃ = ŵ −w⋆, and consider the error dynamics

̇̃w = −�1b̃(z)b̃(z)⊤w̃ − �2
J
∑

k=1
b̃(zk)b̃(zk)⊤w̃ + �1

b̃(z)
1 + b(z)⊤b(z)

�(z) + �2
J
∑

k=1

b̃(zk)
1 + b(zk)⊤b(zk)

�(zk) + �2
J
∑

k=1
Ψ(zk)�̃,

= −P (z)w̃ + �(z).

Using the following quadratic Lyapunov function
V (w̃) = 1

2
w̃⊤w̃, (57)

we obtain that the derivative of V along the solutions of (50) satisfies:

V̇ = −w̃⊤P (z)w̃ + w̃⊤�(z),
≤ −�|w̃|2 + |w̃|(1 + J )�̄(2�)

≤ −1
2
�|w̃|2, ∀ |w̃| ≥ 4(1 + J )��̄

�
= �̄. (58)

Since |w̃| ≤ �̄ implies that V (w̃) ≤ 0.5�̄2, it follows that for any c ≥ 0.5�̄2 we have �̄B ⊂ Lc where Lc ∶= {w̃ ∈ ℝp ∶ V (w̃) ≤
c}. Thus, for any c ≥ 0.5�̄2 the setsLc are forward invariant. Therefore, every solution of (50) is complete, and by the inequality
(58) there exists T > 0 such that [w̃(t), z(t)]⊤ ∈ �̄B× for all t ≥ T , i.e., the trajectories of w̃ are uniformly ultimately bounded.



16 Poveda ET AL

By using23, Corollary 7.7 we can conclude the existence of a uniformly globally asymptotically stable set  ⊂
(

{w⋆} + �̄B
)

× 
for the constrained dynamics (50). This establishes the result.

Lemma 3. Suppose that Assumption 5 holds and consider the perturbed optimization dynamics

z ∈ K, ż = Fz
(

∇�(z) + (�̄), z
)

, (59)

where �̄ > 0. Then, for each � > 0 there exists �̄⋆ > 0 such that for all �̄ ∈ (0, �̄⋆) every solution is complete and there exists a
UGAS compact set Ω ⊂  + �B.

Proof. Let F̂z(z) ∶= Fz (∇�(z), z). By items (a) and (b) in Assumption 5, and23, Lemma 7.20, the inflated system

ż ∈ F�(z) ∶= co F̂z ((z + �B) ∩  ) + �B, (60)

renders the set SGPAS as �→ 0+. Moreover, by22, Lemma 3, for each � > 0 there exist �̄⋆ > 0 sufficiently small such that

Fz
(

∇�(z) + �̄B, z
)

⊂ F�(z), ∀ z ∈  . (61)

Thus, for any �̄ ∈ (0, �̄⋆) every solution of the perturbed system (59) is also a solution of the perturbed differential inclusion
(60), which implies that for any � > 0 there exists �̄⋆⋆ > 0 such that for any �̄ ∈ (0, �̄⋆⋆) every solution of (59) satisfies the
following bound

|z(t)| ≤ �(|z(0)|, t) + �, (62)
for all t ∈ dom(z) and for some � ∈ . By item (c) in Assumption 5 it follows that dom(z) = [0,∞). By23, Corollary 7.7, we
obtain the existence of a compact set Ω ⊂  + �B that is UGAS for system (59). This establishes the result.

