Data-Enabled Extremum Seeking: A Cooperative Concurrent Learning-Based Approach

Poveda, Jorge; Benosman, Mouhacine; Vamvoudakis, Kyriakos

TR2020-180 January 23, 2021

Abstract

This paper introduces a new class of feedback-based data-driven extremum seeking algorithms for the solution of model-free optimization problems in smooth continuous-time dynamical systems. The novelty of the algorithms lies on the incorporation of memory that enables the use of information-rich data sets during the optimization process, and allows to dispense with the time-varying dither excitation signal needed by standard extremum seeking algorithms that rely on a persistence of excitation (PE) condition. The model-free optimization dynamics are developed for single-agent systems, as well as for multi-agent systems with communication graphs that allow agents to share their state information while preserving the privacy of their individual data. In both cases, sufficient richness conditions on the recorded data, as well as suitable optimization dynamics modeled by ordinary differential equations are characterized in order to guarantee convergence to a neighborhood of the solution of the extremum seeking problems. The performance of the algorithms is illustrated via different numerical examples in the context of source seeking problems in multi-vehicle systems.

International Journal of Adaptive Control and Signal Processing
ARTICLE TYPE

Data-Enabled Extremum Seeking: A Cooperative Concurrent Learning-Based Approach

Jorge I. Poveda* | M. Benosman | K. Vamvoudakis

1Department of Electrical, Computer and Energy Engineering, University of Colorado, Boulder, CO, USA
2Mitsubishi Electric Research Laboratories, Cambridge, MA, USA
3School of Aerospace Engineering, Georgia Institute of Technology, GA, USA

Correspondence
*Jorge I. Poveda, 425 UCB, Boulder, CO 80309-0425, USA. Email: jorge.poveda@colorado.edu

Present Address
425 UCB, Boulder, CO 80309-0425, USA.

Summary
This paper introduces a new class of feedback-based data-driven extremum seeking algorithms for the solution of model-free optimization problems in smooth continuous-time dynamical systems. The novelty of the algorithms lies on the incorporation of memory that enables the use of information-rich data sets during the optimization process, and allows to dispense with the time-varying dither excitation signal needed by standard extremum seeking algorithms that rely on a persistence of excitation (PE) condition. The model-free optimization dynamics are developed for single-agent systems, as well as for multi-agent systems with communication graphs that allow agents to share their state information while preserving the privacy of their individual data. In both cases, sufficient richness conditions on the recorded data, as well as suitable optimization dynamics modeled by ordinary differential equations are characterized in order to guarantee convergence to a neighborhood of the solution of the extremum seeking problems. The performance of the algorithms is illustrated via different numerical examples in the context of source seeking problems in multi-vehicle systems.

KEYWORDS:
Extremum seeking, Data-driven optimization, Multi-agent systems, Concurrent learning.

1 | INTRODUCTION

The increasing availability of information-rich data sets and high-performance computing devices has motivated the development of new data-driven algorithms for the solution of estimation, optimization, and feedback control problems. Several approaches based on linear and nonlinear parameterizations have successfully exploited these algorithms in applications that range from industrial production to autonomous cars. However, while areas such as machine learning, reinforcement learning, and gradient-free optimization have made significant breakthroughs during the last years, the complex interactions that emerge between physical and digital components in cyber-physical systems have triggered an urgent need to develop novel data-driven algorithms with provable convergence, stability and robustness properties.

In the context of model-free optimization, extremum seeking control has emerged as a powerful technique for the real-time optimization of dynamical systems. Traditionally, ES dynamics have been designed under the paradigm of exploration vs exploitation, using an external dither signal to guarantee enough exploration on the cost function, and to facilitate the optimization process via gradient approximations based on parameterizations, averaging techniques, or sampled-data reconstructions.

†The material in this paper was partially presented at the 11th IFAC Symposium on Nonlinear Control Systems (NOLCOS), Vienna, Austria, 2019, and at the 58th IEEE Conference on Decision and Control, Nice, France, 2019.
all these approaches, the injection of the external signal is needed mainly to guarantee a uniform convergence property in the closed-loop system, i.e., to avoid closed-loop systems with rates of convergence that depend heavily on the initial conditions and which may not be able to recover from external disturbances and/or slow changes in the cost function. Because of this, adaptive ES dynamics rely on persistence of excitation (PE) conditions that may be difficult to satisfy in practice, specially in applications where mechanical constraints restrict the persistent excitability of the system, or in high-performance applications where persistent vibrations are undesirable. These limitations have motivated an active line of research that aims to dispense with the PE condition by considering adaptive dynamics that relax the convergence properties, or by incorporating recorded past data into the feedback controller. In the context of ES, this later approach is particularly appealing for applications where a large amount of recorded data already exists, and in large-scale network multi-agent systems where the nodes of the network are allowed to share some of their information with their neighboring agents. As a matter of fact, online learning and optimization dynamics that incorporate recorded data have become ubiquitous in the context of experience replay, iterative learning, machine learning, and reinforcement learning. However, in the context of ES, they remain mostly unexplored.

Literature Review

The first modern stability analysis of ES control was presented in using averaging and singular perturbation theory for smooth ordinary differential equations. Later, semi-global practical results were developed in and further extended in for a broader class of multi-variable gradient-based optimization dynamics modeled as ODEs and set-valued hybrid dynamical systems with possibly non-unique solutions. Other averaging-based ES algorithms have been studied using Lie bracket averaging, using systems with delays, and using discontinuous exploration signals. Sampled-data ES dynamics were initially developed using ideas from nonlinear programming, and were later generalized for periodic and aperiodic sampled-data systems with discrete-time set-valued optimization algorithms. In the context of multi-agent systems, different types of distributed ES dynamics have been presented for periodic and aperiodic systems with discrete-time set-valued optimization algorithms. In the context of multi-agent systems, different approaches have been proposed to achieve consistent learning in the presence of network delays and non-negligible communication costs. In the context of ES, this later approach is particularly appealing for applications where mechanical constraints restrict the persistent excitability of the system, or in high-performance applications where the nodes of the network are allowed to share some of their information with their neighboring agents. As a matter of fact, online learning and optimization dynamics that incorporate recorded data have become ubiquitous in the context of experience replay, iterative learning, machine learning, and reinforcement learning. However, in the context of ES, they remain mostly unexplored.

Contributions and Organization of the Paper

Motivated by the previous background, this paper presents a novel class of adaptive ES algorithms for dynamical systems. The ES dynamics dispense with the classic PE condition by exploiting information-rich data sets and cooperation in multi-agent systems (MAS). The proposed algorithms combine ideas from concurrent learning and robust gradient-based optimization dynamics in order to solve real-time optimization problems in network MAS with unknown mathematical models. In particular, the main contributions of this paper are fourfold:

First, we present a new class of data-enabled extremum seeking (DES) dynamics that integrate data into the closed-loop system in order to solve, in a model-free way, a general class of extremum seeking problems formulated as steady state variational
inequalities with compact constraints. Since the DES dynamics are data-driven, we provide sufficient conditions on the “richness” of the data and the optimization dynamics in order to guarantee uniform convergence of the trajectories of the algorithm to a neighborhood of the set of solutions of the optimization problem.

Next, since it is unrealistic to assume that in large-scale network multi-agent systems every agent satisfies a richness condition on the individual data, we introduce a new class of cooperative data-enabled extremum seeking (CODES) dynamics that integrate data and cooperation between the agents in order to dispense with the standard individual PE assumption. In order to solve the ES problem, we characterize a sufficient condition on the richness of the data of the overall network MAS, which can be seen as a spatio-temporal relaxation of the standard persistence of excitation conditions. This spatio-temporal condition merges together past data, i.e., temporal information; and cooperation between the agents, i.e., spatial information.

Third, instead of focusing our attention in one particular optimization algorithm, we characterize a general class of optimization dynamics that can be safely interconnected with the data-driven dynamics in order to solve different types of constrained extremum seeking problems. Moreover, suitable robustness results with respect to noise and small bounded disturbances are established for the closed-loop system.

Finally, we show that the data-enabled dynamics considered in this paper are suitable for applications in multi-vehicle autonomous systems in the context of source seeking. Preliminary results for static maps were reported in the conference papers and . The current paper extends those results by addressing the complete extremum seeking problem in dynamical systems, and by presenting the complete stability and convergence proofs of the algorithms, as well as novel robustness results and a more general formulation of the multi-agent extremum seeking problem.

The rest of this paper is organized as follows: In Section 2 we present some definitions and preliminaries in dynamical systems. In Section 3 we introduce the DES dynamics for single agent systems, as well as the sufficient richness conditions on the data to guarantee convergence to a neighborhood of the set of optimizers. After this, in Section 4 we present the CODES dynamics for network MAS. Section 5 presents the convergence analysis. Section 6 presents some numerical applications, and finally Section 7 ends with the conclusions.

2 | PRELIMINARIES

The set of (nonnegative) real numbers is denoted by \(\mathbb{R}_{\geq 0} \). The set of (nonnegative) integers is denoted by \(\mathbb{Z}_{\geq 0} \). We use \(B \) to denote a closed unit ball of appropriate dimension, \(\rho B \) to denote a closed ball of radius \(\rho > 0 \), and \(X + \rho \mathbb{B} \) to denote the union of all sets obtained by taking a closed ball of radius \(\rho \) around each point in the set \(X \). We use \(\partial X \) to denote the closed convex hull of \(X \), \(\overset{\circ}{X} \) to denote its closure, and \(\text{int}(X) \) to denote its interior. We use \(I_n \) to denote the identify matrix of dimension \(n \times n \). Given a vector \(x \in \mathbb{R}^n \) and a compact set \(A \subset \mathbb{R}^n \), we use \(|x|_A := \inf_{y \in A} |x - y| \) to denote the minimum distance of \(x \) to \(A \), where \(| \cdot | \) is the standard Euclidean norm. A function \(f : \mathbb{R}^n \to \mathbb{R} \) is said to be of class \(C^k \) if its \(k^{th} \) derivative is continuous. A function \(\beta(\cdot,\cdot) \) is said to be of class \(\mathcal{KL} \) if it is nondecreasing in its first argument, non-increasing in its second argument, \(\lim_{r \to 0^+} \beta(r,s) = 0 \) for each \(s \in \mathbb{R}_{>0} \) and \(\lim_{s \to \infty} \beta(r,s) = 0 \) for each \(r \in \mathbb{R}_{>0} \). The dynamics considered in this paper are modeled by constrained \(\epsilon \)-parameterized ODEs of the form

\[
\dot{x} = F_\epsilon(x),
\]

where \(x \in \mathbb{R}^n \) is the overall state, \(C \subset \mathbb{R}^n \) is called the flow set, \(F_\epsilon : \mathbb{R}^n \to \mathbb{R}^n \) is called the flow map, and \(\epsilon > 0 \) is a tunable parameter which can be a vector. Throughout this paper we will consider systems of the form (1) with a Lipschitz continuous function \(x \mapsto F_\epsilon(x) \) and a compact set \(C \). Following the notation of , a continuously differentiable function \(x : \text{dom}(x) \to \mathbb{R}^n \) is said to be a solution of (1) if: 1) \(x(0) \in C \); and 2) \(x(t) \in C \) and \(\frac{dx(t)}{dt} = F_\epsilon(x(t)) \) for all \(t \in \text{dom}(x) \). System (1) is said to render a compact set \(A \subset \mathbb{R}^n \) uniformly globally asymptotically stable (UGAS) if there exists a \(\mathcal{KL} \) function \(\beta \) such that \(|x(t)|_A \leq \beta(|x(0)|_A, t) \), for all \(t \in \text{dom}(x) \) and all \(x(0) \in C \). System (1) is said to render a compact set \(A \subset \mathbb{R}^n \) semi-globally practically asymptotically stable (SGPAS) as \(\epsilon \to 0^+ \) if there exists a \(\mathcal{KL} \) function \(\beta \) such that for each pair \(\Delta > \nu > 0 \) there exists \(\epsilon^* \in \mathbb{R}_{>0} \) such that for each \(

3 | DATA-ENABLED EXTREMUM SEEKING IN SINGLE-AGENT SYSTEMS

We start by considering the standard extremum seeking problem in single-agent systems, i.e., multivariable systems where the flow of information between states is not restricted by a communication graph. We consider a dynamical system modeled by the following equation

\[
\begin{align*}
\dot{\theta} &= f(\theta, z) \\
y &= h(\theta, z),
\end{align*}
\]

(2a)

(2b)

where \(f : \mathbb{R}^s \times \mathbb{R}^n \rightarrow \mathbb{R}^s \) is a Lipschitz continuous function, \(h : \mathbb{R}^s \times \mathbb{R}^n \rightarrow \mathbb{R}^t \) is a \(C^2 \) output function, \(\theta \in \mathbb{R}^s \) describes the states of the plant, which are restricted to evolve in a compact set \(\Theta \subset \mathbb{R}^s \), and \(z \in \mathbb{R}^n \) is the input, which is also restricted to evolve in a pre-defined compact set \(F \subset \mathbb{R}^n \). The sets \(\Theta \) and \(F \) can model physical constraints or feasible operational sets, and the functions \(f \) and \(h \) are assumed to be unknown.

