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The observer design is based on the methodology recently introduced by the authors1, which
incorporates robustness to bounded model uncertainties, and data-driven auto-tuning of the
observer gains. An extensive numerical study on the 2D Boussinesq equations with parametric
uncertainties demonstrates the performance of our observer. The reported numerical results
show that the proposed observer allows estimation of the complete temperature and velocity
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Abstract

A robust, low-order POD-based state estimator, also known as an ob-

server, for the challenging fluid-dynamics test-case of uncertain 2D Boussi-

nesq equations is presented in this paper. The observer design is based on

the methodology recently introduced by the authors1, which incorporates

robustness to bounded model uncertainties, and data-driven auto-tuning

of the observer gains. An extensive numerical study on the 2D Boussinesq

equations with parametric uncertainties demonstrates the performance of

our observer. The reported numerical results show that the proposed ob-

server allows estimation of the complete temperature and velocity fields

from a reduced number of measurements. It is also shown that the pro-

posed observer is robust to changes or errors in the value of the Reynolds

number. In other words, we show that we can design the observer based
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1In [1] the authors introduced the methodology on an academic example, in the form of

a 1D Burgers equation. This paper on the other hand focuses on the application of this

methodology to a challenging thermo-fluid test-case, in the form of 2D Boussinesq equations.
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on an assumed uncertain value for the Reynolds number, and be able to

estimate the temperature and velocity solutions corresponding to actual

Reynolds number.

Keywords– Thermo-fluid flow state estimation, 2D Boussinesq equations, un-

certain Reynolds number, reduced-order models, POD, robustness, data-driven

learning, extremum-seeking application.

1 Introduction

An important problem in heating, ventilation, and air conditioning (HVAC)

management is the estimation of the entire spatially distributed airflow and

temperature profiles using a limited number of optimally located sensors placed

throughout a room. This problem is more generally known as observer design,

where a dynamical system, often mimicking the observed system dynamics, is

designed to estimate in real-time all the states of the system, from a limited

number of measurements.

Due to the complexity of the partial differential equations (PDEs) that model

indoor airflow and temperature, the observer design problem is challenging in

this case. Indeed, two well-known PDE models that describe these systems

are the Navier-Stokes (NS) equations for airflow, and the Boussinesq equations

for the coupled airflow and temperature model. Several observers have been

proposed for the NS equation, e.g., [2–7]. For the Boussinesq equation far fewer

estimation results are available due to the nonlinear coupling between the NS

equation and the energy equation, e.g., [11, 12]. Furthermore, this estimation

problem is rendered even more complex when one considers model uncertainties,

which are ubiquitous in real-life applications.

Indeed, there are many works that utilize adaptive control to design ob-

servers for PDE systems, where both system states and parametric uncertainties

are estimated, see e.g., [8] and references therein. However, the results are often

limited to linear or semi-linear PDEs with linear parametric uncertainty.

Compared to adaptive control, fewer works consider passive robust control
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to design observers for PDEs in the presence of parametric model uncertainties.

For instance, in [9], the authors consider the case of a PDE with a quadratic

nonlinearity where the states and measurements are subject to time-varying

disturbances, with a numerical validation of the observer on the 1D Burgers

equation, without temperature equation. In [10], the authors study the problem

of stabilization and observer design for the 1D heat equation with boundary

uncertainty and external disturbance. They propose a two-stage unknown input

observer to first estimate the uncertainty term and then observe the system

states. In the recent paper [7] the authors propose to use machine learning

in the form of deep neural networks to infer the relationship between sparse

measurements and full states of the system. They test their methodology on

the NS equations modeling a two-dimensional flow over a plate. Although, the

work is an interesting perspective on using machine learning for fluid dynamics

modeling, this approach intrinsically inherits the weak robustness characteristics

of deep neural networks, since based on offline data collection and training, and

thus has no theoretical robustness guarantees w.r.t. initial conditions errors or

experimental conditions mismatches, e.g., changes of the Reynolds number.

These results are interesting but they do not tackle the challenging case

of airflow and temperature estimation for the Boussinesq equations, for which

there are very few available results.

In [11], the authors studied the problem of designing a feedback control law

together with a reduced order observer, which locally stabilizes a two dimen-

sional thermal fluid modeled by the Boussinesq approximation. The authors

proposed to use a linear Luenberger observer based on point observations of the

linearized Boussinesq equations. However, no uncertainties were considered in

the observer design and its performance evaluation.

The problem of designing a robust observer for the Boussinesq equations

has been studied in [12], where the authors first used POD for model reduction,

followed by a Luenberger-like observer design, based on the notion of input-state

stability with respect to parameter uncertainties. These uncertainties were then

estimated online using a data-driven optimization algorithm.
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In this paper, we propose a robust observer for the 2D Boussinesq equations

with parametric uncertainties, based on a methodology that we introduced in [1]

for a class of spectral infinite-dimensional nonlinear systems. The observer is

designed to be robust to bounded additive uncertainties, and includes a data-

driven gain auto-tuning feature.

We want to underline here that the proposed approach is based on reduced

order modeling of the Boussinesq equation, more specifically for a lock-exchange

flow problem in 2D. There have been many studies of reduced order modeling

for the lock-exchange flow problem, e.g., [23–26], however, in this line of work

the goal of the reduced order model (ROM) is different from our goal in this

paper. Indeed, in the existing ROM literature the goal is to approximate the

original PDE model with a reduced order model which leads, for a given initial

condition and given experimental conditions, to open-loop solutions that are

close to the original PDE open-loop solutions for the same conditions. In con-

trast, in this work we seek to design a mathematical dynamical model, a.k.a.

observer, which is based on a ROM of the original PDE, however, this ROM-

based observer admits solutions that are convergent to the true solutions of the

original PDE model, for different initial conditions and possibly different exper-

imental conditions, e.g., a mismatch in the Reynolds number. This is due to

the fact that we include in the observer design terms that are based on sparse

real-time measurements from the observed system, i.e., from the solutions of

the original PDE. These measurements, together with the proper design of the

observer dynamics based on robust control theory, allows for the correction of

both initial condition mismatches and model uncertainties, as we will see in the

remaining of the paper.

In the sequel, we begin by introducing some basic definitions and notation

in Section 2. Section 3 recalls, for completeness, the observer design briefly

without restating the proofs that can be found in [1]. This approach is then

applied to the challenging uncertain 2D Boussinesq equations in Section 4, which

constitutes the main contribution of this paper. Concluding remarks are given

in Section 5.