Lemma 4. Suppose that Assumptions 2, 3, 4 and 5 hold, and that the sequence of normalized data {b̃(zk)}Jk=1 with k
tℎ entry

given by (44) is (, J )-SR. Then, for each pair (�̄, c) ∈ ℝ2
>0 with �̄ <

√

2c there exists p ∈ ℤ>0 and �̃⋆ > 0 such that for each
�̃ ∈ (0, �̃⋆) there exists "⋆2 ∈ ℝ>0 such that for each "2 ∈ (0, "⋆2 ) the dynamics

dŵ
d�

= − 1
"2

(

�1Ψ(z)
(

�̂(z) − �(z)
)

+ �2
J
∑

k=1
Ψ(zk)

(

�̂(zk) − �(zk) + �̃
)

)

. (63a)

dz
d�

= Fz
(

∇b(z)⊤ŵ, z
)

, (63b)

constrained to the set ({w⋆} + cB) ×  render UGAS a compact set Ω′"2,�̃ ⊂ ({w
⋆} + cB) × ( + �B).

Proof. System (63) is a singularly perturbed system in normal form75. Its boundary layer dynamics are given by

̇̂w = − 1
"2

(

�1Ψ(z)
(

�̂(zk) − �(zk)
)

+ �2
J
∑

k=1
Ψ(zk)

(

�̂(zk) − �(zk) + �̃
)

)

, (64a)

ż = 0. (64b)

By Lemma 2, the dynamics (64) constrained to the sets ({w⋆}+cB)× render UGAS a set ⊂
(

{w⋆} + �̄B
)

× . Therefore,
the quasi-steady state value of ŵ satisfies |ŵss−w⋆

| ≤ �̄. The reduced dynamics of (63) are obtained by substituting ŵ in (63b)
by its quasi steady-state value ŵss = w⋆ + (�̄), i.e.,

z ∈  , ż = Fz
(

∇b(z)⊤w⋆ + (�̄), z
)

,
= Fz (∇�(z) + (�̄ + �), z) .

= Fz

(

∇�(z) + 
(

�̄ +
�̄�

4(1 + J )�̄

)

, z
)

.

where the last equality follows by (52). Using the definition of �̄ in (58) we obtain:

�̄ +
�̄�

4(1 + J )�̄
= �̄

(4(1 + J )�̄ + �
4(1 + J )�̄

)

(65)

=
4(1 + J )�̄

4(1 + J )�̄ + �

(4(1 + J )�̄ + �
4(1 + J )�̄

)

�̄ (66)

= �̄ (67)
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Therefore, the reduced dynamics are given by

z ∈  , ż = Fz
(

∇�(z) + (�̄), z
)

.

Since �̄ was generated by Lemma 3, it follows that the reduced dynamics render UGAS a compact set Ω ⊂ + �B. By singular
perturbation theory75, Thm. 2 it follows that the original dynamics (63) render SGPAS as " → 0+ the set ({w⋆} + cB) × Ω ⊂
({w⋆} + cB) × ( + �B). Therefore, every complete solution of (63) generates trajectories z that converge to  + �B before
some finite time T > 0. Completness of solutions follows by the forward invariance properties of the set ({w⋆} + cB) ×  .
By23, Corollary 7.7 we obtain the existence of a UGAS compact set Ω′"2,�̃ ⊂ ({w

⋆} + cB) × ( + �B).

Proof of Theorem 1 and Corollary 1
Fix Δ > � > 0, and let �1, �2 > 0. Let c = Δ and let Lemma 3 generate �̄⋆ > 0. Let �̄ ∈ (0, �̄⋆) be sufficiently small such
that 4(1+J )�̄

4(1+J )+�
�̄ <

√

2c, where the pair (, J ) comes from the (, J )-SR assumption. Define the constant �̄ ∶= 4(1+J )�̄
4(1+J )+�

�̄ and
consider the closed-loop system dynamics

�̇ = f (�, z) (68a)

̇̂w = −
"1
"2

(

�1Ψ(z)
(

�̂(z) − ℎ(�, z)
)

+ �2
J
∑

k=1
Ψ(zk)

(

�̂(zk) − yk
)

)

(68b)

ż = "1Fz
(

∇b(z)⊤ŵ, z
)