Since the goal in extremum seeking is to optimize the steady-state input-to-output mapping of system (2) using output measurements \(y \), we make the following standard stability assumption on the open loop plant dynamics, see also \[19, 20, 22\].

Assumption 1. There exists a continuous function \(\ell : \mathbb{R}^n \rightarrow \mathbb{R}^t \) satisfying \(\ell(F) \subset \Theta \) such that the restricted open loop plant

\[
(\theta, z) \in \Theta \times F, \quad \begin{cases}
\dot{\theta} = f(\theta, z) \\
\dot{z} = 0
\end{cases}
\]

(3)

generates complete solutions from every initial condition and renders UGAS the set \(H := \{(\theta, z) \in \mathbb{R}^{s+n} : \theta = \ell(z), z \in F\} \).

We define the response map of system (2) as the mapping \(\phi : \mathbb{R}^n \rightarrow \mathbb{R} \) given by

\[
\phi(z) := h(\ell(z), z),
\]

(4)

where \(h \) is the output function of (2) and \(\ell \) is the mapping generated by Assumption [1]. The mapping \(\phi \) is assumed to be unknown. However, for the purpose of analysis we make the following regularity assumption on the pair \((\phi, F) \).

Assumption 2. The set \(F \) is compact, convex, and nonempty. The function \(\phi \) is convex and continuously differentiable on an open set \(D \supseteq F \).

Based on Assumptions [1, 2] the extremum seeking problem is characterized by the following constrained steady-state optimization problem:

\[
\begin{align*}
\text{minimize} & \quad \phi(z) \\
\text{subject to} & \quad z \in F,
\end{align*}
\]

(5)

where \(z \) is the input to system (2). Since the mathematical models of the plant dynamics (2) and the mapping \(\phi \) are unknown, problem (5) needs to be solved in a model-free way.

Remark 1. While the smoothness and compactness conditions of Assumption 2 are fundamental for our results, in certain cases it is possible to relax the convexity assumption. However, to simplify our presentation in this paper we assume that (5) is a well-posed convex optimization problem. Extensions to non-convex problems will be developed in the future by using hybrid extremum seeking dynamics [30].

Under Assumption 2 every solution \(z^* \) of problem (5) is also a solution to the following variational inequality (VI):

\[
(z - z^*)^\top \nabla \phi(z^*) \geq 0, \quad \forall \ z \in F,
\]

(6)

where \(\nabla \phi \) is the gradient of \(\phi \). Moreover, by [31, Thm 6.12], every point \(z^* \) that satisfies (6) is also a solution of (5). Thus, the constrained convex extremum seeking problem (5) can be equivalently cast as regulating the input of system (2) towards the set

\[
A := \{z^* \in K : (z - z^*)^\top \nabla \phi(z^*) \geq 0, \quad \forall \ z \in F\},
\]

(7)

by using only measurements of the output of the plant dynamics. By Assumption 2 and [33, Corollary 2.2.5], the set \(A \) is nonempty and compact. Moreover, by continuity and Assumptions [1, 2] we have that \(\lim_{t \to \infty} z(t) \to A \Rightarrow y(t) \to y^* := \phi(A) \). Thus, regulating the input \(z \) towards \(A \) also maximizes the output of the system at steady state.

Remark 2. Unlike traditional offline optimization problems, in extremum seeking control it is fundamental to design feedback-based optimization algorithms with suitable stability and robustness properties with respect to noisy measurements and...
small bounded external disturbances. Because of this reason, traditional numerical optimization approaches with no stability guarantees are not suitable for ES in dynamical systems.

3.1 Uniform Approximation of the Response Map and Its Gradient

In order to solve problem (5), we consider the following approximation of the response map \(\phi \) of system (2) on the compact set \(\mathcal{F} \):

\[
\phi(z) = b(z)^\top w^* + e(z), \quad \forall \ z \in \mathcal{F},
\]

where \(e : \mathbb{R}^n \to \mathbb{R} \) is an approximation error, \(w^* \in \mathbb{R}^p \) is a vector of ideal weights, and \(b : \mathbb{R}^n \to \mathbb{R}^p \) is a continuously differentiable pre-defined vector of admissible basis functions. The admissible basis function \(b := [b_1, b_2, \ldots, b_j, \ldots, b_p] \) should be selected such that the functions \(b_j : \mathbb{R}^n \to \mathbb{R} \) define a complete independent basis set for \(\phi \) in the set \(\mathcal{F} \). Typical choices of \(b_j \) include polynomial functions, radial basis functions, or sigmoid functions, see \(\text{[53,54,55]} \) for details on universal approximation properties of different types of functions.

We shall need the following technical assumption on the approximation (8).

Assumption 3. For any admissible basis function \(b \) and any \(p \in \mathbb{Z}_{>0} \) the approximation error \(z \mapsto e(z) \) in (8) is continuously differentiable.

Using the smoothness of \(\phi, b, \) and \(e \), we can compute the gradient of \(\nabla \phi \) as follows:

\[
\nabla \phi(z) = \nabla b(z)^\top w^* + \nabla e(z), \quad \forall \ z \in \mathcal{F},
\]

where \(\nabla b \) is the Jacobian matrix of \(b \). Since \(\mathcal{F} \) is compact and the mappings \(\nabla \phi(z) \) and \(\nabla e(z) \) are continuous, by the Weierstrass high-order approximation theorem \(\text{[55, Thm. 2.4.11]} \), the approximation errors \(e \) and \(\nabla e \) converge to zero as the number of basis \(p \) increases, i.e., \(e(x) \to 0 \) and \(\nabla e(z) \to 0 \) as \(p \to \infty \), uniformly on \(\mathcal{F} \). Moreover, due to Assumption 3, the compactness of \(\mathcal{F} \) and the fact that \(b \in C^2 \), we have that \(b(z), \nabla b(z), e(z), \) and \(\nabla e(z) \) are all uniformly bounded in \(\mathcal{F} \). Thus, for any \(\delta > 0 \) there exists \(p \in \mathbb{Z}_{>0} \) such that the ideal weights \(w^* \) satisfy

\[
\sup_{z \in \mathcal{F}} (|\phi(z) - b(z)^\top w^*| + |\nabla \phi(z) - \nabla b(z)^\top w^*|) \leq \delta.
\]

To simply our presentation, and without loss of generality, we assume that the optimal weight \(w^* \) in (8) is unique. However, extensions to settings where the optimal weights are not unique and characterized by an optimal compact set could also be considered in our framework.

Remark 3. The approximation errors \(e \) and \(\nabla e \) can be made arbitrarily small by increasing the number of basis functions \(b_j \) in the approximation (8). However, in certain cases the number of basis functions needed to achieve small approximation errors may be prohibitively large. In order to deal with this limitation, it has been shown in \(\text{[53]} \) that composite multi-layer basis functions can generate suitable approximations with a smaller set of hyperparameters \(w^* \).

Remark 4. Approximations of the form (8) are usually referred to as single-layer neural networks, and they have become ubiquitous in neuro-adaptive control \(\text{[37,39]} \) and approximate reinforcement learning-based control \(\text{[43,45,46]} \). Similar approximations have also been studied in the context of adaptive control \(\text{[63]} \) and extremum seeking control, see for instance \(\text{[43]} \).

In order to solve problem (5), let \(\hat{\phi} \) be an approximation of the response map \(\phi \), defined as

\[
\hat{\phi}(z) := b(z)^\top \hat{w},
\]

where \(\hat{w} \in \mathbb{R}^p \) is an auxiliary state. Let \(\hat{w} := \hat{w} - w^* \) be the parameter estimation error. Using equations (8) and (11) we can define the approximation error of the response map as

\[
e_{ss}(z) := \hat{\phi}(z) - \phi(z)
= b(z)^\top \hat{w} - b(z)^\top w^* - e(z)
= b(z)^\top \hat{w} - e(z).
\]
Similarly, the approximation error of the gradient of the response map can be computed as
\[
\nabla e_{ss}(z) = \nabla \hat{\phi}(z) - \nabla \phi(z) \\
= \nabla b(z) \tilde{\omega} - \nabla b(z)^T \omega^* - \nabla e(z) \\
= \nabla b(z)^T \tilde{\omega} - \nabla e(z).
\]

Thus, if \(\tilde{\omega} = 0 \), the approximation error in the response map and its gradient will be of order \(O(\delta) \), where \(\delta > 0 \) can be made arbitrarily small by increasing the dimension of the basis vector. However, while it is well-known that several estimation dynamics \(\tilde{\omega} \) can be implemented to minimize the parameter estimation error, a persistence of excitation (PE) condition needs to be satisfied by the basis functions in order to achieve uniform convergence. \(\text{Namely, there must exist } T > 0 \) and \(\gamma > 0 \) such that
\[
\int_0^T b(t) b(t)^T \mathrm{d}t \geq \gamma I, \tag{13}
\]
for all \(t \geq 0 \). Nevertheless, in many practical applications it is difficult to certify a priori the satisfaction of the PE condition along the trajectories of the system. Additionally, in system \((2)\) the function \(\phi \) is not available for online measurements.

3.2 Data-Driven Approximation of Response Maps

To dispense with the PE condition \((13)\), and motivated by the increasing number of available information-rich data sets in engineering systems, we consider a class of data-enabled extremum seeking dynamics (DES) that use concurrently real-time and recorded measurements of the input and output of system \((2)\). The recorded data used by the DES dynamics is characterized by a finite sequence of inputs and outputs \(\{(z_k, y_k)\}_{k=1}^J \), where \(k \in \{1, 2, \ldots, J\} \) denotes the time index of a data point, i.e., \(z_k := z(t_k) \), and \(\{t_k\}_{k=1}^J \) is a sequence of measurement times \(t_0 \leq t_1 \leq \ldots t_J \). Let \(b(z_k) \) be the basis function evaluated at the point \(z_k \). The estimation error of the response map induced by the input data collected at time \(t_k \) is given by
\[
e_{ss}(z_k) := \hat{\phi}(z_k) - \phi(z_k). \tag{14}
\]
By definition, the parameter estimation error \(\tilde{\omega} \) depends on the current value of \(\hat{\omega} \). Therefore, as a function of time, the response map’s estimation error can be written as
\[
e_{ss}(t_k, t) = \tilde{\omega}(t)^T b(z(t_k)) - e(z(t_k)), \tag{15}
\]
for all \(t_k \in \{1, 2, \ldots, J\} \) and all \(t \geq 0 \). In order to achieve extremum seeking, we will need input recorded data that is “sufficiently rich”. This is formalized by the following definition.

Definition 1. A sequence of data \(\{x_k\}_{k=1}^J \), with \(x_k \in \mathbb{R}^p \), satisfying the inequality
\[
\sum_{k=1}^J x_kx_k^T \geq \gamma I_p, \tag{16}
\]
is said to be \((\gamma, J)\)-sufficiently rich (SR).

Based on Definition \(1\), the data \(\{x_k\}_{k=1}^J \) is \((\gamma, J)\)-SR if its elements form a basis in \(\mathbb{R}^p \) during the window of discrete time \(\{1, 2, \ldots, J\} \). Indeed, by defining the following matrix of data:
\[
D := [x_1, x_2, \ldots, x_k, \ldots, x_J] \in \mathbb{R}^{p \times J}, \tag{17}
\]
we can write the left hand side of inequality \((16)\) as \(\sum_{k=1}^J x_kx_k^T = DD^T \in \mathbb{R}^{p \times p} \). Since \(\text{rank}(DD^T) = \text{rank}(D) \), it follows that inequality \((16)\) holds for some \(\gamma > 0 \) if and only if \(\text{rank}(D) = p \). Thus, the matrix of data must have as many linearly independent columns as the dimension of the data points. For a given application with available information-rich data, this condition can be verified \textit{a priori}.

Remark 5. Condition \((16)\), originally presented in \((11)\) and recently used in \((23)\) for ES in static maps, can be seen as a \textit{finite time} persistently exciting condition. A similar richness condition was used in \((24)\) for dead-beat parameter estimation in model predictive control, and in \((25)\) in the context of data-driven predictive control.

3.3 | Data-Enabled Extremum Seeking: Algorithms and Convergence Result

We are now ready to present the data-enabled extremum seeking (DES) dynamics for the solution of problem (5). The DES dynamics are modeled by the following ODE:

\[
\dot{w} = \frac{\epsilon_1}{\epsilon_2} F_{\dot{w}}(\dot{w}, z, y),
\]

\[
\dot{z} = \epsilon_1 F_{\dot{z}}(g, z),
\]

(18a)

(18b)

where \(\dot{w} \) is the auxiliary state used in the approximation (11), \(z \in \mathbb{R}^n \) is the input of the plant dynamics (2), and \(g \) is a place holder for the vector \(g = \nabla b(z)^T \dot{w} \). The function \(F_{\dot{w}} \) is defined as:

\[
F_{\dot{w}} := -\alpha_1 \Psi(z)(\phi(z) - y) - \alpha_2 \sum_{k=1}^{J} \Psi(z_k)(\phi(z_k) - y_k), \quad \alpha_1, \alpha_2 > 0,
\]

(19)

where the mapping \(y \mapsto \Psi(y) \) is defined as

\[
\Psi(y) := \frac{b(y)}{\left(1 + b(y)^T b(y)\right)^2}.
\]

(20)

The pairs \((z, y) \) and \((z_k, y_k) \) correspond to real-time and recorded input-output data of the plant dynamics (2), respectively.