4



2 Basic Notation and Definitions

For a vector q ∈ Rn, the transpose is denoted by q>. The Euclidean vector norm

for q ∈ Rn is denoted by ‖ · ‖ so that ‖q‖ =
√
q>q. The Frobenius norm of a

matrix A ∈ Rn×m, with elements aij , is defined as ‖A‖F ,
√∑ı=n

i=1

∑j=m
j=1 |aij |2.

The Kronecker delta function is defined as: δij = 0, for i 6= j and δii = 1. For

a symmetric matrix D ∈ Rn×n, λmax(D) denotes its maximum eigenvalue. We

shall abbreviate the time derivative by ḟ(t, x) = ∂
∂tf(t, x), and consider the

following Hilbert space: H = L2(Ω), Z1 = H1
div(Ω) ⊂ (H)d, d = 2 for velocity

and Z2 = H1(Ω) ⊂ H for temperature. Thus, Z1 is the space of divergence-

free vector fields on Ω with components in H1(Ω). Fixed Dirichlet boundary

conditions are also specified in the definition of the sets Z1 and Z2. We define

the inner product 〈·, ·〉H and the associated norm ‖ · ‖H on H as 〈f, g〉H =∫
Ω
f(x)g(x)dx, for f, g ∈ H, and ‖f‖2H =

∫
Ω
|f(x)|2dx. A function T (t, x) is

in L2([0, tf ];H) if for each 0 ≤ t ≤ tf , T (t, ·) ∈ H, and
∫ tf

0
‖T (t, ·)‖2Hdt < ∞

with analogous definitions for the vector valued functions in (H)d, d = 2. To

generalize the discussion below, we consider the abstract Hilbert space Z, and

later specialize to Z = Z1 × Z2 when considering our Boussinesq equation

examples.

3 Review of Observer Design

We consider the state estimation problem for nonlinear systems of the form

ż(t) = Az(t) +Bu(t) + h(z(t), u(t)), z(0) = z0,

y(t) = Cz(t),
(1)

where z0 ∈ D(A) ⊂ H, A is a linear operator that generates a C0-semigroup on

the Hilbert space H, B : Rm → H is an input operator, C : D(A) → Rp is the

bounded linear operator for measurements, and h contains higher-order terms.

For the well-posedness of the estimation problem, we assume that system (1)

satisfies the following assumptions.
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Assumption 1 The Cauchy problem for equation (1) has a solution with bounded

norm ‖z(t)‖H for any initial condition z0 ∈ D(A), and any t > 0.

Assumption 2 The function h : D(A) × Rm → [D(A)]
′

satisfies h(0, 0) = 0

and the local Lipschitz plus constant assumption: there is a nonnegative constant

β and for every pair (z, u) ∈ D(A) × Rm, there exist positive constants εz, εu,

Lz, and Lu such that

‖h(z, u)− h(z̃, ũ)‖H ≤ Lz‖z − z̃‖H + Lu‖u− ũ‖Rm + β,

for all (z̃, ũ) ∈ D(A)× Rm satisfying

‖z − z̃‖H < εz and ‖u− ũ‖Rm < εu.

Consider an observer with the following structure

˙̂z(t) = Acẑ(t) +Bcu(t) + Fy(t) +G(ẑ(t), u(t)), (2)

with ẑ(0) = ẑ0 ∈ D(Ac), and where Ac : Ĥ → Ĥ, Bc : Rm → Ĥ, F : Rp → Ĥ,

and G : Ĥ ×Rm → Ĥ are to be determined, where Ĥ ⊂ H is a low-dimensional

subspace that inherits the norm of H, i.e., ‖ · ‖Ĥ = ‖ · ‖H.

Possible choices for Ĥ may be the space spanned by a set of dominant eigen-

functions of A (a modal approximation) or a set of basis functions obtained by

performing a proper orthogonal decomposition (POD) of a collection of simu-

lations of (1) and truncating (a POD approximation), e.g. [13, 14]. Other basis

function choices might be required for different PDEs, as explained in Remark

2 in Appendix.

Let T : H → Ĥ be the orthogonal projector from H to Ĥ (hence, ‖T ‖H = 1)

and T † be the injection from Ĥ into H: T †ẑ = z for all ẑ ∈ Ĥ ⊂ H. Then we

define the reduced estimation error as

e(t) = ẑ(t)− T z(t) ∈ Ĥ. (3)

This can be used as a proxy for the state estimation error

ese ≡ T †ẑ − z ∈ H, (4)
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when T produces a small projection error (z − T †T z), since

ese(t) = T †e(t)−
(
z(t)− T †T z(t)

)
. (5)

When Ĥ is the span of r dominant POD basis functions and TPOD is the cor-

responding projection for a specific trajectory z, then TPOD minimizes the pro-

jection error

P(T , z) =

(∫ tf

0

‖z(t)− T †T z(t)‖2H dt

)1/2

, (6)

over all projections T into subspaces of H with dimension r, and where tf

denotes the finite time support over which the projection error is evaluated,

cf. [13].

We then choose

Bc = T B and G(ẑ, u) = T h(T †ẑ, u) (7)

for all ẑ ∈ Ĥ and u ∈ Rm.

We have shown in [1] that the solutions of the state observer defined by

(2) and (7) converges to the solutions of the states of the system (1) under

Assumptions 1, 2, if F , Ac, and T satisfy the conditions

[AcT − T A+ FC] z = 0, for all z ∈ D(A), (8)

‖exp(Act)‖Ĥ ≤M exp(−δt), for all t > 0 (9)

and,

δ > MLz, (10)

where M ≥ 1 and δ > 0.

As mentioned above, one possible choice for the design of the projection

operator T is the use of a POD approximation.

POD-based models are most known for retaining a maximal amount of en-

ergy in the reduced-order model [13, 14]. A POD basis is computed from a

collection of s time snapshots This approximation could be obtained using a

numerical method, such as FEM, or using direct measurements of the system

modeled by the PDE, if feasible. In this paper, the POD basis is computed
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from snapshots of approximate numerical solutions of the partial differential

equation.