, (68c)

constrained to the set Θ× ({w⋆}+ cB) × . Consider the change of time scale induced by the change of variable � = t"1, which
generates the following dynamics in the �-time scale

d�
d�

= 1
"1
f (�, z) (69a)

dŵ
d�

= − 1
"2

(

�1Ψ(z)
(

�̂(z) − ℎ(�, z)
)

+ �2
J
∑

k=1
Ψ(zk)

(

�̂(zk) − yk
)

)

(69b)

dz
d�

= Fz
(

∇b(z)⊤ŵ, z
)

, (69c)

For values of "1 > 0 sufficiently small, this system is a singularly perturbed system with fast dynamics given by equation (69a),
and slow dynamics given by equation (69b)-(69c). The boundary layer dynamics of this system are obtained by setting "1 = 0
in (68), i.e.,

�̇ = f (�, z), ̇̂w = 0, ż = 0. (70)

By Assumption 1, for each fixed pair (ŵ, z), the plant dynamics in (70) render globally asymptotically stable the quasi-steady
state manifold �⋆ = l(z). Therefore, the dynamics (69) have a well-defined reduced system, obtained by substituting � = l(z)
in equation (69b):

dŵ
d�

= − 1
"2

(

�1Ψ(z)
(

�̂(z) − ℎ(l(z), z)
)

+ �2
J
∑

k=1
Ψ(zk)

(

�̂(zk) − yk
)

)

(71a)

dz
d�

= Fz
(

∇b(z)⊤ŵ, z
)

. (71b)

Using equation (4):

dŵ
d�

= − 1
"2

(

�1Ψ(z)
(

�̂(z) − �(z)
)

+ �2
J
∑

k=1
Ψ(zk)

(

�̂(zk) − �(zk)
)

+ �̃

)

(72a)

dz
d�

= Fz
(

∇b(z)⊤ŵ, z
)

, (72b)

where �̃ ∶=
∑J
k=1Ψ(zk)(�(zk) + yk), which, by Lemma 1 and Assumption 4 satisfies |�̃| ≤ ". Therefore, system (72) cor-

responds to the same dynamics (63) studied in Lemma 4, and the convergence result of the Theorem follows directly by
combining the stability result of Lemma 4 with the stability properties of the open-loop plant dynamics (70), and singular per-
turbation theory75, Thm. 2. Corollary 1 follows now directly by the continuity and stability properties of the DES dynamics, and
by23, Lemma 7.20.
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5.2 Analysis of the CODES Dynamics
The analysis of the CODES dynamics (40) follows similar ideas to the analysis of the DES dynamics (18): First, we establish
suitable convergence properties for the learning dynamics (2) under condition (b) of Theorem 2. After this, the dynamics (40)
are analyzed under the assumption that the outputs �i are at steady state. Finally, we study the stability of the closed-loop system
by using singular perturbation theory. Since some of the steps are identical to the proof of Theorem 1, we present only the new
technical lemmas needed to establish the result.
Let w̃i = ŵi − w⋆ be the individual parameter estimation error and let yik = �(zi,k) + (�̃). Using (35)-(37) the parameter

estimation error dynamics of each agent are given by

̇̃wi = −�1b̃i(zi)b̃i(zi)⊤w̃i − �2
J
∑

k=1
b̃i(zi,k)b̃i(zi,k)⊤w̃i − �3

∑

j∈i

aij(w̃i − w̃j) + �i(zi). (73)

where zi ∶ ℝ≥0 → ℝn is generated by the dynamics (40b), and �(zi) is given by

�i(zi) ∶= �1
b̃i(zi)

bi(zi)⊤bi(zi) + 1
�(zi) + �2

J
∑

k=1

b̃i(xik)
bi(zik)⊤bi(zik) + +1

�(zi,k) + �2
J
∑

k=1
Ψ(zk)�̃. (74)