The dynamics of \(\dot{w} \), characterized by equation (19), have two main components: The first component is driven by real-time measurements of the output of the plant, and it can be seen as a normalized gradient descent aiming to minimize the square error \(e^2 \). The second component is driven by the recorded error \(e(z_k) \), which depends on the sequence of inputs-outputs \(\{(z_k, y_k)\}_{k=1}^{J} \).

As noted in [12] when system (2) is a static map, the data-driven term of (19) can be seen as a type of \(\sigma \)-modification used to relax the PE condition, see also [20, Ch. 5]. Figure 1 shows a scheme illustrating the DES dynamics interconnected with the plant dynamics (2).

In order to solve the extremum seeking problem (5) in a data-driven way, the input and output data \(\{(z_k, y_k)\}_{k=1}^{J} \) must satisfy the following assumption:

Assumption 4. For each \(\bar{\rho} > 0 \) there exist input-output data \(\{(z_k, y_k)\}_{k=1}^{J} \) of system (2), with \(z_k = z(t_k) \) and \(y_k = y(t_k) \), satisfying

\[
\left| y(t_k) - h(\hat{\ell}(z(t_k)), z(t_k)) \right| \leq \frac{\bar{\rho}}{J},
\]

(21)

for all \(k \in \{1, 2, \ldots, J\} \).

In words, Assumption 4 asks that the data \(\{(z_k, y_k)\}_{k=1}^{J} \) used by the DES dynamics must be consistent, in the sense that for each \(k \in \{1, 2, \ldots, J\} \) the data point \(y_k \) is a measurement of the output of (2) that is \(\bar{\rho} \)-close to a steady state condition induced by the input \(z_k \). By Assumption 4 this type of data can always be collected during a training phase where only a finite amount of representative inputs \(z_k \) are used to excite the plant dynamics (2) in order to collect output measurements at steady state.

The type of functions \(F_z \) used by the DES dynamics in equation (18b) are application dependent and must be designed to stabilize the set of optimizers \(A \) under the assumption of having access to the gradient information of the response map \(\phi \):

Assumption 5. The constrained ODE

\[
z \in \mathcal{F}, \quad \dot{z} = F_z(\nabla \phi(z), z),
\]

(22)

satisfies:

(a) The function \(F_z(\cdot, \cdot) \) is Lipschitz continuous with respect to both arguments.

(b) The set \(\mathcal{A} \) is UGAS.

(c) For each bounded continuous function \(d : \mathbb{R}_{\geq 0} \to \mathbb{R}^n \), and each \(z(0) \in \mathcal{F} \), the perturbed system

\[
z \in \mathcal{F}, \quad \dot{z} = F_z(\nabla \phi(z) + d(z), z),
\]

(23)

generates complete solutions.

In words, Assumption 5 asks that the constrained ODE (22) is a well-posed optimization algorithm with suitable stabilizing properties with respect to the compact set \(\mathcal{A} \), and rendering forward invariant the set \(\mathcal{F} \) under bounded disturbances on the gradient. While conditions (a) and (b) are common in averaging and sampled-data based ES dynamics [20, 31], condition (c) is somehow stronger since it requires forward invariance of the set \(\mathcal{F} \) under non-necessarily small bounded disturbances on the
\[\dot{z} = \varepsilon_1 F_z(g(z, \hat{w}), z), \quad \dot{\hat{w}} = \varepsilon_1 F_{\hat{w}}(\hat{w}, z, y), \quad \dot{\theta} = f(\theta, z), \quad y = h(\theta, z) \]

FIGURE 1 Schematic representation of the data-enabled extremum seeking dynamics for static maps. The feedback-based optimization mechanism implements real-time and past recorded data concurrently during the seeking process.

Gradient. Luckily, there exist several algorithms in the literature that satisfy the conditions of Assumption 5 including Lipschitz projected gradient systems that can handle different types of convex optimization problems modeled as VIs of the form (6).

Example 1 (Lipschitz Projected Gradient Descent). A class of optimization dynamics that satisfy Assumption 5 corresponds to the Lipschitz projected gradient descent \(\dot{z} = z + P_F(z - \nabla \phi(z)). \)

\[z \in F, \quad z = -z + P_F(z - \nabla \phi(z)). \] \quad (24)

where \(P_F : \mathbb{R}^n \to F \) is the Eucliean Lipschitz projection operator

\[P_F(z) := \arg \min_{y \in F} |z - y|. \] \quad (25)

As shown in \(\mathbb{R} \) when \(\nabla \phi : \mathbb{R}^n \to \mathbb{R}^n \) is a smooth and strongly monotone mapping, and Assumption 2 holds, system (24) renders exponentially stable the set of solutions of the VI (6), which is a singleton under strong monotonicity of \(\phi \). Indeed, under Assumption 2 the dynamics (24) render UGAS the compact set \(A \) provided \(\nabla \phi : \mathbb{R}^n \to \mathbb{R}^n \) is monotone \(\mathbb{R} \) Thm. 3. Forward invariance of \(F \) is guaranteed by the projection operator. Simple explicit forms for the projection operator (25) can be computed for common sets \(F \), such as those describing box and sphere constraints.

Optimization problems with coupled equality constraints can also be handled by systems of the form (22).

Example 2 (Smooth Dynamics for Resource Allocation). Consider a resource allocation problem where the goal is to optimally allocate a resource \(R \) (e.g., traffic demand) into \(n \) different subsystems (e.g., available routes). In this case, we can define \(F := \left\{ z \in \mathbb{R}^n_+ : \sum_{i=1}^n z_i = R \right\} \), and we can consider the following Lipschitz continuous dynamics that update the \(i^{th} \) component of the state \(z \) as follows:

\[z \in F, \quad \dot{z}_i = \max \left\{ 0, z^T \nabla \phi(z) - \frac{\partial \phi(z)}{\partial z_i} \right\} - \frac{z_i}{R} \sum_{j=1}^n \max \left\{ 0, z^T \nabla \phi(z) - \frac{\partial \phi(z)}{\partial z_j} \right\}. \] \quad (26)

By the results in \(\mathbb{R} \) when \(\phi(z) = z^T \nabla \phi(z) - \frac{\partial \phi(z)}{\partial z_i} \) whenever \(\phi \) is strictly convex.

Other approaches that can be used to guarantee forward invariance of compact sets in ODEs include barrier functions, safety functions, or switched gradient flows.

Having characterized the data-driven parameter estimation function (19), as well as the optimization dynamics (22), we are ready to state the first main result of this paper.

Theorem 1. Suppose that:

(a) The plant dynamics (2) satisfy Assumptions 1, 2, and 3.

(b) There exists input-output data \(\{ z_k, y_k \}_{k=1}^J \) satisfying Assumption 4 and the sequence of data \(\{ \hat{b}(z_k) \}_{k=1}^J \) with \(k^{th} \) entry given by

\[\hat{b}(z_k) := \frac{b(z_k)}{1 + b(z_k)} \] \quad (27)

is \((\gamma, J)\)-SR.
Theorem 1 establishes convergence in finite time to any arbitrarily small \(\nu \)-neighborhood of the set of optimizers \(\mathcal{A} \) and the optimum \(y^* \), from initial conditions on \(\Delta \)-compact sets defined a priori, provided the parameters \((\varepsilon_1, \varepsilon_2) \) are sufficiently small and appropriately tuned.

Remark 6. Unlike the PE condition [13], which applies to the past and future behavior of the functions \(b \) evaluated along the trajectories of the system, the richness condition [16] needs to be verified only for a finite recorded data \(\{\hat{b}(z_k)\}_{k=1}^T \). This feature allows to exploit information-rich data sets that are available in applications with periodic behaviors and repetitive patterns, e.g., transportation systems, health care systems, manufacturing systems, energy systems, etc. The data can also be obtained by performing repetitive experiments, or by exciting the system during an initial finite amount of time.

Remark 7. Unlike the standard adaptive ES architectures considered in the literature [5, 12], the DES dynamics do not require the injection of a time-varying dither signal, which, as shown later in Section 6, can generate trajectories with less oscillatory behavior in numerical experiments.

The following Corollary establishes suitable robustness properties for the DES dynamics.

Corollary 1. Suppose that all the conditions of Theorem 1 hold, and let \(\Delta, \nu, \rho, \varepsilon_1 \) and \(\varepsilon_2 \) be fixed such that the conclusion of Theorem 1 holds. Then there exists \(\rho^* > 0 \) and \(T' > 0 \) such that for all measurable perturbations \(\rho : \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}^n \) satisfying \(\sup_{t \geq 0} |\rho(t)| \leq \rho^* \) and all solutions of the perturbed dynamics

\[
\dot{\theta} = f(\theta + \rho, z + \rho) + \rho
\]

\[
\dot{\hat{w}} = \frac{\varepsilon_2}{\varepsilon_1} F_{\hat{w}}(\hat{w} + \rho, b(z + \rho), y + \rho) + \rho,
\]

\[
\dot{z} = \varepsilon_1 F_z(g + \rho, z + \rho) + \rho,
\]

with \(|\hat{w}(0) - w^*| \leq \Delta \), the trajectories of the closed-loop system satisfy

\[
|z(t)|_A \leq 2\nu, \quad |\hat{w}(t) - w^*| \leq 2\nu, \quad |\theta(t)|_{C(4)} \leq 2\nu, \quad |y(t) - y^*| \leq 2\nu,
\]

for all \(t \geq T' \).

Corollary 1 establishes the existence of a strictly positive margin of robustness with respect to noisy state measurements or perturbations on the DES dynamics. As noted in [10], these margins of robustness are critical for the safe implementation of feedback-based algorithms, and they may not exist unless the optimization dynamics satisfy certain regularity and stability properties.

4. COOPERATIVE DATA-ENABLED EXTREMUM SEEKING FOR MULTI-AGENT SYSTEMS

The data-enabled extremum seeking dynamics considered in Section 3 depend on a sequence of data that satisfies the richness condition [16]. While this richness condition can be easily verified in small-scale engineering systems such as engines, individual wind turbines, photovoltaic converters, mobile robots, etc, it may be difficult to guarantee the individual satisfaction of the richness condition [16] in large-scale multi-agent systems (MAS) comprised of several subsystems with no centralized agent. Motivated by these limitations, we now extend the results of Section 3 to MAS with communication networks characterized by a graph \(G = (\mathcal{V}, \mathcal{E}) \), where \(\mathcal{V} := \{1, \ldots, N\} \) is the set of vertices or agents, and \(\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V} \) is the set of communication links between agents, i.e., the edges. For simplicity, we assume that the communication graph is time-invariant, undirected, connected, and unweighted, i.e., all the entries of the adjacency matrix of the graph satisfy \(a_{ij} \in \{0, 1\} \), where \(a_{ij} = 0 \) if and only if there is no communication link between agents \(i \) and \(j \).
Each agent of the MAS represents a dynamical system
\begin{align}
\dot{\theta}_i &= f_i(\theta, z_i) \\
y_i &= h_i(\theta_i, z_i),
\end{align}

where \(f_i : \mathbb{R}^{iN} \times \mathbb{R}^n \to \mathbb{R}^s \) is a Lipschitz continuous function characterizing the dynamics of the \(i \)-th agent, and \(h_i : \mathbb{R}^s \times \mathbb{R}^n \) is a \(C^2 \) output function characterizing its output. While the function \(f_i \) is written as a general mapping that depends on the overall vector \(\theta \), the dynamics of each agent only depend on its individual state \(\theta_i \) and the state \(\theta_j \) of its neighboring agents \(j \in N_i := \{ j \in \mathcal{V} : (i,j) \in \mathcal{E} \} \), that is, the mapping \(f_i \) already incorporates the communication graph \(\mathcal{G} \).

In order to have a well-defined extremum seeking problem, and similar to Section 3, we assume that the dynamics of the agents are stable and have a well-defined quasi-steady state manifold. In particular, let \(\mathcal{F} \) be an application-dependent real-valued function known by all agents of the system. The distributed extremum seeking problem considered in this paper is characterized by the following homogeneity assumption that all agents have the same dynamics (31) since different combinations of mappings \(f_i \) and \(h_i \) can generate the same response map \(\phi_i \).

Assumption 6. There exists a function \(\ell_c : \mathbb{R}^{nN} \to \mathbb{R}^{iN} \) satisfying \(\ell_c(z) = \ell_{c,1}(z_1) \times \ell_{c,2}(z_2) \times \ldots \times \ell_{c,N}(z_N) \) and \(\ell_c(F) \subset \Theta_c \) such that the open-loop MAS
\begin{equation}
(\theta, z) \in \Theta_c \times P_c \left\{ \begin{array}{l}
\dot{\theta} = \tilde{f}(\theta, z) := f_1(\theta, z_1) \times f_2(\theta, z_2) \times \ldots \times f_N(\theta, z_N) \\
\dot{z} = 0
\end{array} \right.
\end{equation}
renders UGAS the set \(H := \left\{ (\theta, z) \in \mathbb{R}^{N(i+n)} : \theta = \ell_c(z), z \in P_c \right\} \).

Based on Assumption [6] the response map \(\phi_i : \mathbb{R}^n \to \mathbb{R} \) of each agent \(i \) can be defined as
\begin{equation}
\phi_i(z_i) := h_i(\ell_{c,i}(z_i), z_i).
\end{equation}
The distributed extremum seeking problem considered in this paper is characterized by the following homogeneity assumption on the mappings (33).