To this end, we compute a set of s snapshots of approximate solutions as

S = {zn(t1, ·), ..., zn(ts, ·)} ⊂ Zn ⊂ H, (11)

of the dynamical system, usually obtained from a discretized approximation

of the model (1) in n dimensions. The {ti}si=1 are time instances at which

snapshots are recorded, and do not have to be uniformly spaced in general,

though for simplification, we assume uniformly spaced samples below. The

correlation matrix K is then defined as

Kij =
1

s
〈zn(ti, ·), zn(tj , ·)〉H, i, j = 1, ..., s. (12)

The normalized eigenvalues and eigenvectors of K are denoted by λi and vi,

respectively. Note that the λi are also referred to as the POD eigenvalues.

The ith POD basis function is computed as

φi(x) =
1

√
s
√
λi

s∑
j=1

[vi]jzn(tj , x), i = 1, ..., r, (13)

where r ≤ min{s, n} is the number of retained POD basis functions and depends

upon the application. The POD basis functions are orthonormal:

〈φi, φj〉H =

∫
Ω

φi(x)∗φj(x)dx = δij , (14)

where δij denotes the Kronecker delta function. In practice, it is more nu-

merically stable to compute the POD bases using a generalized singular value

decomposition (SVD) of the snapshot data S. This is related to the SVD, except

that it ensures that the orthogonality condition (14) holds.

Indeed, in this case we can approximate solutions to (1) in Ĥr using

zpodr (t, ·) =

r∑
i=1

qi(t)φi(·) ∈ Ĥr, (15)

where qi, i = 1, ..., r are the POD projection coefficients, and φi, i = 1, ..., r are

the POD basis functions. Note that qi(t) =
∫

Ω
φi(x)∗zn(t, x)dx.
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We then define the (orthogonal) projection operator T ≡ TPOD : H → Ĥr
as follows

[TPODz] (·) =

r∑
i=1

φi(·)〈φi, z〉H. (16)

The pseudo-inverse of T is the injection of Ĥr into H. Thus T †ẑ = z for all

ẑ ∈ Ĥr and since T is a projection operator, we have T T † = Ir.

Next, we define Ac : Ĥr → Ĥr as

Ac = T †∗AT †. (17)

With this selection, we can show that for any ẑ ∈ Ĥr with ‖ẑ‖Ĥ = 1, the

following holds: 〈Acẑ, ẑ〉 = 〈AT †ẑ, T †ẑ〉 ≤ max‖z‖H=1〈Az, z〉.

Finally, to satisfy condition (8), we define F as

F = (T A−AcT )C†, (18)

where C† is a left pseudo-inverse of the bounded linear operator C, and C†C is

a projection onto the complement of the null space of C.

3.1 Robust Observer Design

Let us consider the case where the system (1) contains an uncertainty on h, as

follows

ż(t) = Az(t) +Bu(t) + h(z(t), u(t)) + ∆h(z(t)), (19a)

y(t) = Cz(t), (19b)

from z(0) = z0, where the uncertainty ∆h : H → H, satisfies the following

assumption.

Assumption 3 The uncertainty ∆h : H → H, is uniformly bounded: there

exists a constant ∆hmax > 0 such that ‖∆h(z)‖H ≤ ∆hmax, ∀z ∈ H.

Now, if we examine the dynamics of the observer (2), we see that the observer

convergence relies on the design of the nonlinear function G, in (7). To robustify
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the nominal design presented in Section 3, and account for the additional un-

certainty term ∆h, we use a Lyapunov redesign approach and add an additional

term to G. The robust observer, where we use ẑ to denote the estimate of z, is

now written as

˙̂z(t) = Acẑ(t) +Bcu(t) + Fy(t) +G(ẑ, u) + ∆G(ẑ), (20)

with Ac, Bc, F, G satisfying conditions (7), (8), (9),(10), and where ∆G : Ĥ →

Ĥ, must be designed to compensate for any negative impact that the uncertainty

∆h might have on the convergence of e.

Carrying out a similar analysis for the robust observer (20), under (7), and

(8), the associated error dynamics satisfy

ė(t) =Ace(t) +G (e(t) + Tz(t), u(t))

− T h(z(t), u(t)) + ∆G(ẑ)− T ∆h(z), (21)

where, ∆G is defined as

∆G(ẑ) = k∆hmaxC̃
∗C̃e, (22)

for k < 0, and C̃ satisfying

C̃T = C. (23)

It is shown in [1] that the solutions of the error dynamics (21) for the observer

(7) and (20) , under Assumption 1, and conditions (8), (9), and (10), converge

to the invariant set

S = {e ∈ Ĥ, satisfying, k‖e‖Ĥλmin(C̃∗C̃) + 1 ≥ 0},

and the estimation error upper-bound is given by

‖e(t)‖Ĥ ≤
−1

kλmin(C̃∗C̃)
+ (‖e(0)‖Ĥ + 1

kλmin(C̃∗C̃)
)exp(k∆hmaxλmin(C̃∗C̃)t).

(24)

3.2 Learning-based Tuning of the Observer

In this section we want to merge together the passive robust observer given by

(20), and (22), with an active learning algorithm, to improve the performance
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of the observer.

To find the optimal value of the observer gain, we propose to use a data-

driven optimization algorithm to auto-tune the gain online, while the observer

is estimating the system states. This problem is strongly related to iterative

feedback tuning (IFT), e.g., [17–21]. We will follow [20,21], and use an extremum

seeking (ES)-based auto-tuning approach.

We first write the feedback gain as

k = knom + δk, knom < 0, (25)

where knom represents the nominal value of the observer gain, and δk is the

necessary adjustment of the gain to improve the transient performance of the

observer.

We then define the learning cost function

Q(δk) =
∫ T

0
||ey||2Hdt,

ey(δk) = ŷ(t; δk)− y(t),

ŷ = Cẑ,

(26)

where T > 0, ẑ is solution of the observer (20), (22), and y is the measured out-

put. Furthermore, for analysis purposes, we will need the following assumptions

on Q.

Assumption 4 The cost function Q(δk) in (26) has a local minimum at δk =

δk∗.

In order to tune δk we propose to use the time-varying amplitude-based ES

algorithm, e.g., [22],

ẋk = −δkωk sin(ωkt)Q(δk),

δk(t) = xk(t) + ak sin(ωkt), (27)

ȧk = −δkωkεkak,

where δk > 0, ωk > 0, εk > 0.
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More explicitly the gain k is tuned by the following updates:

k(t) = knom + ∆k(t), knom < 0

∆k(t) = δk((j − 1)∆t), (j − 1)∆t ≤ t < j∆t, j = 1, 2, 3...
(28)

where δk is defined by the forward first order Euler discretization of (26), (27),

with a time step equal to ∆t.