Define w̃ ∶= [w̃⊤
1 , w̃

⊤
2 ,… , w̃⊤

N ]
⊤, B̃(z) ∶= diag

{

b̃1(z1), b̃2(z2),… , b̃N (zN )
}

, B̃k ∶= diag{b̃1(z1k), b̃2(z2,k),… , b̃N (zN,k)}, and
�(z) ∶= [�1(z1)⊤, �2(z2)⊤,… , �N (zN )⊤]⊤, which leads to the error estimation dynamics in vectorial form:

̇̃w = −�1B̃(z)B̃(z)⊤w̃ − �2
J
∑

k=1
B̃kB̃kw̃ − (�3⊗ Ip)w̃ + �(x),

= −
⎡

⎢

⎢

⎣

�1B̃(z)B̃(z)⊤ + �2
k̄
∑

k=1
B̃kB̃

⊤
k + (�3⊗ Ip)

⎤

⎥

⎥

⎦

w̃(t) + �(x)

= −Ω(z)w̃ + �(z),

(75)

where

Ω(z) ∶= �1B̃(z)B̃(z)⊤ + �2
J
∑

k=1
B̃kB̃

⊤
k + �3(⊗ Ip). (76)

The following two lemmas characterizes the convergence properties of the error dynamics (75).

Lemma 5. Let z ∶ ℝ≥0 → ℝNn be a continuous function, and suppose that condition (b) of Theorem 2 holds. Then, there exists
�1, �2 ∈ ℝ>0 such that

�1�̄INp ≥ Ω(z(t)) ≥ �2�INp (77)
for all t ≥ 0, where �̄ ∶= max{�1, �2, �3}, and � ∶= min{�1, �2, �3}.

Proof. The proof combines ideas from the proofs of47, Theorem 1 and13. Since the graph is connected and undirected, the Laplacian
matrix is symmetric and positive semidefinite. Similarly, the matrices �1Φ(z)Φ(z)⊤ and (�3⊗Ip) are symmetric and positive
semidefinite for any pair (�1, �3) ∈ ℝ2

>0. Moreover, the matrix  ⊗ Ip has only p zero eigenvalues, whose orthogonal unit
eigenvectors are vi =

1
√

N
1 ⊗ ei, for all i ∈ {1, 2,… , p}, with ei ∈ ℝN being the unitary vector with nonzero element at the

itℎ entry. The orthogonal unit eigenvectors associated to the positive eigenvalues {�p+1,… , �Np} are denoted as vp+1,… , vNp.
Since the eigenvectors of the symmetric matrix �3⊗ Ip form an orthogonal basis in ℝNp, any vector y ∈ ℝNp can be written
as y =

∑p
i=1 civi +

∑Np
i=p+1 civi, with ci ∈ ℝ for all i, where without loss of generality we consider unitary vectors y ∈ ℝNp. We

then have two possible cases:

(a) Suppose that
∑Np
i=p+1 c

2
i ≠ 0, then

y⊤Ω(z)y = y⊤
[

�1B̃(z)B̃(z)⊤ + �2
J
∑

k=1
B̃kB̃

⊤
k

]

y + y⊤
(

�3⊗ Ip
)

y. (78)
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Using spectral decomposition of (�3⊗Ip), the second term of (78) reduces to
∑Np
i=p+1 �3c

2
i �i. Let �2 be the smallest positive

eigenvalue of the Laplacian matrix . It follows that
∑Np
i=p+1 �3c

2
i �i ≥ �3�2

∑Np
i=p+1 c

2
i , and (78) satisfies

y⊤Ω(z)y ≥ �3�2
Np
∑

i=p+1
c2i > 0, (79)

for all z ∈ ℝnN and all y ∈ ℝNp, where the last inequality follows by the assumption that
∑Np
i=p+1 c

2
i ≠ 0. By the contradiction

argument of47, Eq. (29)-(30) it follows that Ω(z(t)) is uniformly positive definite, i.e., the eigenvalues of Ω(z(t)) have a uniform
positive lower bound that holds for all t ≥ t0 and t0 ∈ ℝ≥0.