Assumption 7. The response map \(\phi_i \) satisfies \(\phi_i = \phi \) for all \(i \in \mathcal{V} \), where \(\phi : \mathbb{R}^n \to \mathbb{R} \) is a smooth and convex function.

According to Assumption [7] all agents have a response map \(\phi \) with identical mathematical form. However, this does not imply that all agents have the same dynamics since different combinations of mappings \(f_i \) and \(h_i \) can generate the same response map \(\phi \).

Remark 8. Examples of extremum seeking problems where agents have homogenous response maps include source seeking problems in multi-vehicle systems [55, 57], cooperative surveillance with constraints, and resource allocation problems in energy systems with identical generators [80].

Let \(\mathcal{T} : \mathbb{R}^N \to \mathbb{R} \) be an application-dependent real-valued function known by all agents of the system. The distributed extremum seeking problem is defined as
\begin{equation}
\begin{aligned}
\text{minimize} & \quad \mathcal{T} (\phi(z_1), \phi(z_2), \ldots, \phi(z_N)) \\
\text{subject to} & \quad z \in P_c.
\end{aligned}
\end{equation}

Similar to Section 3, our standing assumption is that the mathematical form of \(\phi \) and its gradient \(\nabla \phi \) are unknown to all agents. However, agents have access to individual real-time measurements of \(\phi \), and are also allowed to share information with their neighboring agents. We make the following regularity assumption on problem (34).

Assumption 8. The function \(\mathcal{T} : \mathbb{R}^N \to \mathbb{R} \) is smooth and convex, and \(P_c \subset \mathbb{R}^{Nn} \) is compact and convex.

The formulation of problem (34) is quite general, and encompasses distributed coupled and uncoupled optimization problems.

Example 3 (Source seeking with bounded navigation sets). The problem of locating the source of a signal \(\phi \) by using only measurements of its intensity has been studied in [57, 55, 12, and 13] using extremum seeking controllers for single and multi-vehicle systems. Since the signal \(\phi \) is homogeneous to all the agents, the source seeking problem can be modeled as (34). Moreover, by defining the feasible set \(P_c \) as \(P_c = P_1 \times P_2 \times \ldots \times P_N \), bounded individual navigation sets \(P_i \) can be assigned to each vehicle of the system. To achieve individual source seeking, the function \(\mathcal{T} \) in (34) can be defined as \(\mathcal{T}(s_1, s_2, \ldots, s_n) := \sum_{i=1}^N s_i \).
which guarantees that the solution of (34) is the same as the solution of N uncoupled source seeking problems with individual navigation sets.

Example 4 (Distributed Resource Allocation). Let us consider again the resource allocation problem of Example 2. Suppose now that each road is an agent controlling its own traffic flow $z_i \in \mathbb{R}$, and interacting with neighboring roads $j \in \mathcal{N}_i$. In this case, we can define again $\mathcal{T}(s_1, s_2, \ldots, s_n) := - \sum_{i=1}^{N} s_i$, with $s_i = \phi(z_i)$, and $\mathcal{F}_c = \left\{ z \in \mathbb{R}^N : \sum_{i=1}^{N} z_i = R \right\}$, where $R > 0$ is the available traffic demand to be allocated. Therefore, distributed optimization problems with coupled constraints can also be modeled as (34). However, the existence of a communication graph limiting the flow of information between nodes precludes the implementation of the centralized dynamics (26).

Since it is unrealistic to assume that every agent of the MAS has enough information-rich data, as well as access to the states of all other agents of the system, the DES dynamics considered in Section 3 are not applicable anymore. Instead, we now consider a class of cooperative data-enabled extremum seeking (CODES) dynamics that will rely on data that is only cooperatively sufficiently rich.

4.1 Individual Approximation of Response Maps and Richness of the Network Data

In order to implement the CODES dynamics, each agent runs an individual estimate of the homogenous cost function ϕ, given by

$$\hat{\phi}_i(z_i) = b_i(z_i)^T \hat{w}_i,$$

where $\hat{w}_i \in \mathbb{R}^p$ is an auxiliary individual state, and $b_i : \mathbb{R}^n \to \mathbb{R}^p$ is a vector of basis functions. Since \mathcal{F}_c is compact, there exists $M > 0$ such that $\mathcal{F}_c \subset M \mathbb{B}$. Thus, since ϕ is smooth and \mathcal{F}_c is compact, by the Weierstrass high-order approximation theorem we know that for any $\delta > 0$ there always exist basis functions b_i and weights $w^* \in \mathbb{R}^p$ such that

$$\sup_{z \in M \mathbb{B}} \left(|\phi(z_i) - b_i(z_i)^T w^*| + |\nabla \phi(z_i) - \nabla b_i(z_i)^T w^*| \right) \leq \delta,$$

for all $i \in \{1, 2, \ldots, N\}$. In many cases, the simplest way to satisfy this bound is by endowing each agent of the network with the same basis function b_i, i.e., $b_i = b_j$ for all $i, j \in \{1, 2, \ldots, N\}$. However, this is not a necessary condition since the error approximation bounded by δ gives room to consider different basis functions that may generate errors with similar bounds using the same ideal weights w^*. Thus, each agent can approximate the cost function ϕ as

$$\phi(z_i) \approx b_i(z_i)^T w^* + e_i(z_i),$$

where $\sup_{z \in M \mathbb{B}} |e_i(z_i)| \leq \delta$. By defining $\hat{w}_i := \hat{w}_i - w^*$, the individual response map’s estimation error and its gradient can be computed as

$$e_{xx_i}(z_i) := \hat{\phi}_i(z_i) - \phi(z_i)$$

$$= b_i(z_i)^T \hat{w}_i - e(z_i),$$

and

$$\nabla e_{xx_i}(z_i) = \nabla \hat{\phi}_i(z_i) - \nabla \phi(z_i)$$

$$= \nabla b_i(z_i)^T \hat{w}_i - \nabla e(z_i).$$

In order to guarantee uniform convergence of \hat{w}_i to w^* by minimizing the square of the error e_i, traditional approaches require restrictive individual PE conditions on the basis functions. On the other hand, if each agent of the MAS has data $\{b_i(z_{i,k})\}_{k=1}^{J}$ that satisfies the (γ, J)-SR condition, the DES dynamics (18) could be individually implemented by the agents in order to solve problem (34). However, this is a restrictive assumption for large-scale MAS since it requires the satisfaction of the full rank condition for N different matrices of data $D_i := [\hat{b}_i(z_{i,1}), \hat{b}_i(z_{i,2}), \ldots, \hat{b}_i(z_{i,k}), \ldots, \hat{b}_i(z_{i,J})]$, where $i \in \{1, 2, \ldots, N\}$. Therefore, in order to dispense with the standard PE assumption as well as the individual (γ, J)-SR condition, we consider the following “cooperative” richness condition.

Definition 2. A collection of N sequences of data points $\{\{x_{i,k}\}_{k=1}^{J} : x_{i,k} \in \mathbb{R}^n, i \in \mathcal{V}\}$ satisfying the inequality

$$\sum_{k=1}^{J} \sum_{i=1}^{N} x_{i,k} x_{i,k}^T \succeq \gamma I,$$

is said to be (γ, J, N)-Cooperative Sufficiently Rich (CSR).
Condition (38) will guarantee that the data in the overall MAS contains “sufficiently” rich information. Since the summation is taken over all agents of the network and over a finite number of times, condition (38) relaxes the \((γ, J)\)-richness condition of Definition 1, as well as the cooperative PE conditions considered in the literature of adaptive control. See Remark 9 below. As a matter of fact, condition (38) can be satisfied even if some agents of the network have no recorded data at all, while other agents of the network compensate with sufficiently rich data.

Example 5. Consider a system with 2 agents using individual basis functions \(b_1(z_1(t)) = [\sin(t), 0]^T\) and \(b_2(z_2(t)) = [0, \cos(t)]^T\). Note that none of these signals satisfy the classic PE condition (13). Consider now a sequence of measurement times \(\{t_k\}_k^J\) satisfying \(t_k = (k - 1)\pi + \pi/4\), for all \(k\). Then, the individual sequence of measurements \(\{b_i(z_{i,k})\}_k^J\) satisfy

\[
\sum_{k=1}^J b_1(z_1(t_k))b_1^T(z_1(t_k)) = \begin{bmatrix} J/2 & 0 \\ 0 & 0 \end{bmatrix} \quad \text{for agent 1,} \quad \text{and} \quad \sum_{k=1}^J b_2(z_2(t_k))b_2^T(z_2(t_k)) = \begin{bmatrix} 0 & 0 \\ 0 & J/2 \end{bmatrix} \quad \text{for agent 2,}
\]

which are not \((γ, J)\)-SR for any \(γ > 0\) and any \(J > 0\). However, the overall multi-agent system satisfies condition (38), since

\[
\sum_{k=1}^J \sum_{i=1}^N b_i(z_i(t_k))b_i^T(z_i(t_k)) = \begin{bmatrix} J/2 & 0 \\ 0 & J/2 \end{bmatrix} \geq J/2 J,
\]

for any \(J \in \mathbb{Z}_{>1}\).

It is important to note that even if the amount of memory in the nodes of a MAS is unbounded, condition (38) may not necessarily hold if the sampling times or the basis functions are not carefully selected.

Example 6. For the same 2-agent system of Example 5, consider now two sequences of data \(\{b_i(z_{i,k})\}_k^J\), \(i \in \{1, 2\}\), which satisfy

\[
\sum_{k=1}^J \sum_{i=1}^2 b_i(z_{i,k})b_i^T(z_{i,k}) = \left[\sum_{k=1}^J \sin(t_k)^2 \right. \\
\left. 0 \sum_{k=1}^J \cos(t_k)^2 \right].
\]

Then, for any sequence of measurement times \(\{t_k\}_k^J\) satisfying \(t_k = (k - 1)\pi\) or \(t_k = \frac{\pi(2k+1)}{2}\) for all \(k\), there is no \(γ > 0\) and \(J \in \mathbb{Z}_{>0}\) such that condition (38) holds.

As shown in Example 6 satisfying the \((γ, J, N)\)-CSR condition is not trivial even if the amount of data is unbounded. However, suitable training experiments can be designed a priori in order to gather a finite amount of data that satisfies the richness condition (38). These approaches are common in the context of reinforcement learning, transfer learning, and concurrent learning.

4.2 Cooperative Data-Enabled Optimization Dynamics

Let \(\bar{T}(z) := T(\phi(z_1), \phi(z_2), \ldots, \phi(z_N))\) and let \(A_c \subset \mathcal{F}_c\) denote the set of solutions of problem (34), that is

\[
A_c := \{z^* \in \mathcal{F}_c : (z - z^*)^T \nabla T(z^*) \geq 0, \forall z \in \mathcal{F}_c\}.
\]

In order to guarantee that the overall state of the MAS converges to a neighborhood of \(A_c\) by using only individual data and online measurements of the outputs \(y_i\), each agent implements the following cooperative data-enabled extremum seeking (CODES)
dynamics:
\[
\begin{align*}
\dot{\omega}_i &= \frac{\xi_1}{\xi_2} F_{\hat{\omega}_i}(\hat{\omega}_i, \hat{\omega}_j, b_i(z_i), y_i), \\
\dot{z}_i &= \epsilon_1 F_{z_i}(g_i, g_j, z_i, z_j),
\end{align*}
\]
(40a)
(40b)

where \(z_i \in \mathbb{R}^n \) is the input of the \(i^{th} \) agent (31), and \(g_i \) is a placeholder for \(g_i = \nabla b_i(z_i)^T \hat{\omega}_i \). The function \(F_{z_i} \) already incorporates the communication graph of the MAS, and the function \(F_{\hat{\omega}_i} \) is now defined as follows:

\[
F_{\hat{\omega}_i} := -\alpha_1 \Psi_i(z_i) \left(\hat{\phi}_i(z_i) - y_i \right) - \alpha_2 \sum_{k=1}^I \Psi_i(z_{i,k}) \left(\hat{\phi}_i(z_{i,k}) - y_{i,k} \right) - \alpha_3 \sum_{j \in N_i} a_{ij} (\hat{\omega}_i - \hat{\omega}_j),
\]

(41)

where \(\alpha_1, \alpha_2, \alpha_3 > 0 \) are tunable parameters and where the mapping \(y \mapsto \Psi(y) \) is defined as in (21). The dynamics (40a) allow each agent to share their state \(\hat{\omega}_i \) with neighboring agents via the last term of equation (41). However, it is important to note that agents do not share their individual data. Thus, the CODES dynamics are suitable for applications where privacy of data is relevant. Figure 2 shows a scheme representing the CODES dynamics and a cooperative ES problem with homogenous cost functions.

The class of functions \(F_{z_i} \) characterizing the dynamics of equation (40b) are again application dependent and characterized by the following assumption.

Assumption 9. Suppose that the overall MAS implements the following ideal optimizing dynamics:

\[
z \in F_c, \quad \dot{z} = F_c(\nabla \phi, z),
\]

(42)

where \(z = [z_1^T, z_2^T, \ldots, z_N^T]^T \) and \(F_c := F_{z_1} \times F_{z_2} \times \cdots \times F_{z_N} \). Then, system (42) satisfies the conditions of Assumption 5 with respect to the sets \(A_c \) and \(F_c \).