It is shown in [1] that the observer (7), (20), and (22), where the gain k

is tuned iteratively using (26), (27), and (28) leads to uniformly bounded state

estimates, and that under Assumption 4, the gain k converges to a neighborhood

of its local optimum value knom + δk∗.

4 Main Result: Observer design for the Uncer-

tain Boussinesq equations

4.1 Formulating the Boussinesq estimation problem under

model uncertainties

We consider the (uncertain) incompressible Boussinesq equations that describe

the evolution of velocity v, pressure p, and temperature T of a fluid. This

system could serve as a model for the flow of air and temperature in a room.

The coupled equations reflect the conservation of momentum, mass, and energy,

respectively

∂v

∂t
+ v · ∇v = −∇p+∇ · τ(v) + RiT ê3, (29)

∇ · v = 0, (30)

∂T

∂t
+ v · ∇T = ∇ ·

(
1

R̃ePr
∇T
)
, (31)

where R̃e is the uncertain Reynolds number, s.t., R̃e = Renom + ∆Re, Renom

is the nominal known value of the Reynolds number, and ∆Re models the

unknown change in the Reynolds number. This might be due to a temperature

or humidity change that affects some of the material properties used in the
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nondimensionalization, such as the density and viscosity, or a rescaling of the

nominal velocity in the system. Pr is the Prandtl number, Ri is the Richardson

number, and τ(v) = 1
R̃e

(∇v + ∇v>) cf. [23]. We write (29)-(31) in the state-

space form

ż(t) = Az(t) +Bu(t) + h(z(t), u(t)) + ∆h(z(t)), z(0) = z0,

y(t) = Cz(t),
(32)

where, z = (v, T )> ∈ Z1 ×Z2, the A operator, written to emphasize the upper

triangular structure, is defined as

Az =

 1
Re
∇ · (∇v +∇v>) + Ri Te3

0 + 1
RePr

∆T

 , (33)

while the nonlinear term is

h(z, u) = (−v · ∇v,−v · ∇T)>, (34)

∆h =

 ∆µ∇ · (∇v +∇v>)

∆µ 1
Pr

∆T

 ,
∆µ = −∆Re

Renom(Renom+∆Re)

(35)

B = 0, and C : D(A) → Rp is the bounded linear operator for measurements,

defined as

y(t) =

(∫
Ω1

z(t, x)dx, ...,

∫
Ωp

z(t, x)dx

)>
=: Cz(t). (36)

We assume that the sensors record the average temperature and velocity over

selected subdomains Ωi, i = 1, ..., p.

4.2 Numerical solver and test-case setup

Our numerical example consists of the lock-exchange problem where a fluid in

an elongated domain is initially at rest but has two distinct air temperatures

(or salinity for water) on either side of a gate. The gate is removed at t = 0 and

buoyancy forces created by the change in temperature drives the evolution of

the fluid flow. Note that this test problem has been used to study POD-based

reduced-order models in a number of recent papers, see for example [24–26].
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The Boussinesq equations are solved in the domain Ω = (0, 8)× (0, 1) and over

the time interval [0, 16] (tf = 16) using a mixed formulation with the Taylor-

Hood finite element pair for the velocity and pressure coupled with a quadratic

finite element approximation for the temperature. We proceed with two sets of

numerical tests, corresponding to two different flows, one laminar characterized

by a low Reynolds number Re = 88 which is usually associated with weak multi-

scale interactions and considered to be numerically easier to solve, and one more

dominant nonlinear effects (“turbulent”)2 characterized by a higher Reynolds

number Re = 8, 800. In the laminar case we use a coarse mesh with 513 × 65

equally spaced nodes and connected to form 16, 384 quadratic finite elements.

In the second case, a fine mesh with 2, 049× 257 equally spaced nodes and con-

nected to form 262, 144 quadratic finite elements were used. A novelty of these

meshes is that the elements are symmetrically arranged (i.e. preserving x- and

y-reflections as well as rotational symmetries about the center point (4, 0.5)).

These finite elements were used for the spatial discretization of functions in

Ω. The time discretization is performed using a Crank-Nicolson method with

∆t = 2 × 10−3 for the Re = 88 and ∆t = 2.5 × 10−4 for the Re = 8, 800 simu-

lations. A penalty method was used to impose the incompressibility constraint.

See [27] for more details. Our example uses v(0, ·) = 0 and sets the initial tem-

perature for the lock-exchange problem to be T (0, ·) to be −0.5 for x ∈ (0, 4), 0.5

for x ∈ (4, 8) and 0 otherwise. No-slip boundary conditions for v and insulated

boundary conditions for T are used over the entire boundary of Ω. The symme-

tries and anti-symmetries of the solutions are imposed throughout the numerical

simulation. For the simulations used to generate our data in the case of laminar

flow, we used the parameters Re = 88, Pr = 0.712, and Ri = 12.9132. In the

case of high Reynolds number flow, we used the parameters Re = 8800, with

the same values of Pr and Ri. These non-dimensional parameters are based on

the height of the domain (4.08 m), and the initial temperature difference 1◦K,

2We do not mean that this turbulent flow corresponds to any physical flow, since the tests

are done in 2D, but we mean that the case is challenging to solve numerically due to the

strong multiscale interactions associated with high Reynolds numbers.
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a nominal velocity of (0.0325m/s), β = 3.43 × 10−3/◦K, and the parameters

for air at 293◦K (ρ = 1.205kg/m3, ν = 1.511 × 10−5, cp = 1005J/kg◦K, and

κ = 0.0257kg m/◦Ks). The simulation data for the case Re = 88 was used to

compute ten temperature POD modes and ten velocity POD modes. For the

more challenging case Re = 8800 the data was used to compute twenty temper-

ature POD modes and twenty velocity POD modes. These POD basis are then

used to build our TPOD operators (16) in our observer design as discussed in the

section below. We also underline here that the cases with high Reynolds num-

bers in 2D used here are not meant to represent any physical configuration, since

physical turbulent flows cannot be represented by 2D Boussinesq equations.

4.3 Comments on the observer design

In this section, we provide commentary on applicability of the theoretical justi-

fication for our observer design for the Boussineq equations.