(b) Suppose that
∑Np
i=p+1 c

2
i = 0, which implies that

∑Np
i=1 c

2
i = 1. Then, it must be the case that

∑p
i=1 c

2
i ≠ 0. Using y =

∑p
i=1 civi,

we obtain

y⊤Ω(z)y = �1y⊤B̃(z)B̃(z)⊤y + �2y⊤
J
∑

k=1
B̃kB̃ky. (80)

Expanding z in the second term of (80) we obtain

�2

( p
∑

i=1
civi

)⊤ [ J
∑

k=1
B̃kB̃

⊤
k

]( p
∑

i=1
civi

)

, (81)

which can be written as �2C⊤V ⊤
[

∑J
k=1 B̃kB̃

⊤
k

]

V C , where C ∶= [c1, c2,… , cm]⊤ and V ∶= [v1, v2,… , vm]. Since vi =
1

√

N
1⊗ ei, we obtain

V ⊤

[ J
∑

k=1
B̃kB̃

⊤
k

]

V =
J
∑

k=1
V ⊤[B̃kB̃⊤k ]V =

J
∑

k=1

N
∑

i=1
b̃i,kb̃

⊤
i,k ⪰ "Ip, (82)

for some " ∈ ℝ>0, where the inequality follows by the (, J ,N)-CSR condition. Using (81) and (82) we obtain

�2C
⊤V ⊤

[ J
∑

k=1
B̃kB̃

⊤
k

]

V C ≥ �2"
p
∑

i=1
c2i > 0 (83)

which implies that y⊤Ω(z)y given by (80) is uniformly positive definite for all y ∈ ℝNp and z ∈ ℝNn.

The conclusion of the two cases establishes the existence of the pair �1, �2 in (77).

Lemma 6. Suppose that condition (b) of Theorem 2 holds. Then, for each pair (�̄, c) ∈ ℝ2
>0 with �̄ <

√

2c there exists a
sufficiently large p ∈ ℤ>0 such that the constrained dynamical system

(w̃, x) ∈
√

2cB × c ,
{ ̇̃w = −Ω(z)w̃ + �(z),
ż = 0

(84)

renders UGAS a compact setc ⊂ �̄B × c .

Proof. Fix the pair �̄, c > 0 and the constants �1, �2, �3 > 0. Let the Weierstrass high-order approximation theorem generate
sufficiently many basis functions bil ∶ ℝn → ℝ, l ∈ {1, 2,… , p}, for each agent i ∈  , such that (36) holds for all agents with

� =
�̄"2�

4
√

N(1 + J )�̄
, (85)

where the constants , J are generated by the (, J ,N)-CSR condition on the data. Let �̃⋆ = � and consider the quadratic
Lyapunov function V (w̃) = 0.5w̃⊤w̃, which is positive definite and radially unbounded. The derivative V along the solutions
of (84) satisfies

V̇ ≤ −"2�|w̃|2 + w̃⊤�(x),
≤ −"2�|w̃|2 + |w̃||�(x)|,
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where we used the lower bound of (77). Since |�i(zi)| ≤ (1 + J )�̄� for all i ∈  , it follows that |�(z)| ≤
√

N(1 + J )�̄�. Thus,
V̇ satisfies

V̇ ≤ −"2�|w̃|2 + |w̃|
√

N(1 + J )�̄2�,

≤ −1
2
"2�|w̃|

2, ∀ |w̃| ≥
2
√

N(1 + J )�̄2�
"2�

= �̄.

where the last equality follows by the definition of �. This establishes forward invariance of the level sets Lc ∶= {w̃ ∈ ℝNp ∶
V (w̃) ≤ c} for c > 0.5�̄2, and uniform ultimate boundedness of the trajectories w̃, with a uniform ultimate bound satisfying
|w̃| ≤ �̄. Since every solution of (84) with (w̃(0), x(0)) ∈ Lc ×c is complete, by23, Corollary 7.7 there exists a UGAS compact set
c ⊂ �̄B × c for the dynamics (84).