As in Assumption 3 the conditions of Assumption 9 ask for Lipschitz continuity of the mapping \(F_c \), UGAS of the compact set \(A_c \), and forward invariance of the set \(F_c \) under bounded disturbances on the gradient.

Example 7. For the source seeking with bounded navigation sets considered in Example 3, consider a quadratic potential field \(\phi \) and simple stable linear vehicle dynamics of the form \(\dot{\theta}_i = -A_i \theta_i + B_i u_i \), with \(A_i = B_i > 0 \). Then, under Assumptions 6, 7 and 9 the projected dynamics (24) can be used to steer the position of the vehicles towards the point that maximizes the intensity \(\phi(z_i) \) subject to bounded navigation sets \(F_i \). Thus, satisfying Assumption 9.

Example 8. In order to solve in a distributed way the resource allocation problem described in Example 4, we can now consider the distributed dynamics given by

\[
\dot{z}_i = \sum_{j \in N_i} z_j \max \left\{ 0, \frac{\partial \phi(z_i)}{\partial z_j} - \frac{\partial \phi(z_i)}{\partial z_i} \right\} - z_i \sum_{j \in N_i} \max \left\{ 0, \frac{\partial \phi(z_i)}{\partial z_j} \right\},
\]

(43)

As shown in Theorem 3, whenever the function \(\phi \) is smooth and bounded, the dynamics (43) render forward invariant the simplex \(F_c = \left\{ z_i \in \mathbb{R}^N : \sum_{i=1}^N z_i = R, z_i \geq 0 \right\} \). Moreover, they render UGAS the optimal set \(A_c \) whenever \(\phi \) is strictly convex.

The following theorem, corresponding to the second main result of this paper, establishes the convergence properties of the CODES dynamics (40) applied to the MAS (31).

Theorem 2. Suppose that:

(a) The plant dynamics (31) and problem (34) satisfy Assumptions 6, 7, and 8 and the approximation error \(\epsilon_i \) in (37) satisfies the conditions of Assumption 3 for all \(i \in \mathcal{V} \).

(b) For each \(\tilde{p} > 0 \) each agent has access to input-output data \(\{z_{i,k}, y_{i,k}\}_{k=1}^{J} \) that satisfies condition (21) for all \(k \in \{1, 2, \ldots, J\} \), and the collection of data \(\{\{\tilde{b}_i(z_{i,k})\}_{k=1}^{J} : i \in \mathcal{V}\} \), with \(k^{th} \) entry of the \(i^{th} \) sequence given by

\[
\tilde{b}_i(z_{i,k}) := \frac{b_i(z_{i,k})}{1 + b_i(z_{i,k})^\top b_i(z_{i,k})},
\]

(44)

is \((\gamma, J, N) \)-CSR.

(c) The optimizing dynamics (40b) satisfy Assumption 9.
Then, for each pair $\Delta > \nu > 0$ there exists $p \in \mathbb{Z}_{>0}$ and $\epsilon_2^* \in \mathbb{R}_{>0}$ such that for each $\epsilon_2 \in (0, \epsilon_2^*)$ there exists $\epsilon_1^* > 0$ such that for all $\epsilon_1 \in (0, \epsilon_1^*)$ there exists a $T \in \mathbb{R}_{>0}$ such that the trajectories of the closed-loop system given by equations (31) and (40) with $|\hat{w}_i(0) - w^*| \leq \Delta$ for all $i \in \mathcal{V}$, satisfy

$$|z(t)|_{\mathcal{A}_i} \leq \nu, \quad |\hat{w}_i(t) - w^*_i| \leq \nu, \quad |\theta(t)|_{\mathcal{E}(\mathcal{A}_i)} \leq \nu, \quad |y_i(t) - y^*_i| \leq \nu,$$

for all $t \geq T$ and all $i \in \mathcal{V}$.

Theorem 2 says that by selecting a sufficiently large vector of basis functions for each agent, by inducing enough time scale separation in the closed-loop system, and by using data that is cooperative sufficiently rich and consistent with input-output behaviors at steady state, the CODES dynamics converge in finite time to an arbitrarily small neighborhood of the optimal set \mathcal{A}_c. Moreover, by continuity and stability, the CODES dynamics also satisfy the robustness result of Corollary 1, i.e., there exists a $\rho^* > 0$ such that any measurable additive perturbation p satisfying $\sup_{t \geq 0} |\rho(t)| \leq \rho^*$, and acting on the states and dynamics of the system, does not dramatically modify the convergence properties of the algorithm.

Remark 9. In the context of classic adaptive parameter estimation and stabilization, the work introduced a cooperative persistence of excitation condition of the form

$$\int_{t}^{t+T} \sum_{i=1}^{N} \hat{b}_i(r) \hat{b}_i^\top(r) dr \geq \gamma I,$$

which has also been used to study neuro-adaptive learning controllers for multi-agent systems. While the (γ, J, N)-CSR condition is similar to this excitation condition, inequality (46) needs to be verified for all past and future times. Therefore, the (γ, J, N)-CSR condition (38) can be seen as a data-driven relaxation of (46) that can be verified a priori.

We finish this section by pointing out that when the number of agents in the MAS is $N = 1$, the CODES dynamics reduce to the DES dynamics and the (γ, J, N)-CSR condition (38) reduces to the (γ, J)-SR condition (16). However, when $N > 1$ the requirements on the data and the optimizing dynamics for the CODES dynamics and the DES dynamics are in general different.

5 | ANALYSIS

In this section we present the convergence analysis of the DES dynamics and the CODES dynamics. Since some steps are identical, we present the repeated steps only once.

5.1 Analysis of the DES Dynamics

The analysis of the DES dynamics is based on two main parts. First, we will establish suitable convergence properties for the data-driven dynamics under the assumption that the plant is at steady state. After this, we will show that the closed-loop system with plant dynamics is stable provided the parameters (ϵ_1, ϵ_2) are orderly chosen sufficiently small with respect to the transient behavior of the agents.

The following four lemmas will be instrumental for our results:

Lemma 1. Let $b : \mathbb{R}^n \to \mathbb{R}^n$ be a continuous function. Then,

$$|\Psi(z)| = \left| \frac{b(z)}{1 + b(z)^\top b(z)} \right| \leq 1, \quad (47)$$

for all $z \in \mathbb{R}^n$.

Proof. We have that $|b(z)| \leq 1 + |b(z)|^2$ for all $z \in \mathbb{R}^n$. Adding $|b(z)|^2$ and $|b(z)|^4$ to the right hand side of this inequality we obtain:

$$|b(z)| \leq 1 + 2|b(z)|^2 + |b(z)|^4 = (1 + |b(z)|^2)^2, \quad (48)$$

for all $z \in \mathbb{R}^n$. Thus,

$$\left| \frac{b(z)}{1 + b(z)^\top b(z)} \right| = \frac{1}{(1 + |b(z)|^2)} |b(z)| \leq 1. \quad (49)$$
Lemma 2. Suppose that Assumption 3 holds and that the recorded data is \((\gamma, J)\)-SR. Then, for each pair \((\tilde{v}, c) \in \mathbb{R}_2\) with \(\tilde{v} < \sqrt{2c}\) there exists a sufficiently large \(p \in \mathbb{Z}_{>0}\) and \(\tilde{p}^* > 0\) such that for each \(\tilde{p} \in (0, \tilde{p}^*)\) the perturbed dynamical system

\[
(\dot{w}, x) \in \left(\{w^*\} + \sqrt{2cB} \right) \times F,
\]

where

\[
\begin{align*}
\dot{w} &= -a_1 \Psi(z) \left(\dot{\phi}(z) - \phi(z) \right) - a_2 \sum_{k=1}^{J} \Psi(z_k) \left(\dot{\phi}(z_k) - \phi(z_k) + \tilde{p} \right), \\
\dot{z} &= 0
\end{align*}
\]

renders UGAS a compact set \(M \subset \left(\{w^*\} + \sqrt{2cB} \right) \times F\).

Proof. The proof follows similar ideas as the proofs in [13] and [53]. Fix the pair \(\tilde{v}, c > 0\) and the constants \(a_1, a_2 > 0\). Let the pair \((\gamma, J)\) be generated by the \((\gamma, J)\)-SR assumption, and define

\[
\begin{align*}
\tilde{a} &= \max\{a_1, a_2\}, \\
\tilde{a} &= \min\{a_1, a_2\}.
\end{align*}
\]

Define the constants \(\tilde{p}^* > 0\) and \(\delta > 0\) as

\[
\delta = \tilde{p}^* = \frac{\tilde{v}\gamma \tilde{a}}{4(1 + J) \tilde{a}}.
\]

Let the Weierstrass high-order approximation theorem generate sufficiently many basis functions \(b_i : \mathbb{R}^n \rightarrow \mathbb{R}, i \in \{1, 2, \ldots, p\}\), such that (10) holds with \(\delta^2\) given by (55) and let \(\tilde{p} \in (0, \tilde{p}^*)\). Define a function \(\rho : \mathbb{R}^n \rightarrow \mathbb{R}^n\) as:

\[
\rho(z) = a_1 \tilde{b}(z) e(z) + a_2 \sum_{k=1}^{J} \tilde{b}(z_k) e(z_k) + \alpha_2 \sum_{k=1}^{J} \Psi(z_k) \tilde{p}.
\]

where \(\tilde{b}\) is defined as in (44). By Lemma 1 and the triangle inequality it follows that

\[
|\rho(z)| \leq (1 + J) \tilde{a} (\delta + \tilde{p})
\]

\[
= (1 + J) \tilde{a} (2\tilde{p}).
\]

for all \(z \in F\). Define the following matrix-valued function:

\[
P(z) := a_1 \tilde{b}(z) \tilde{b}(z)^\top + a_2 \sum_{k=1}^{J} \tilde{b}(z_k) \tilde{b}(z_k)^\top.
\]

Since the data is \((\gamma, J)\)-SR, we have that

\[
\sum_{k=1}^{J} \tilde{b}(z_k) \tilde{b}(z_k)^\top \geq \gamma I_p,
\]

and since the matrix \(a_1 \tilde{b}(z) \tilde{b}(z)^\top\) in (54) is symmetric and positive semidefinite for all \(z \in F\), the matrix-valued function \(P(z)\) satisfies

\[
P(z(t)) > \gamma I_p,
\]

along any trajectory \(z\) generated by system (50). Let \(\tilde{w} = \dot{w} - w^*\), and consider the error dynamics

\[
\dot{\tilde{w}} = -a_1 \tilde{b}(z) \tilde{b}(z)^\top \tilde{w} - a_2 \sum_{k=1}^{J} \tilde{b}(z_k) \tilde{b}(z_k)^\top \tilde{w} + a_1 \frac{\tilde{b}(z)}{1 + b(z)^\top b(z)} e(z) + a_2 \sum_{k=1}^{J} \frac{\tilde{b}(z_k)}{1 + b(z_k)^\top b(z_k)} e(z_k) + \alpha_2 \sum_{k=1}^{J} \Psi(z_k) \tilde{p},
\]

Using the following quadratic Lyapunov function

\[
V(\tilde{w}) = \frac{1}{2} \tilde{w}^\top \tilde{w},
\]

we obtain that the derivative of \(V\) along the solutions of (50) satisfies:

\[
\dot{V} = -\tilde{w}^\top P(z) \tilde{w} + \tilde{w}^\top \rho(z),
\]

\[
\leq -a_1 \tilde{w}^\top \tilde{w} + (1 + J) \tilde{a} (2\tilde{p})
\]

\[
\leq -\frac{1}{2} \gamma |\tilde{w}|^2, \quad \forall \ |\tilde{w}| \geq \frac{4(1 + J) \tilde{a}}{\gamma} = \tilde{v}.
\]

Since \(|\tilde{w}| \leq \tilde{v}\) implies that \(V(\tilde{w}) \leq 0.5\tilde{v}^2\), it follows that for any \(c \geq 0.5\tilde{v}^2\) we have \(\tilde{v}B \subset L_c\), where \(L_c := \{\tilde{w} \in \mathbb{R}^p : V(\tilde{w}) \leq c\}\). Thus, for any \(c \geq 0.5\tilde{v}^2\) the sets \(L_c\) are forward invariant. Therefore, every solution of (50) is complete, and by the inequality (58) there exists \(T > 0\) such that \(|\tilde{w}(t), z(t)| \leq \tilde{v}B \times F\) for all \(t \geq T\), i.e., the trajectories of \(\tilde{w}\) are uniformly ultimately bounded.
By using Corollary 7.7, we can conclude the existence of a uniformly globally asymptotically stable set \(\mathcal{M} \subset (\{ w^* \} + \bar{v} B) \times F \) for the constrained dynamics \(\bar{w} \). This establishes the result.

Lemma 3. Suppose that Assumption 5 holds and consider the perturbed optimization dynamics

\[
z \in K, \quad \dot{z} = F_z \left(\nabla \phi(z) + \mathcal{O}(\hat{\delta}), z \right),
\]

where \(\hat{\delta} > 0 \). Then, for each \(\nu > 0 \) there exists \(\delta^* > 0 \) such that for all \(\hat{\delta} \in (0, \delta^*) \) every solution is complete and there exists a UGAS compact set \(\Omega \subset \mathcal{A} + \nu B \).