First, note that the operator A, defined in (33), with Z1 = {v ∈ H1|∇ · v =

0 in Ω,v · n = 0 on ∂Ω} and Z2 = L2(Ω) generates a C0-semigroup cf. [28].

Second, although we know that Assumption 2 does not hold in the case of the

challenging Boussinesq equations3, we observe4 in Figure 1 that the maximum

of the ‖.‖H-norm of the gradient of h over space and time is indeed bounded

in our case along the test trajectories, thus the computed solutions that we

are considering in these tests observe a local Lipschitz-like bound along the

computed trajectories. If this held in general, the Lipschitz constant could be

equated to the maximum of the gradient norm.

To compute the matrices for the nominal observer (2) and (7), we computed

the POD projection matrix TPOD using5 in the first laminar case 10 POD ba-

3Unfortunately, the existence and uniqueness of solutions for the Boussinesq equations is

still an open problem, thus we cannot claim that Assumption 2 is valid in this case for all

boundary and initial conditions, since we cannot guarantee the existence of a bounded smooth

solution for all cases.
4Similar plots have been obtained for both Reynolds numbers.
5We underline here that this choice is empirical and cannot be determined beforehand in

closed-from. However, one way to numerically determine the minimal number of PODs is to
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sis functions for the velocity and 10 POD basis functions for the temperature

variables computed from snapshots taken every ∆t = 2× 10−3, and in the sec-

ond turbulent case 20 POD basis functions for the velocity and 20 POD basis

functions for the temperature variables computed from snapshots taken every

∆t = 2 × 10−3. The projection matrix has been computed using the 20 POD

basis function in the first case, and the 40 POD basis functions in the second

case. Then, the matrix Ac has been computed using equation (17), which led to

a stable matrix with a maximum eigenvalue of −1.5 in the first case, and −10

in the second case.

We consider p = 20, and p = 40 measurements of the form (36), for the first

and second case, respectively. These sensors record the average temperature

and the velocity component averages were taken at ten unique locations for

each quantity and selected using the Q-DEIM algorithm [29]. In particular,

this algorithm was used to find those point locations that best distinguish the

POD modes. The size of the integration intervals Ωi, i = 1, ..., p was selected

as 0.03 × 0.03. Furthermore, to simulate a more realistic scenario, we added

bounded measurement noise in the form of random additive disturbances of

maximum value 10−3.

Next, F has been computed as an approximation of the Sylvester equation

in condition (8), using the solution given by equation (18). As explained in

(Remark 1, in Appendix), due to the high discretization dimension needed to

solve for the Boussinesq equation, e.g., in the second case the matrix C is in

R40×1579779, which makes solving for F challenging, i.e., the pseudo-inverse in

(18) induces numerical errors, i.e., ‖AcT − T A + FC‖F = 0.0925. In fact, we

can see in Figure 2 the evolution of the norm of the residual term ‖ResD0z‖H
in time along the trajectories of our second case example6. We can see that this

norm is bounded by a relatively large value equal to 12. However, this residual

numerical error does not affect the convergence of the observer (see Remark 1, in

start with a large number of basis and gradually decrease the number until the estimation

performance starts deteriorating, then pick the last number of PODs.
6Similar plots can be obtained for the first case.
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Appendix). To verify numerically that condition (D1) is satisfied in the second

test-case, we report in Figure 3, the Frobenius norm of exp(Act), which shows

a clear exponential decrease, with an estimate of M = 6.325, and an estimate

of the decrease rate δ = 9.4932, this leads to an upper-limit on Lz of about 1.5,

for condition (D2) to be satisfied.
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Figure 1: Maximum of ‖∇h‖H over Ω as function of the simulation time interval

[0, tf ]

4.4 Numerical results- Nominal case (laminar flow)

We report in Figures 4, 5, and 6 the results of full-order finite element simula-

tion of (29)-(31) for the first case, i.e., low Reynolds number Re = 88. The first

snapshot, shown in Figure 4, is taken at the initial instant t = 1, the second

snapshot, shown in Figure 5, corresponds to t = 10, and finally the third snap-
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Figure 2: ‖ResD0z‖H as function of nondimensional time

shot shown in Figure 6, corresponds to t = 16. We see in Figure 4 the setup of

this experiment, where two fluids of different temperatures are separated by a

vertical barrier at x = 4. On the right side of the barrier we have high temper-

ature, whereas, on the left side of the barrier we have low temperature. Based

on this setup, when we remove the barrier between the two fluids, we expect the

low density, warmer fluid to rise, while the high density, cooler fluid sinks, as

seen in Figure 4. In this case of low Reynolds number, we can observe that the

flow is laminar with no vortices formation during transient, when these fluids

slide past one another.

We test the observer (20), (22), with k = −102, and an artificial value

for the uncertainty bound ∆hmax = 1. Note that we call ∆hmax here to be

artificial since we do not have any explicit model uncertainties, instead, this

upper-bound is meant to take into account the additive errors obtained from
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Figure 3: ‖exp(Act)‖2 as function of nondimensional time

the approximation (18), see (Remark 1, in Appendix). First we see in Figure 7

that the norm of the POD coefficient estimation error is decreasing fast, reaching

a value less than 1 by t = 2. This is due to the direct influence of the feedback

gain on the convergence rate, as shown in equation (24). This leads to a good

estimation of the POD coefficients, as seen for example in Figure 8, where we

report the first four POD coefficients for the velocity and temperature. We see

that in this laminar case, there are no residual errors in the estimation. We will

see later that this is not the case for the more challenging turbulent flow.

We report some snapshots obtained from the observer estimates. For in-

stance, in Figure 9 we report the estimate of the velocity and temperature

snapshots at t = 1, and the associated estimation error in Figure 10. We can

see that the estimation error is large, which is due to the imposed initial errors

on the estimated POD coefficients, see Figure 7. However, we can see in subse-
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quent snapshots estimate, reported in Figure 11 for t = 6, Figure 13 for t = 16,

that the observer quickly recovers a good estimation performance, as confirmed

by the small estimation errors seen in Figure 12 for t = 6, and Figure 14 for

t = 16.

Since this case of laminar flow was rather easy to estimate using a small

feedback gain and since after testing several other gains we did not notice any

major estimation performance difference, we will not test for this case the gain

auto-tuning algorithm. We will test the robustness of the estimator, as well as,

the gain auto-tuning on the more challenging turbulent flow case, as reported

in the next section.