Proof of Theorem 2
With Lemma 6 in hand we can now follow the exact same steps of the proof of Theorem 1 in order to analyze the closed-loop
system, given by

�̇ = f (�, z) (86a)

̇̂w = −
"1
"2

⎛

⎜

⎜

⎝

�1Ψ(z)
(

�̂(z) − ℎ(�, z)
)

+ �2
J
∑

k=1
Ψ(zk)

(

�̂(zk) − yk
)

+ �3
∑

j∈i

aij(ŵi − ŵj)
⎞

⎟

⎟

⎠

(86b)

ż = "1Fz
(

∇b(z)⊤ŵ, z
)

. (86c)

In particular, in the �-time scale system (86) is a singularly perturbed system with fast dynamics corresponding to the plant
dynamics (31), which have a well-defined quasi-steady state manifold. The slow dynamics correspond to the system

̇̂w = − 1
"2

⎛

⎜

⎜

⎝

�1Ψ(z)
(

�̂(z) − ℎ(�, z)
)

+ �2
J
∑

k=1
Ψ(zk)

(

�̂(zk) − yk
)

+ �3
∑

j∈i

aij(ŵi − ŵj)
⎞

⎟

⎟

⎠

(87a)

ż = Fz
(

∇b(z)⊤ŵ, z
)

. (87b)

which is also a singularly perturbed system, with fast dynamics corresponding to the dynamics (73), and slow dynamics corre-
sponding to the optimizing dynamics (42). By Lemma 6 and Assumption 9, both dynamics have suitable stability properties.
Therefore, as in the proof of Theorem 1, singular perturbation theory75, Thm. 2 establishes the semi-global practical convergence
result for the closed-loop system.

6 NUMERICAL EXAMPLE: COOPERATIVE SOURCE SEEKING IN MULTI-VEHICLE
SYSTEMS

In this section, we present a numerical example that illustrates the main properties of the algorithms considered in this paper.
In particular, we consider a multi-vehicle localization problem characterized by four vehicles aiming to locate the source of a
potential field by using only intensity measurements. We also illustrate the importance of the data-driven and the cooperative
terms in the function (41).

Model of the System
We consider a MAS with four vehicles, where each vehicle can only sense the intensity of the potential field with respect to its
current position. The vehicles share information via an undirected connected graph with edges (1, 2), (2, 3), (4, 1). For simplicity,
each vehicle is modeled as a simple linear system with quadratic output, of the form

�̇i = Ai�i + Bizi, (88)
yi = �⊤i Qi�i + c⊤i �i + di, (89)

for all i ∈ {1, 2, 3, 4}, where �i ∈ ℝ2 is the position on the plane of the itℎ vehicle, zi ∈ ℝn is the input, and yi ∈ ℝ is the output.
We assume that the matrices (Ai, Bi) have already been designed to guarantee steady-state regulation, i.e., 0 = Ai�⋆i +Bizi ⇐⇒
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�⋆i = li(zi) = zi. In particular, we consider the following matrices (Ai, Bi) that satisfy this property:

A1 = −10I2, B1 = 10I2, A2 = −20I2, B2 = 20I2, A3 = −30I2, B3 = 30I2, A4 = −10I2, B4 = 10I2,

and Qi = −I2, ci = [4, 8]
⊤, di = −20 for all i ∈ {1, 2, 3, 4}. The response map of the agents is then given by

�(zi) = −z⊤i I2zi + z
⊤
i [4, 8]

⊤ − 20, ∀ i ∈ {1, 2, 3, 4}, (90)

In order to locate the maximizer using individual real-time measurements yi and input-output data {zi,k, yi,k}, the vehicles
implement the CODES dynamics (40). The input of each vehicle is restricted to the individual navigation set i = pi + 2B,
where p1 = [−2, 8]⊤, p2 = [6, 8]⊤, p3 = [2, 0]⊤, and p4 = [2, 4]⊤. The feasible set of the overall MAS is c = 1×2×…×N .
The individual optimizing algorithm used by each vehicle is given by equation (24), which exploits the fact that the Euclidean
projection on a ball of radius r > 0 is given by PrB(z) = min