Proof. Let \(\hat{F}_2(z) := F_z(\nabla \phi(z), \nu) \). By items (a) and (b) in Assumption 5 and Lemma 7.20, the inflated system

\[
\dot{z} \in F_\rho(z) := \overline{\mathcal{O}} \hat{F}_2 \left((z + \rho B) \cap F \right) + \rho B,
\]

renders the set \(A \) SGPAS as \(\rho \to 0^+ \). Moreover, by Lemma 3, for each \(\rho > 0 \) there exist \(\delta^* > 0 \) sufficiently small such that

\[
F_z \left(\nabla \phi(z) + \delta B, z \right) \subset F_\rho(z), \quad \forall \ z \in F.
\]

Thus, for any \(\hat{\delta} \in (0, \delta^*) \) every solution of the perturbed system (59) is also a solution of the perturbed differential inclusion (60), which implies that for any \(\nu > 0 \) there exists \(\delta^{**} > 0 \) such that for any \(\hat{\delta} \in (0, \delta^{**}) \) every solution of (59) satisfies the following bound

\[
|z(t)|_A \leq \beta(|z(0)|_A, t) + \nu,
\]

for all \(t \in \text{dom}(z) \) and for some \(\beta \in K \mathcal{L} \). By item (c) in Assumption 5 it follows that \(\text{dom}(z) = [0, \infty) \). By Corollary 7.7, we obtain the existence of a compact set \(\Omega \subset \mathcal{A} + \nu B \) that is UGAS for system (59). This establishes the result.

Lemma 4. Suppose that Assumptions 2, 3 and 5 hold, and that the sequence of normalized data \(\{ b(z_k) \}_{k=1}^J \) with \(k \)-th entry given by (44) is \((\gamma, J) \)-SR. Then, for each pair \((\bar{v}, c) \in \mathbb{R}_{\geq 0}^2 \) with \(\bar{v} < \sqrt{2\kappa} \) there exists \(p \in \mathbb{Z}_{>0} \) and \(\bar{\rho}^* > 0 \) such that for each \(\bar{\rho} \in (0, \bar{\rho}^*) \) there exists \(\varepsilon_2^* \in \mathbb{R}_{>0} \) such that for each \(\varepsilon_2 \in (0, \varepsilon_2^*) \) the dynamics

\[
\begin{align}
\frac{d\hat{w}}{d\tau} &= -\frac{1}{\varepsilon_2} \left(\alpha_1 \Psi(z) \left(\hat{\phi}(z) - \phi(z) \right) + \alpha_2 \sum_{k=1}^J \Psi(z_k) \left(\hat{\phi}(z_k) - \phi(z_k) + \hat{\rho} \right) \right), \\
\frac{dz}{d\tau} &= F_z \left(\nabla b(z)^T \hat{w}, z \right),
\end{align}
\]

constrained to the set \((\{ w^* \} + cB) \times F \) render UGAS a compact set \(\Omega_{\varepsilon_2, \bar{\rho}} \subset (\{ w^* \} + cB) \times (\mathcal{A} + \nu B) \).

Proof. System (63) is a singularly perturbed system in normal form. Its boundary layer dynamics are given by

\[
\begin{align}
\dot{\hat{w}} &= -\frac{1}{\varepsilon_2} \left(\alpha_1 \Psi(z) \left(\hat{\phi}(z) - \phi(z) \right) + \alpha_2 \sum_{k=1}^J \Psi(z_k) \left(\hat{\phi}(z_k) - \phi(z_k) + \hat{\rho} \right) \right), \\
\dot{z} &= 0.
\end{align}
\]

By Lemma 2, the dynamics (64) constrained to the sets \((\{ w^* \} + cB) \times F \) render UGAS a compact set \(\Omega_{\varepsilon_2, \bar{\rho}} \subset (\{ w^* \} + \nu B) \times F \). Therefore, the quasi-steady state value of \(\hat{w} \) satisfies \(|\hat{w}_{ss} - w^*| \leq \bar{v} \). The reduced dynamics of (63) are obtained by substituting \(\hat{w} \) in (63b) by its quasi steady-state value \(\hat{w}_{ss} = w^* + \mathcal{O}(\bar{v}) \), i.e.,

\[
\begin{align}
z &\in F, \quad \dot{z} = F_z \left(\nabla b(z)^T w^* + \mathcal{O}(\bar{v}), z \right), \\
&= F_z \left(\nabla \phi(z) + \mathcal{O}(\bar{v} + \hat{\delta}), z \right), \\
&= F_z \left(\nabla \phi(z) + \mathcal{O} \left(\bar{v} + \frac{\bar{v} \gamma a}{4(1 + J)a} \right), z \right).
\end{align}
\]

where the last equality follows by (52). Using the definition of \(\bar{v} \) in (58), we obtain:

\[
\begin{align}
\bar{v} + \frac{\bar{v} \gamma a}{4(1 + J)a} &= \bar{v} \left(\frac{4(1 + J)\bar{a} + \gamma a}{4(1 + J)a} \right) \\
&= \frac{4(1 + J)a}{4(1 + J)a + \gamma a} \left(\frac{4(1 + J)\bar{a} + \gamma a}{4(1 + J)a} \right) \bar{\delta}
\end{align}
\]
Therefore, the reduced dynamics are given by
\[z \in \mathcal{F}, \quad \dot{z} = F_z \left(\nabla \phi(z) + O(\delta), z \right). \]

Since \(\delta \) was generated by Lemma 3, it follows that the reduced dynamics render UGAS a compact set \(\Omega \subset \mathcal{A} + \nu \mathcal{B} \). By singular perturbation theory, it follows that the original dynamics (63) render SGPAS as \(\epsilon \to 0^+ \) the set \((\{w^*\} + \mathcal{C}) \times (\mathcal{A} + \nu \mathcal{B}) \). Therefore, every complete solution of (63) generates trajectories \(z \) that converge to \(\mathcal{A} + \nu \mathcal{B} \) before some finite time \(T > 0 \). Completeness of solutions follows by the forward invariance properties of the set \((\{w^*\} + \mathcal{C}) \times \mathcal{F} \).

Proof of Theorem 1 and Corollary 1

Fix \(\Delta > \nu > 0 \), and let \(a_1, a_2 \geq 0 \). Let \(c = \Delta \) and let Lemma 3 generate \(\delta^* > 0 \). Let \(\delta \in (0, \delta^*) \) be sufficiently small such that \(\delta < \sqrt{2c} \), where the pair \((\gamma, \mathcal{J}) \) comes from the \((\gamma, \mathcal{J}) \)-SR assumption. Define the constant \(\bar{\nu} := \frac{d(1+J^*)}{4(1+J^*)+2} \) and consider the closed-loop system dynamics
\[\dot{\theta} = f(\theta, z), \quad \dot{\tilde{w}} = -\frac{1}{\epsilon_1} \left(a_1 \Psi(z) \left(\dot{\phi}(z) - h(\theta, z) \right) + a_2 \sum_{k=1}^{J} \Psi(z_k) \left(\dot{\phi}(z_k) - y_k \right) \right), \]
\[\dot{z} = \epsilon_1 F_z \left(\nabla b(z)^T \tilde{w}, z \right), \]
constrained to the set \(\Theta \times (\{w^*\} + \mathcal{C}) \times \mathcal{F} \). Consider the change of time scale induced by the change of variable \(\tau = t \epsilon_1 \), which generates the following dynamics in the \(\tau \)-time scale
\[\frac{d\theta}{d\tau} = \frac{1}{\epsilon_1} f(\theta, z), \quad \frac{d\tilde{w}}{d\tau} = -\frac{1}{\epsilon_1} \left(a_1 \Psi(z) \left(\dot{\phi}(z) - h(\theta, z) \right) + a_2 \sum_{k=1}^{J} \Psi(z_k) \left(\dot{\phi}(z_k) - y_k \right) \right), \]
\[\frac{dz}{d\tau} = F_z \left(\nabla b(z)^T \tilde{w}, z \right). \]

For values of \(\epsilon_1 > 0 \) sufficiently small, this system is a singularly perturbed system with fast dynamics given by equation (69a), and slow dynamics given by equation (69b)–(69c). The boundary layer dynamics of this system are obtained by setting \(\epsilon_1 = 0 \) in (68), i.e.,
\[\dot{\theta} = f(\theta, z), \quad \dot{\tilde{w}} = 0, \quad \dot{z} = 0. \]

By Assumption 1 for each fixed pair \((\tilde{w}, z) \), the plant dynamics in (70) render globally asymptotically stable the quasi-steady state manifold \(\Theta^* = \mathcal{L}(z) \). Therefore, the dynamics (69) have a well-defined reduced system, obtained by substituting \(\theta = \mathcal{L}(z) \) in equation (69b):
\[\frac{d\tilde{w}}{d\tau} = \frac{1}{\epsilon_1} \left(a_1 \Psi(z) \left(\dot{\phi}(z) - \dot{\mathcal{L}}(z) \right) + a_2 \sum_{k=1}^{J} \Psi(z_k) \left(\dot{\phi}(z_k) - y_k \right) \right), \]
\[\frac{dz}{d\tau} = F_z \left(\nabla b(z)^T \tilde{w}, z \right). \]

Using equation (4):
\[\frac{d\tilde{w}}{d\tau} = \frac{1}{\epsilon_2} \left(a_1 \Psi(z) \left(\dot{\phi}(z) - \phi(z) \right) + a_2 \sum_{k=1}^{J} \Psi(z_k) \left(\dot{\phi}(z_k) - \phi(z_k) \right) + \bar{\rho} \right), \]
\[\frac{dz}{d\tau} = F_z \left(\nabla b(z)^T \tilde{w}, z \right), \]
where \(\bar{\rho} := \sum_{k=1}^{J} \Psi(z_k)(\phi(z_k) + y_k) \), which, by Lemma 1 and Assumption 4 satisfies \(|\bar{\rho}| \leq \epsilon \). Therefore, system (72) corresponds to the same dynamics (63), studied in Lemma 1, and the convergence result of the Theorem follows directly by combining the stability result of Lemma 2 with the stability properties of the open-loop plant dynamics (70), and singular perturbation theory Thm. 2. Corollary 1 follows now directly by the continuity and stability properties of the DES dynamics, and by Lemma 7.20.
5.2 Analysis of the CODES Dynamics

The analysis of the CODES dynamics (40) follows similar ideas to the analysis of the DES dynamics (18): First, we establish suitable convergence properties for the learning dynamics (2) under condition (b) of Theorem 2. After this, the dynamics (40) are analyzed under the assumption that the outputs ϕ_i are at steady state. Finally, we study the stability of the closed-loop system by using singular perturbation theory. Since some of the steps are identical to the proof of Theorem 1 we present only the new technical lemmas needed to establish the result.

Let $\tilde{\omega}_i = \tilde{\omega}_i - \omega^*$ be the individual parameter estimation error and let $y_{ik} = \phi(z_{ik}) + \Theta(\rho)$. Using (35)-(37) the parameter estimation error dynamics of each agent are given by

$$\dot{\tilde{\omega}}_i = -a_i \tilde{b}_i(z_i) \tilde{b}_i(z_i)\tilde{I} \tilde{\omega}_i - a_2 \sum_{j \in N_i} \tilde{b}_j(z_{ik}) \tilde{b}_j(z_{ik})\tilde{I} \tilde{\omega}_i - a_3 \sum_{j \in N_i} a_{ij}(i\tilde{\omega}_i - \tilde{\omega}_j) + \rho_i(z_i).$$

(73)

where $z_i : \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}^n$ is generated by the dynamics (40), and $\rho(z_i)$ is given by

$$\rho(z_i) := a_i \tilde{b}_i(z_i) \tilde{b}_i(z_i) + a_2 \sum_{j \in N_i} \tilde{b}_j(z_{ik}) \tilde{b}_j(z_{ik}) + a_3 \sum_{j \in N_i} a_{ij}(i\tilde{\omega}_i - \tilde{\omega}_j).$$

(74)

Define $\tilde{\omega} := [\tilde{\omega}_1^\top, \tilde{\omega}_2^\top, ..., \tilde{\omega}_N^\top]^\top$, $B(z) := \text{diag} \{ \tilde{b}_1(z_1), \tilde{b}_2(z_2), ..., \tilde{b}_N(z_N) \}$, $\hat{B}_k := \text{diag} \{ \tilde{b}_1(z_{1k}), \tilde{b}_2(z_{2k}), ..., \tilde{b}_N(z_{Nk}) \}$, and $\rho(z) := [\rho_1(z_1)^\top, \rho_2(z_2)^\top, ..., \rho_N(z_N)^\top]^\top$, which leads to the error estimation dynamics in vectorial form:

$$\dot{\tilde{\omega}} = -a_i \hat{B}(z) \hat{B}(z)^\top \tilde{\omega} - a_2 \sum_{k=1}^J \hat{B}_k \hat{B}_k^\top \tilde{\omega} - (a_3 \mathcal{L} \otimes I_p) \tilde{\omega} + \rho(x),$$

(75)

$$= - \left[a_i \hat{B}(z) \hat{B}(z)^\top + a_2 \sum_{k=1}^J \hat{B}_k \hat{B}_k^\top + (a_3 \mathcal{L} \otimes I_p) \right] \tilde{\omega}(t) + \rho(x)$$

$$= -\Omega(z) \tilde{\omega} + \rho(z),$$

where

$$\Omega(z) := a_i \hat{B}(z) \hat{B}(z)^\top + a_2 \sum_{k=1}^J \hat{B}_k \hat{B}_k^\top + a_3 (\mathcal{L} \otimes I_p).$$

(76)

The following two lemmas characterizes the convergence properties of the error dynamics (75).