4.5 Numerical results- Nominal case (turbulent flow)

In Figures 15, 16, and 17 we present the full-order finite element simulation of

(29)-(31). The first snapshot, shown in Figure 15, is taken at the initial instant

t = 1, the second snapshot, shown in Figure 16, corresponds to t = 10, and

finally the third snapshot shown in Figure 17, corresponds to t = 14.4. In this

case of high Reynolds number, we can observe that vortices are generated, then

diffuse as these fluids slide past one another.

First we report the results of the nominal observer, i.e., k = 0 in equations

(20), (22). The ‖.‖Ĥ-norm of the estimation error e in equation (3), of the

POD coefficients is shown in Figure 18. One can see that the norm of the

error decreases as expected. However, the decrease rate is not optimal, since

with this fluid example, most of the interesting dynamics of the fluid happens

before t = 4, which means that the nominal observer, although stable, does not

lead to a good estimation performance. This is due to the residual errors in

approximately satisfying (8), as explained above, which implies a higher initial

value of the error norm upper-bound [1], but also due to the slow error decay

rate obtained from condition (10).

We saw in Section 3.1 that this performance can be improved by using the

robustification term in the observer, i.e., k 6= 0. We now report the results
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Figure 4: Case one: Re = 88: True solution profile at t = 1 (Top: velocity,

Bottom: temperature)
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Figure 5: Case one: Re = 88: True solution profile at t = 6 (Top: velocity,

Bottom: temperature)
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Figure 6: Case one: Re = 88: True solution profile at t = 16 (Top: velocity,

Bottom: temperature)
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Figure 7: Case one: Re = 88: ‖e‖Ĥ as function of time- nominal case with

k = −100

corresponding to this case. We test the observer (20), (22), with k = −105,

and an artificial value for the uncertainty bound ∆hmax = 1. Note that we call

∆hmax here to be artificial since we do not have any explicit model uncertainties,

instead, this upper-bound is meant to take into account the additive errors

obtained from the approximation (18), see (Remark 1, in Appendix). First

we see in Figure 19 that the norm of the POD coefficient estimation error is

decreasing faster than in the case with no robustification shown in Figure 18.

This is due to the direct influence of the feedback gain on the convergence

rate, as shown in equation (24). This leads to a better estimation of the POD

coefficients, as seen for example in Figure 20, where we report the first four POD

coefficients for the velocity and temperature. We can see that some residual

oscillations remain on the coefficients estimate, which are partly due to the fact
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Figure 8: Case one: Re = 88: Estimated vs. actual POD coefficients over time,

with k = −100 (Top: velocity PODs, Bottom: temperature PODs)
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Figure 9: Case one: Re = 88: Estimated solution profile at t = 1, with k = −100

(Top: velocity, Bottom: temperature)
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Figure 10: Case one: Re = 88: Estimated error profile at t = 1, with k = −100

(Top: velocity, Bottom: temperature)

27



Figure 11: Case one: Re = 88: Estimated profile at t = 6, with k = −100 (Top:

velocity, Bottom: temperature)
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Figure 12: Case one: Re = 88: Estimated error profile at t = 6, with k = −100

(Top: velocity, Bottom: temperature)
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Figure 13: Case one: Re = 88: Estimated solution profile at t = 16, with

k = −100 (Top: velocity, Bottom: temperature)
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Figure 14: Case one: Re = 88: Estimated error profile at t = 16, with k = −100

(Top: velocity, Bottom: temperature)
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that we are solely relying on noisy output measurements to reconstruct all the

POD coefficients. These oscillations are also partly due to the truncation of

higher POD modes, and we expect them to become more predominant if select

a lower number of PODs to design the observer.

To better evaluate the estimation performance of the observer in this case, we

also report some snapshots’ estimates. For instance, in Figure 21 we report the

estimate of the velocity and temperature snapshots at t = 1, and their associated

estimation error in Figure 22. We can see that the estimation error is large,

which is due to the imposed initial errors on the estimated POD coefficients, see

Figure 19. However, we can see in subsequent snapshots’ estimate, reported in

Figures 23 for t = 10, Figure 25 for t = 14.4, that the observer quickly recovers a

good estimation performance, as confirmed by the small estimation errors seen

in Figures 24 for t = 10, and Figure 26 for t = 14.4.

4.6 Numerical results-Uncertain case

Let us consider now the case where there are explicit parametric uncertainties

in the model. For instance, it is well known that in the setting of indoor airflow

modeling, the Reynolds number Re in the Boussinesq model can change based

on the room’s airflow inlets size or based on the air conditioning system aging

or degradation, e.g. [30]. In such cases, one can design the observer based

on an initial nominal value of Re, however, the observer will be run based

on measurements corresponding to a different flow, associated with a different

actual Re. We choose to focus on uncertainties in the Reynolds number, since

this case can clearly be cast in the form of our robust observer design presented

in Section 3.1. Indeed, if we examine equations (33) and (34), we can see that

an uncertainty in Re leads to an additive uncertainty term ∆h as defined in

(35).

To test this case, we use Re = 8800 as the nominal value and Reactual = 8000

as the actual value of the Reynolds number, associated with the measurements

that are fed back to the robust observer (20), (22). We implement the robust
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Figure 15: Case two: Re = 8800: True solution profile at t = 1 (Top: velocity,

Bottom: temperature)
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Figure 16: Case two: Re = 8800: True solution profile at t = 10 (Top: velocity,

Bottom: temperature)
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Figure 17: Case two: Re = 8800: True solution profile at t = 14.4 (Top: velocity,

Bottom: temperature)
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Figure 18: ‖e‖Ĥ as function of time- nominal case with k = 0

observer with the same nominal gain value k = −105, used in the previous

tests (Nominal case). Using the same nominal gain value allows us to test the

performance of the same observer, used in the nominal case, without adjustment

or learning of a new gain, and see if there is indeed a need of an online learning

step to improve the overall performance of the observer.

Let us first report in Figure 27 the norm of the error in the PODs coefficients

estimation. We can see that the error norm decreases rapidly from its initial

value of 10.54 to 2 but then remains in an oscillatory pattern around 2. At this

point, we conjecture that this relatively bad estimation performance, compara-

tively to the nominal performance seen in Figure 19, is caused by this parametric

uncertainty. We will come back to this statement later, and test if we can im-

prove this performance by adjusting the observer’s gain for this specific value

of uncertainty. Next, we report in Figures 28- Top, and Figure 28- Bottom, the
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Figure 19: ‖e‖Ĥ as function of time- nominal case with k = −105

first four POD coefficients’ estimate of velocity and temperature, respectively.