{

r
|z|
, 1
}

z. To approximate the response map (90), each agent
implements polynomial basis functions that satisfy

bi(zi) =
[

z2i,1, zi,1, z
2
i,2, zi,2, zi1zi2, 1

]⊤
∈ ℝ6, ∇bi(zi) =

[

2zi,1 1 0 0 zi,2 0
0 0 2zi,2 1 zi,1 0

]⊤

∈ ℝ6×2. (91)

Based on the transient performance of the plant dynamics (88), the parameters of the CODES are selected as "1 = 7, "2 = 0.58.

Generating the Individual Data
We assume that each vehicle has access to only 6 points of data {zi,k, yi,k} generated as follows:

z1,k =
[

sin(40(k − 1)Ts) + 1
1

]

, z2,k =
[

1
cos(40(k − 1)Ts)

]

, z3,k =
[

cos(15(k − 1)Ts)
1

]

, z4,k =
[

0
0

]

, ∀ k ∈ {1, 2,… , 6},

(92)
where Ts = 0.1. The output data yi,k is obtained by sampling the output of each vehicle (88) after 5 seconds of applying the input
zi,k with initial conditions given by �i(0) = pi for all i ∈ {1, 2, 3, 4} and all k ∈ {1, 2,… , 6}, which guarantees that condition
(21) holds with �̃ = 0.01. It can be verified that these data generate matricesDi with normalized entries (44) with the following
ranks:

rank(D1) = 3, rank(D2) = 3, rank(D3) = 3, rank(D4) = 1. (93)
Therefore, none of the vehicles has enough information to satisfy the (, J )-SR condition (16). However, it can also be verified
that rank(D1 +D2 +D3 +D4) = 6, which implies that their joint data satisfies the (, J ,N)-CSR condition (38).

Simulations
We simulate the CODES dynamics with �1 = �2 = �3 = 1. Vehicles {1, 2, 3} are initialized at the center of their navigation
set i, and vehicle 4 is initialized at the point �4(0) = [1, 3]⊤. Figure 3 shows the resulting trajectories of the vehicles on the
plane. As it can be observed, all the vehicles converge to the maximizer of the response map � subject to the local navigation
constraints. Figure 4 shows the evolution in time of the position �i and input zi of the vehicles, which converge to the optimal
value �⋆ = z⋆. As it can be observed, and in contrast to the traditional extremum seeking approaches, the trajectories of the
vehicles do not exhibit oscillatory behaviors since no persistent exploratory signal is added to the input of the vehicles. Figure
5 shows the evolution in time of the parameter estimation errors w̃i, which converge to zero as expected.

No Cooperation between the Vehicles
In order to illustrate the importance of the cooperative term in equation (41), we now set �3 = 0, which implies that agents are
not allowed to share their parameter estimation with their neighbors. By setting �3 = 0 the CODES dynamics reduce to the
DES dynamics, which require that each agent satisfies the (, J )-SR condition to guarantee convergence. Figure 6 shows the
trajectories of the vehicles on the plane. As it can be observed, in this case the vehicles do not converge to the optimal joint set
c , which is expected given that the individual matrices of dataDi are not full column rank. Figures 7 and 8 show the evolution
in time of the positions and inputs of the agents, as well as the parameter estimation error. As it can be observed, the estimation
error does not converge to zero for all vectors w̃i.