Lemma 5. Let $z : \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}^N$ be a continuous function, and suppose that condition (b) of Theorem 2 holds. Then, there exists $\delta_1, \delta_2 \in \mathbb{R}_{>0}$ such that

$$\dot{\tilde{\omega}}_i \mathcal{I}_{N_p} \geq \Omega(z(t)) \geq \delta_i \alpha \mathcal{I}_{N_p}$$

(77)

for all $t \geq 0$, where $\tilde{\omega} := \max \{ \alpha_1, \alpha_2, \alpha_3 \}$ and $\alpha := \min \{ \alpha_1, \alpha_2, \alpha_3 \}$.

Proof. The proof combines ideas from the proofs of Theorem 1 and Theorem 2. Since the graph is connected and undirected, the Laplacian matrix \mathcal{L} is symmetric and positive semidefinite. Similarly, the matrices $a_i \Phi(z) \Phi(z)^\top$ and $(a_i \mathcal{L} \otimes I_p)$ are symmetric and positive semidefinite for any pair $(a_1, a_2) \in \mathbb{R}_{\geq 0}^2$. Moreover, the matrix $\mathcal{L} \otimes I_p$ has only p zero eigenvalues, whose orthogonal unit eigenvectors are $v_i = \frac{1}{\sqrt{N}} \mathbb{I} \otimes e_i$, for all $i \in \{ 1, 2, ..., p \}$, with $e_i \in \mathbb{R}$ being the unitary vector with nonzero element at the ith entry. The orthogonal unit eigenvectors associated to the positive eigenvalues $\lambda_{p+1}, ..., \lambda_{N_p}$ are denoted as $u_{p+1}, ..., u_{N_p}$. Since the eigenvectors of the symmetric matrix $a_i \mathcal{L} \otimes I_p$ form an orthogonal basis in \mathbb{R}^{N_p}, any vector $y \in \mathbb{R}^{N_p}$ can be written as $y = \sum_{i=1}^{N_p} c_i u_i + \sum_{i=p+1}^{N_p} c_i v_i$, with $c_i \in \mathbb{R}$ for all i, where without loss of generality we consider unitary vectors $y \in \mathbb{R}^{N_p}$. We then have two possible cases:

(a) Suppose that $\sum_{i=p+1}^{N_p} c_i^2 \neq 0$, then

$$y^\top \Omega(z)y = y^\top \left[a_i \hat{B}(z) \hat{B}(z)^\top + a_2 \sum_{k=1}^J \hat{B}_k \hat{B}_k^\top \right] y + y^\top (a_3 \mathcal{L} \otimes I_p) y.$$

(78)
Using spectral decomposition of \((\alpha_3 \mathcal{L} \otimes I_p)\), the second term of (78) reduces to \(\sum_{i=p+1}^{Np} \alpha_3 c_i^2 \lambda_i\). Let \(\lambda_2\) be the smallest positive eigenvalue of the Laplacian matrix \(\mathcal{L}\). It follows that \(\sum_{i=p+1}^{Np} \alpha_3 c_i^2 \lambda_i \geq \alpha_3 \lambda_2 \sum_{i=p+1}^{Np} c_i^2\), and (78) satisfies

\[
y^T \Omega(x) y \geq \alpha_1 \lambda_2 \sum_{i=p+1}^{Np} c_i^2 > 0,
\]

for all \(z \in \mathbb{R}^{nN}\) and all \(y \in \mathbb{R}^{Np}\), where the last inequality follows by the assumption that \(\sum_{i=p+1}^{Np} c_i^2 \neq 0\). By the contradiction argument of (78) Eq. (29)-(30) it follows that \(\Omega(x(t))\) is uniformly positive definite, i.e., the eigenvalues of \(\Omega(x(t))\) have a uniform positive lower bound that holds for all \(t \geq t_0\) and \(t_0 \in \mathbb{R}_{\geq 0}\).

(b) Suppose that \(\sum_{i=p+1}^{Np} c_i^2 = 0\), which implies that \(\sum_{i=1}^{Np} c_i^2 = 1\). Then, it must be the case that \(\sum_{i=1}^{p} c_i^2 \neq 0\). Using \(y = \sum_{i=1}^{p} c_i v_i\), we obtain

\[
y^T \Omega(x) y = \alpha_1 y^T \tilde{B}(z) \tilde{B}(z)^T y + \alpha_2 y^T \sum_{k=1}^{J} \tilde{B}_k \tilde{B}_k y.
\]

Expanding \(z\) in the second term of (80) we obtain

\[
\alpha_2 \left(\sum_{i=1}^{p} c_i v_i \right)^T \left[\sum_{k=1}^{J} \tilde{B}_k \tilde{B}_k^T \right] \left(\sum_{i=1}^{p} c_i v_i \right),
\]

which can be written as \(\alpha_2 C^T V^T \left[\sum_{k=1}^{J} \tilde{B}_k \tilde{B}_k^T \right] V C\), where \(C := [c_1, c_2, \ldots, c_m]^T\) and \(V := [v_1, v_2, \ldots, v_m]^T\). Since \(v_i = \frac{1}{\sqrt{N}} 1 \otimes e_i\), we obtain

\[
V^T \left[\sum_{k=1}^{J} \tilde{B}_k \tilde{B}_k^T \right] V = \sum_{k=1}^{J} V^T [\tilde{B}_k \tilde{B}_k^T] V = \sum_{k=1}^{J} \tilde{B}_k \tilde{B}_k^T \geq \epsilon I_p,
\]

for some \(\epsilon \in \mathbb{R}_{>0}\), where the inequality follows by the \((\gamma, J, N)\)-CSR condition. Using (81) and (82) we obtain

\[
\alpha_2 C^T V^T \left[\sum_{k=1}^{J} \tilde{B}_k \tilde{B}_k^T \right] V C \geq \alpha_2 \epsilon \sum_{i=1}^{p} c_i^2 > 0
\]

which implies that \(y^T \Omega(x) y\) given by (80) is uniformly positive definite for all \(y \in \mathbb{R}^{Np}\) and \(z \in \mathbb{R}^{Nn}\).

The conclusion of the two cases establishes the existence of the pair \(\delta_1, \delta_2\) in (77).

Lemma 6. Suppose that condition (b) of Theorem 2 holds. Then, for each pair \((\tilde{v}, \tilde{c}) \in \mathbb{R}_{>0}^2\) with \(\tilde{v} < \sqrt{2\tilde{c}}\) there exists a sufficiently large \(p \in \mathbb{Z}_{>0}\) such that the constrained dynamical system

\[
(\tilde{w}, x) \in \sqrt{2 \tilde{c}} \mathbb{B} \times \mathcal{F}_c, \quad \begin{cases}
\dot{\tilde{w}} &= -\Omega(z)\tilde{w} + \rho(z), \\
\dot{z} &= 0
\end{cases}
\]

renders UGAS a compact set \(\mathcal{M} \subset \bar{\tilde{v}} \mathbb{B} \times \mathcal{F}_c\).

Proof. Fix the pair \(\tilde{v}, \tilde{c} > 0\) and the constants \(\alpha_1, \alpha_2, \alpha_3 > 0\). Let the Weierstrass high-order approximation theorem generate sufficiently many basis functions \(h_{i\ell} : \mathbb{R}^n \to \mathbb{R}, \ell \in \{1, 2, \ldots, p\}\), for each agent \(i \in \mathcal{Y}\), such that (36) holds for all agents with

\[
\delta = \frac{\tilde{v} \epsilon_2 a}{4 \sqrt{N(1 + J)\tilde{a}}},
\]

where the constants \(\gamma, J\) are generated by the \((\gamma, J, N)\)-CSR condition on the data. Let \(\bar{\rho} = \delta\) and consider the quadratic Lyapunov function \(V(\tilde{w}) = 0.5 \tilde{w}^T \tilde{w}\), which is positive definite and radially unbounded. The derivative \(\dot{V}\) along the solutions of (84) satisfies

\[
\dot{V} \leq -\epsilon_2 a |\tilde{w}|^2 + \tilde{w}^T \rho(x), \\
\leq -\epsilon_2 a |\tilde{w}|^2 + |\tilde{w}||\rho(x)|,
\]

which completes the proof.
where we used the lower bound of (77). Since \(|\rho(z_i)| \leq (1 + J)\delta \) for all \(i \in \mathcal{V} \), it follows that \(|\rho(z)| \leq \sqrt{N(1 + J)\delta} \). Thus, \(\dot{V} \) satisfies
\[
\dot{V} \leq -\varepsilon_2 \|\dot{w}\|^2 + |\dot{w}|\sqrt{N(1 + J)\delta},
\]
\[
\leq -\frac{1}{2} \varepsilon_2 \|\dot{w}\|^2, \quad \forall \|\dot{w}\| \geq \frac{2\sqrt{N(1 + J)\delta}}{\varepsilon_2} = \bar{v}.
\]

where the last equality follows by the definition of \(\delta \). This establishes forward invariance of the level sets \(L_c := \{\dot{w} \in \mathbb{R}^{Np} : V(\dot{w}) \leq c\} \) for \(c > 0.5\bar{v}^2 \), and uniform ultimate boundedness of the trajectories \(\dot{w} \), with a uniform ultimate bound \(|\dot{w}| \leq \bar{v} \). Since every solution of (84) with \((\dot{w}(0), x(0)) \in L_c \times \mathcal{F}_c \) is complete, by Corollary 7.7 there exists a UAGS compact set \(\mathcal{M}_c \subset \mathbb{V} \times \mathcal{F}_c \) for the dynamics (84).

\[\square \]

Proof of Theorem 2

With Lemma 6 in hand we can now follow the exact same steps of the proof of Theorem 1 in order to analyze the closed-loop system, given by
\[
\dot{\theta} = f(\theta, z) \quad (86a)
\]
\[
\dot{w} = -\frac{\varepsilon_1}{\varepsilon_2} \left(a_1 \Psi(z) (\dot{\phi}(z) - h(\theta, z)) + a_2 \sum_{k=1}^{J} \Psi(z_k) (\dot{\phi}(z_k) - y_k) + a_3 \sum_{j \in \mathcal{N}_i} a_{ij}(\dot{w}_i - \dot{w}_j) \right) \quad (86b)
\]
\[
\dot{z} = \varepsilon_1 F_z (\nabla b(z)^\top \dot{w}, z). \quad (86c)
\]

In particular, in the \(\tau \)-time scale system (86) is a singularly perturbed system with fast dynamics corresponding to the plant dynamics (31), which have a well-defined quasi-steady state manifold. The slow dynamics correspond to the system
\[
\dot{\hat{w}} = -\frac{1}{\varepsilon_2} \left(a_1 \Psi(z) (\dot{\phi}(z) - h(\theta, z)) + a_2 \sum_{k=1}^{J} \Psi(z_k) (\dot{\phi}(z_k) - y_k) + a_3 \sum_{j \in \mathcal{N}_i} a_{ij}(\dot{w}_i - \dot{w}_j) \right) \quad (87a)
\]
\[
\dot{z} = F_z (\nabla b(z)^\top \dot{w}, z). \quad (87b)
\]

which is also a singularly perturbed system, with fast dynamics corresponding to the dynamics (73), and slow dynamics corresponding to the optimizing dynamics (12). By Lemma 6 and Assumption 2 both dynamics have suitable stability properties. Therefore, as in the proof of Theorem 1, singular perturbation theory Thm. 2 establishes the semi-global practical convergence result for the closed-loop system.

6 | NUMERICAL EXAMPLE: COOPERATIVE SOURCE SEEKING IN MULTI-VEHICLE SYSTEMS

In this section, we present a numerical example that illustrates the main properties of the algorithms considered in this paper. In particular, we consider a multi-vehicle localization problem characterized by four vehicles aiming to locate the source of a potential field by using only intensity measurements. We also illustrate the importance of the data-driven and the cooperative terms in the function (41).