We can see that the estimated coefficients of temperature converge to the true

coefficients rapidly, however, the velocity estimated coefficients converge to the

true ones but remain oscillatory around the mean true values, as seen in the

PODs estimation error norm result described earlier. As explained in the nom-

inal case, these oscillations are partly due to the noisy output measurements7,

but in this uncertain case, the amplitude of these residual oscillations are higher

than in the nominal case, which is due to the parametric uncertainty which is

causing a bigger mismatch between the model used to design the observer and

the true flow measurements. To improve this performance, we want to learn a

more optimal observer gain, for this specific value of uncertainty. We do not

7We recall here that to simulate a more realistic scenario, we added bounded measurement

noise in the form of random additive disturbances of maximum value 10−3.
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Figure 20: Estimated vs. actual POD coefficients over time- nominal case with

k = −105 (Top: velocity PODs, Bottom: temperature PODs)
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Figure 21: Estimated solution profile at t = 1- nominal case with k = −105

(Top: velocity, Bottom: temperature)
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Figure 22: Estimated error profile at t = 1- nominal case with k = −105 (Top:

velocity, Bottom: temperature)
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Figure 23: Estimated profile at t = 10- nominal case with k = −105 (Top:

velocity, Bottom: temperature)
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Figure 24: Estimated error profile at t = 10 - nominal case with k = −105 (Top:

velocity, Bottom: temperature)
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Figure 25: Estimated solution profile at t = 14.4- nominal case with k = −105

(Top: velocity, Bottom: temperature)
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Figure 26: Estimated error profile at t = 14.4-nominal case with k = −105

(Top: velocity, Bottom: temperature)

44



know if such gain exists, so we start by checking how does the learning cost

function (26) vary as a function of the observer gain in this case. We show in

Figure 29 the plot of this output-based learning cost as function of the gain. It

is clear that the nominal value of the gain 105 is not optimal, since in this case,

the learning cost is smaller for lower gain values, and reaches a minimal value

for gains between −2.103 and −103. To check that this improvement in output

tracking performance translates indeed to an improvement of the whole state

estimate, and thus to the full velocity and temperature estimates, we plotted in

Figure 30 this learning cost for the whole state vector, i.e., by substituting C in

(26) with the identify matrix. We can see that the optimal region of estimation

gains in this case is similar to the one for the output-based learning cost, which

means that using the output-based learning cost in the extremum seeking algo-

rithm, to learn an optimal estimation gain online, will lead to an improvement

of the estimation performance for the full state vector.

Next, we report the results of the extremum seeking based online learning

of the observer gain. Indeed, we have implemented the learning algorithm (26),

(27), and (28) with the coefficients: ωk = 100, δk = 20, εk = 10−3, and ak(0) =

5× 103. We report in Figures 31, 32 the learning results. We can see in Figure

31 that the learning cost is minimized over the learning iterations. The learning

cost starts from about 215, which corresponds to the initial gain value of 105,

however, the learning cost decreases over the learning iterations, to reach a

near optimal value of 114, which corresponds to the gain value of 1700, Figure

33. Note that we stopped the learning iterations at 150 since the performance

optimization trend was clear, but one can use more iterations to fine-tune the

final value closer to the true optimum seen in Figure 29. Finally, for comparison

purposes, we show in Figure 34 the POD coefficients tracking error norm. We

can see the improvement of the tracking performance in comparison with the

results obtained for k = −105 depicted in Figure 27.
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Figure 27: ‖e‖Ĥ as function of time- uncertain case with k = −105

5 Conclusion

In this work we have proposed a POD-based reduced order model observer for

the uncertain 2D Boussinesq equations. The observer includes the POD-based

projection operator explicitly in its design. We then robustify this nominal ob-

server against additive bounded structured uncertainties using nonlinear robust

control tools. Finally, we add a layer of data-driven, realtime auto-tuning of the

observer gain, using an extremum seeking approach. The performance of the

observer is demonstrated on a challenging 2D Boussinesq test-case of unsteady

lock-exchange flow problem with uncertain Reynolds numbers. The results of

this work are encouraging and motivate us to pursue estimation for 3D Boussi-

nesq equations for which high Reynolds numbers translate directly to physical

turbulent flows, as well as experimental validations for indoor airflow estimation.
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Figure 28: Estimated vs. actual POD coefficients over time- uncertain case with

k = −105 (Top: velocity PODs, Bottom: temperature PODs)
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Figure 29: Learning cost as function of k: output-based (Top: full figure, Bot-

tom: zoom at the optimal region)
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Figure 30: Learning cost as function of k: state-based

Another important open topic would be to study the effect of the type of basis

function used for the observer design. For instance, it would be interesting to

see if dynamical mode decomposition (DMD) could be used in this framework.
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Figure 31: Learning cost as function of learning iterations

Appendix

Remark 1 [1]: We want to underline here that in applications, and due to the

finite number of sensors (even sparse in most real-life applications), it is clear

that equation (18), which stems from our POD formulation of the observer,

constitutes an approximation in a least-squares sense of the exact condition (8)

This is due to the fact that the pseudo-inverse C† is only an approximation

of the exact left-inverse of C, e.g. ( [15], pp. 451-452). This approximation

could also be obtained by directly minimizing the term [AcT − T A+ FC]z for

z ∈ span{φi}, i.e., along a simulated solution of the system. Another solution

would be to use the matrices decomposition used in [16] for solving a similar

Sylvester equation (in the ODE setting). However, such solution will also be

an approximation in our case of a non-square measurement operator C, i.e.,

less sensors than the large state variables number obtained from discretization.

In essence, what we need is for the term [AcT − T A+ FC] z(t) to be as small

as achievable, under the constraint of finite number of sensors. Indeed, the
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Figure 32: Gain learning as function of learning iterations

fact that condition (8) is not exactly satisfied does not change the exponential

convergence of the error, since if we denote by resSylvester the residual error

in solving the Sylvester equation AcT − T A + FC = 0, using (18), then due

to Assumption 1, one can bound the norm of the residual term resSylvesterz,

which can then be included in the constant term β. Additionally, the effect of

this bounded residual term can be compensated for by the robustification of the

observer, as presented in the next section.