No Recorded Data used by the Vehicles
We finish this section by considering the situation where agents are not allowed to use recorded data in the learning dynamics,
i.e., �2 = 0 in (41). In this case, the trajectories of the vehicles are shown in Figure 9. Since the trajectories of the vehicles
do not satisfy the PE condition, the vehicles are not able to achieve parameter estimation of the optimal weights w⋆, and they
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FIGURE 3 Trajectories of a MAS comprised of four vehicles with internal dynamics (88), implementing the CODES dynamics
to maximize their response map subject to local navigation constraints. The graph describes the communication link between
the vehicles. The vehicle figure’s indicate the final position of each agent.
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FIGURE 4 Evolution in time of the states and inputs of the vehicles. The dotted colored lines indicate the optimal points. The
black dotted line corresponds to the inputs of the agents, while the solid colored line describes their position.
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FIGURE 5 Evolution in time of the vector of parameter estimation errors associated to each vehicle.

converge to a non-optimal location insider their navigation set. Figures 10 an 11 show the evolution in time of the states, inputs,
and parameter estimation error. As expected, the parameter estimation error does not converge to zero.

7 CONCLUSIONS AND OUTLOOK

In this paper we presented a new class of data-enabled extremum seeking dynamics that rely on information-rich data sets instead
of external time-varying dither signals. The algorithms are suitable for single-agent and multi-agent optimization problems sub-
ject to constraints characterized by compact sets. Sufficient conditions on the optimization dynamics and the richness of the data
were presented for both single-agent and multi-agent systems. In the latter case, it was shown that cooperation between agents
can be harnessed to compensate for the absence of individual information-rich data sets. Different examples of suitable opti-
mization dynamics were also presented, and connections and differences with respect to existing results in concurrent learning
and cooperative adaptive control were also discussed.
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FIGURE 6 Trajectories of a MAS comprised of four vehicles with internal dynamics (88), implementing the CODES dynamics
with no cooperation, i.e., �3 = 0. The graph describes the communication link between the vehicles. The vehicle figure’s indicate
the final position of each agent. The green circle indicates the theoretical optimal location of each vehicle.

FIGURE 7 Evolution in time of the states and inputs of the vehicles. The dotted colored lines indicate the optimal points. The
black dotted line corresponds to the inputs of the agents, while the solid colored line describes their position. Agents do not
converge to their optimal value due to lack of coordination and sufficiently rich data.

FIGURE 8 Evolution in time of the vector of parameter estimation errors associated to each vehicle when no cooperation is
used by the vehicles. As expected, all the errors do not converge to zero.

There exist several potential future extensions to the results presented in this paper. First, it is of interest to consider optimiza-
tion dynamics that are characterized by hybrid dynamical systems rather than ODEs. This setting is relevant because hybrid
optimization dynamics can be exploited to achieve global convergence results in some non-convex optimization problems, and
can also be exploited to induce robust acceleration via resetting mechanisms9. Second, it is desirable to relax the homogeneity
assumption on the cost function of the agents considered in Section 4. This would probably require either strong richness condi-
tion on the data of each agent, or stronger conditions on the basis that parameterize the functions. Third, while all the dynamics
considered in this paper were based on one-layer neural network approximations, it is of interest to design multi-layer approxi-
mations in the spirit of deep learning. Since multi-layer approximations usually lead to quadratic estimation errors e2 that are not
convex with respect to the estimation error w̃, this may provide further motivations for the development of hybrid data-driven
ES dynamics able to escape local minima.
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FIGURE 9 Trajectories of a MAS comprised of four vehicles with internal dynamics (88), implementing the CODES dynamics
with no data, i.e., �2 = 0. The graph describes the communication link between the vehicles. The vehicle figure’s indicate the
final position of each agent. The green circle indicates the theoretical optimal location of each vehicle.

FIGURE 10 Evolution in time of the states and inputs of the vehicles. The dotted colored lines indicate the optimal points. The
black dotted line corresponds to the inputs of the agents, while the solid colored line describes their position. Agents do not
converge to their optimal value due to lack of representative data in the learning dynamics.

FIGURE 11 Evolution in time of the vectors of parameter estimation errors associated to each vehicle when no data is used in
the dynamics. As expected, the errors do not converge to zero.
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