Model of the System

We consider a MAS with four vehicles, where each vehicle can only sense the intensity of the potential field with respect to its current position. The vehicles share information via an undirected connected graph with edges (1, 2), (2, 3), (4, 1). For simplicity, each vehicle is modeled as a simple linear system with quadratic output, of the form
\[
\dot{\theta}_i = A_i \theta_i + B_i z_i, \quad (88a)
\]
\[
y_i = \theta_i^\top Q_i \theta_i + \varepsilon_i^\top \theta_i + d_i, \quad (89a)
\]

for all \(i \in \{1, 2, 3, 4\} \), where \(\theta_i \in \mathbb{R}^2 \) is the position on the plane of the \(i^{th} \) vehicle, \(z_i \in \mathbb{R}^n \) is the input, and \(y_i \in \mathbb{R} \) is the output. We assume that the matrices \((A_i, B_i) \) have already been designed to guarantee steady-state regulation, i.e., \(0 = A_i \theta_i^* + B_i z_i \Rightarrow \)
\(\theta^* = \ell_1(z) = z \). In particular, we consider the following matrices \((A_i, B_i)\) that satisfy this property:

\[
A_1 = -10I_2, \quad B_1 = 10I_2, \quad A_2 = -20I_2, \quad B_2 = 20I_2, \quad A_3 = -30I_2, \quad B_3 = 30I_2, \quad A_4 = -10I_2, \quad B_4 = 10I_2,
\]

and \(Q_i = -I_2, \quad c_i = [4, 8]^T, \quad d_i = -20 \) for all \(i \in \{1, 2, 3, 4\} \). The response map of the agents is then given by

\[
\phi(z) = -z_i^T I_2 z_i + z_i^T [4, 8]^T - 20, \quad \forall \ i \in \{1, 2, 3, 4\}.
\]

In order to locate the maximizer using individual real-time measurements \(y_i \) and input-output data \(\{z_{i,k}, y_{i,k}\} \), the vehicles implement the CODES dynamics [40]. The input of each vehicle is restricted to the individual navigation set \(F_i = p_i + 2B \), where \(p_1 = [-2, 8]^T, \quad p_2 = [6, 8]^T, \quad p_3 = [2, 0]^T, \) and \(p_4 = [2, 4]^T \). The feasible set of the overall MAS is \(F = F_1 \times F_2 \times \ldots \times F_N \).

The individual optimizing algorithm used by each vehicle is given by equation (24), which exploits the fact that the Euclidean plane. As it can be observed, all the vehicles converge to the maximizer of the response map [40], each agent implements polynomial basis functions that satisfy

\[
b_i(z) = \left[z_{i,1}^2, z_{i,1}, z_{i,2}^2, z_{i,2}, z_{i,1} z_{i,2}, 1 \right]^T \in \mathbb{R}^6, \quad \nabla b_i(z) = \left[2z_{i,1}, 1, 0, 0, 2z_{i,2}, 1 \right]^T \in \mathbb{R}^{6 \times 2}.
\]

Based on the transient performance of the plant dynamics (48), the parameters of the CODES are selected as \(\epsilon_1 = 7, \epsilon_2 = 0.58 \).

Generating the Individual Data

We assume that each vehicle has access to only 6 points of data \(\{z_{i,k}, y_{i,k}\} \) generated as follows:

\[
z_{1,k} = \left[\sin(40(k-1)T_i) + 1 \right], \quad z_{2,k} = \left[\cos(40(k-1)T_i) \right], \quad z_{3,k} = \left[\cos(15(k-1)T_i) \right], \quad z_{4,k} = \left[0 \right], \quad \forall \ k \in \{1, 2, \ldots, 6\},
\]

where \(T_i = 0.1 \). The output data \(y_{i,k} \) is obtained by sampling the output of each vehicle (48) after 5 seconds of applying the input \(z_{i,k} \) with initial conditions given by \(\theta_i(0) = p_i \) for all \(i \in \{1, 2, 3, 4\} \) and all \(\forall \ k \in \{1, 2, \ldots, 6\} \), which guarantees that condition (27) holds with \(\tilde{\rho} = 0.01 \). It can be verified that these data generate matrices \(D_i \) with normalized entries (44) with the following ranks:

\[
\text{rank}(D_1) = 3, \quad \text{rank}(D_2) = 3, \quad \text{rank}(D_3) = 3, \quad \text{rank}(D_4) = 1.
\]

Therefore, none of the vehicles has enough information to satisfy the \((\gamma, J)\)-SR condition (10). However, it can also be verified that \(\text{rank}(D_1 + D_2 + D_3 + D_4) = 6 \), which implies that their joint data satisfies the \((\gamma, J, N)\)-CSR condition (58).

Simulations

We simulate the CODES dynamics with \(\alpha_1 = \alpha_2 = \alpha_3 = 1 \). Vehicles \(\{1, 2, 3\} \) are initialized at the center of their navigation set \(F_i \), and vehicle 4 is initialized at the point \(\theta_4(0) = [1, 3]^T \). Figure 3 shows the resulting trajectories of the vehicles on the plane. As it can be observed, all the vehicles converge to the maximizer of the response map \(\phi \) subject to the local navigation constraints. Figure 4 shows the evolution in time of the position \(\theta \) and input \(z_i \) of the vehicles, which converge to the optimal value \(\theta^* = z^* \). As it can be observed, and in contrast to the traditional extremum seeking approaches, the trajectories of the vehicles do not exhibit oscillatory behaviors since no persistent exploratory signal is added to the input of the vehicles. Figure 5 shows the evolution in time of the parameter estimation errors \(\tilde{w} \), which converge to zero as expected.

No Cooperation between the Vehicles

In order to illustrate the importance of the cooperative term in equation (41), we now set \(\alpha_3 = 0 \), which implies that agents are not allowed to share their parameter estimation with their neighbors. By setting \(\alpha_3 = 0 \) the CODES dynamics reduce to the DES dynamics, which require that each agent satisfies the \((\gamma, J)\)-SR condition to guarantee convergence. Figure 6 shows the trajectories of the vehicles on the plane. As it can be observed, in this case the vehicles do not converge to the optimal joint set \(A_* \), which is expected given that the individual matrices of data \(D \) are not full column rank. Figures 7 and 8 show the evolution in time of the positions and inputs of the agents, as well as the parameter estimation error. As it can be observed, the estimation error does not converge to zero for all vectors \(\tilde{w} \).

No Recorded Data used by the Vehicles

We finish this section by considering the situation where agents are not allowed to use recorded data in the learning dynamics, i.e., \(\alpha_2 = 0 \) in (41). In this case, the trajectories of the vehicles are shown in Figure 9. Since the trajectories of the vehicles do not satisfy the PE condition, the vehicles are not able to achieve parameter estimation of the optimal weights \(w^* \), and they...
FIGURE 3 Trajectories of a MAS comprised of four vehicles with internal dynamics \(\mathcal{F} \), implementing the CODES dynamics to maximize their response map subject to local navigation constraints. The graph describes the communication link between the vehicles. The vehicle figure’s indicate the final position of each agent.

FIGURE 4 Evolution in time of the states and inputs of the vehicles. The dotted colored lines indicate the optimal points. The black dotted line corresponds to the inputs of the agents, while the solid colored line describes their position.

FIGURE 5 Evolution in time of the vector of parameter estimation errors associated to each vehicle.

converge to a non-optimal location inside their navigation set. Figures [10] and [11] show the evolution in time of the states, inputs, and parameter estimation error. As expected, the parameter estimation error does not converge to zero.

7 | CONCLUSIONS AND OUTLOOK

In this paper we presented a new class of data-enabled extremum seeking dynamics that rely on information-rich data sets instead of external time-varying dither signals. The algorithms are suitable for single-agent and multi-agent optimization problems subject to constraints characterized by compact sets. Sufficient conditions on the optimization dynamics and the richness of the data were presented for both single-agent and multi-agent systems. In the latter case, it was shown that cooperation between agents can be harnessed to compensate for the absence of individual information-rich data sets. Different examples of suitable optimization dynamics were also presented, and connections and differences with respect to existing results in concurrent learning and cooperative adaptive control were also discussed.
FIGURE 6 Trajectories of a MAS comprised of four vehicles with internal dynamics (88), implementing the CODES dynamics with no cooperation, i.e., \(\alpha_3 = 0 \). The graph describes the communication link between the vehicles. The vehicle figure’s indicate the final position of each agent. The green circle indicates the theoretical optimal location of each vehicle.

FIGURE 7 Evolution in time of the states and inputs of the vehicles. The dotted colored lines indicate the optimal points. The black dotted line corresponds to the inputs of the agents, while the solid colored line describes their position. Agents do not converge to their optimal value due to lack of coordination and sufficiently rich data.

FIGURE 8 Evolution in time of the vector of parameter estimation errors associated to each vehicle when no cooperation is used by the vehicles. As expected, all the errors do not converge to zero.

There exist several potential future extensions to the results presented in this paper. First, it is of interest to consider optimization dynamics that are characterized by hybrid dynamical systems rather than ODEs. This setting is relevant because hybrid optimization dynamics can be exploited to achieve global convergence results in some non-convex optimization problems, and can also be exploited to induce robust acceleration via resetting mechanisms\(^9\). Second, it is desirable to relax the homogeneity assumption on the cost function of the agents considered in Section 4. This would probably require either strong richness condition on the data of each agent, or stronger conditions on the basis that parameterize the functions. Third, while all the dynamics considered in this paper were based on one-layer neural network approximations, it is of interest to design multi-layer approximations in the spirit of deep learning. Since multi-layer approximations usually lead to quadratic estimation errors \(e^2 \) that are not convex with respect to the estimation error \(\hat{\theta} \), this may provide further motivations for the development of hybrid data-driven ES dynamics able to escape local minima.
FIGURE 9 Trajectories of a MAS comprised of four vehicles with internal dynamics \(\alpha_2 = 0 \), implementing the CODES dynamics with no data. The graph describes the communication link between the vehicles. The vehicle figure's indicate the final position of each agent. The green circle indicates the theoretical optimal location of each vehicle.

FIGURE 10 Evolution in time of the states and inputs of the vehicles. The dotted colored lines indicate the optimal points. The black dotted line corresponds to the inputs of the agents, while the solid colored line describes their position. Agents do not converge to their optimal value due to lack of representative data in the learning dynamics.

FIGURE 11 Evolution in time of the vectors of parameter estimation errors associated to each vehicle when no data is used in the dynamics. As expected, the errors do not converge to zero.

ACKNOWLEDGMENTS

The authors would like to acknowledge support in part from CU Boulder ASIRT Seed Grant No. 11005946, by ONR Minerva under grant No. N00014-18-1-2160, by NSF under grant Nos. CAREER CPS-1851588, S&AS 1849198 and SATC-1801611.

Conflict of interest

The authors declare no potential conflict of interests.
References

AUTHOR BIOGRAPHY

Jorge I. Poveda received the M.Sc. and Ph.D. degrees in Electrical and Computer Engineering from the University of California at Santa Barbara in 2016 and 2018, respectively. He was a Postdoctoral Fellow at Harvard University in 2018 and a research intern at the Mitsubishi Electric Research Laboratories (MERL) during the summers of 2016 and 2017. He was a Best Student Paper Award Finalist in the 2017 IEEE Conference on Decision and Control, and he received the CCDC Outstanding Scholar Fellowship at UCSB. His research interests lie in the design and analysis of high-performance optimization, learning, and control algorithms for cyber-physical systems using tools from nonlinear control theory, hybrid dynamical systems, and game theory. Since January 2019 he is affiliated with the Department of Electrical, Computer, and Energy Engineering at the University of Colorado, Boulder, where he is currently an Assistant Professor.

Mouhacine Benosman. Mouhacine Benosman is a Senior Research Scientist at Mitsubishi Electric Research Labs (MERL) in Cambdrige, USA. Before joining MERL he worked at Reims University, France, Strathclyde University, Scotland, and National University of Singapore. His research interests include nonlinear control of flexible systems, multi-agent distributed control with applications to robotics and smart-grid systems, and learning and adaptive control. He has published more than 70 peer-reviewed journal articles and conference papers, and more than 20 patents in the field of mechatronics systems control. He is a senior member of the IEEE, Associate Editor of the Control System Society Conference Editorial Board, Associate Editor of the Journal of Optimization Theory and Applications, and Senior Editor of the International Journal of Adaptive Control and Signal Processing.

Kyriakos G. Vamvoudakis was born in Athens, Greece. He received the Diploma (a 5 year degree, equivalent to a Master of Science) in Electronic and Computer Engineering from Technical University of Crete, Greece in 2006 with highest honors. After moving to the United States of America, he studied at The University of Texas and he received his M.S. and Ph.D. in Electrical Engineering in 2008 and 2011 respectively. During the period from 2012 to 2016 he was a project research scientist at the Center for Control, Dynamical Systems and Computation at the University of California, Santa Barbara. He was an assistant professor at the Kevin T. Crofton Department of Aerospace and Ocean Engineering at Virginia Tech until 2018. He is now an assistant professor at The Daniel Guggenheim School of Aerospace Engineering at Georgia Institute of Technology. His research interests include optimal control, reinforcement learning, and game theory. Recently, his research has focused on cyber-physical security, and safe autonomy. Prof. Vamvoudakis is the recipient of a 2018 National Science Foundation CAREER Award, the 2016 International Neural Network Society Young Investigator (INNS) Award, the Best Paper Award for Autonomous/Unmanned Vehicles at the 27th Army Science Conference in 2010, and the Best Researcher Award from the Automation and Robotics Research Institute in 2011. He currently is an associate editor of Automatica, an associate editor of the IEEE Computational Intelligent Magazine, an associate editor of IEEE Control Systems Letters, an associate editor of Journal of Optimization Theory and Applications, an associate editor of Control Theory and Technology, a registered electrical/computer engineer (PE), and a member of the IEEE Control Systems Society Conference Editorial Board.

How to cite this article: J. I. Poveda, M. Benosman, K. Vamvoudakis (2020), Data-Enabled Extremum Seeking: A Cooperative Concurrent Learning-Based Approach, under review.