Remark 2 [1]: In practice, we can control the projection error P(T , z) by

suitable selection of the trajectory data and choosing enough basis functions

r. However, we want to underline here the fact that the existence of such a

basis function with clear dominant modes is only ensured for some PDEs that

we denote here as spectral PDEs. In the case where such basis functions do

not exist, e.g. hyperbolic PDEs, one could use recent results that propose more

appropriate basis functions, e.g., [2, 31,32].
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Figure 34: ‖e‖Ĥ as function of time- uncertain case with k = −1700

[5] Reyhanoglu, M., MacKunis, W., Drakunov, S. V., and Ukeiley, L. (2011),

Nonlinear estimation of fluid flow velocity fields. In IEEE Conference on

Decision and Control, pp. 6931–6935.

[6] He, X., Hu, W., and Zhang, Y. (2018), Observer-based feedback boundary

stabilization of the Navier-Stokes equations Computer Methods in Applied

Mechanics and Engineering, 339:542–566.

[7] Nair, N. J. and Goza, A. (2020), Leveraging reduced-order models for state

estimation using deep learning Journal of Fluid Mechanics, 897 R1:1–13.

[8] Smyshlyaev, A. and Krstic, M. (2010), “Adaptive Control of Parabolic

PDEs,” Princeton University Press.

53



[9] Borggaard, J., Gugercin, S., and Zietsman, L. (2014), “Compensators via

H2-based Model Reduction and Proper Orthogonal Decomposition,” in

Proceedings of the 19th IFAC World Congress, South Africa, Cape Town,

pp. 7779–7784.

[10] Feng, H., and Guo, B.Z. (2017), “New unknown input observer and output

feedback stabilization for uncertain heat equation,” Automatica, 86:1–10.

[11] Hu, W., Singler, J. R., and Zhang, Y. (2016), “Feedback Control of a Ther-

mal Fluid Based on a Reduced Order Observer,” in 10th IFAC Symposium

on Nonlinear Control Systems NOLCOS, Monterey, California, pp. 116–

121.

[12] Koga, S., Benosman, M., and Borggaard, J. (2019), “Learning-Based Ro-

bust Observer Design for Coupled Thermal and Fluid Systems,” in IEEE

American Control Conference, to appear.

[13] Holmes, P., Lumley, J.L., and Berkooz, G. (1998), Turbulence, coherent

structures, dynamical systems and symmetry, Cambridge University Press.

[14] Kunisch, K., and Volkwein, S. (2007), “Galerkin proper orthogonal decom-

position methods for a general equation in fluid dynamics,” SIAM Journal

on Numerical Analysis, 40:492–515.

[15] Beutler. F. J., (1965), “The Operator Theory of the Pseudo-Inverse. I.

Bounded Operators,” Journal of Mathematical Analysis and Applications,

10:451–470.

[16] Witczak, M., Buciakowski, M., Puig, V., Rotondo, D., and Nejjari, F.

(2016), “An LMI approach to robust fault estimation for a class of nonlinear

systems,” International Journal of Robust and Nonlinear Control, 26:1530–

1548.

[17] Hjalmarsson, H. (1998), “Control of nonlinear systems using iterative feed-

back tuning,” in IEEE, Conference on Decision and Control, pp. 2083–

2087.

54



[18] Lequin, O., Gevers, M., Mossberg, M., Bosmans, E., and Triest, L. (2003),

“Iterative feedback tuning of PID parameters: comparison with classical

tuning rules,” Control Engineering Practice, 11:1023–1033.

[19] Hjalmarsson, H. (2002), “Iterative feedback tuning-an overview,” Interna-

tional Journal of Adaptive Control and Signal Processing, 16:373–395.

[20] Benosman, M. (2016), “Multi-Parametric Extremum Seeking-based Auto-

Tuning for Robust Input-Output Linearization Control,” Int. Journal of

Robust and Nonlinear Control, 26:4035–4055.

[21] Killingsworth, N.J., and Krstic, M. (2006), “PID tuning using extremum

seeking,” IEEE Control Systems Magazine, pp. 1429–1439.

[22] Tan, Y., Nesic, D., Mareels, I., and Astolfi, A. (2009), “On global extremum

seeking in the presence of local extrema,” Automatica, pp. 245–251.

[23] Benosman, M., Borggaard, J., San, O., and Kramer, B. (2017), “Learning-

based robust stabilization for reduced-order models of 2D and 3D Boussi-

nesq equationsl,” Applied Mathematical Modelling, 49:162–181.

[24] Du, J., Fang, F., Pain, C.C., Navon, I.M., Zhu, J., and Ham, D.A. (2013),

“POD reduced-order unstructured mesh modeling applied to 2D and 3D

fluid flow,” Computers and Mathematics with Applications, 65:362–379.

[25] San, O. and Borggaard, J. (2014), “Basis Selection and Closure for POD

Models of Convection Dominated Boussinesq Flows,” Proceedings of the

21st International Symposium on Mathematical Theory of Networks and

Systems, Groningen, The Netherlands.

[26] San, O. and Borggaard, J. (2015), “Principal interval decomposition frame-

work for POD reduced-order modeling of convective Boussinesq flows,” In-

ternational Journal for Numerical Methods in Fluids, 78:37–62.

[27] Gunzburger, M. (1989), Finite Element Methods for Viscous Incompressible

Flows: A Guide to Theory, Practice, and Algorithms, Academic Press.

55



[28] Badra, M. (2012), “Abstract settings for the stabilization of nonlinear

parabolic system with a Riccati-based strategy. Application to Navier-

Stokes and Boussinesq equations with Neumann or Dirichlet control,” Dis-

crete and Continuous Dynamical Systems–Series A, 252(9):5042–5075.

[29] Drmac, Z. and Gugercin, S. (2016), A new selection operator for the dis-

crete empirical interpolation method—improved a priori error bound and

extensions. Methods and Algorithms for Scientific Computing, 32(8):631–

648.

[30] de Wilde, P., Tian, W., and Augenbroe, G. (2011), “Longitudinal predic-

tion of the operational energy use of buildings,” Building and Environment,

46:1670–1680.

[31] Balajewicz, M.J., Dowell, E.H., and Noack, B.R. (2013), “Low-dimensional

modelling of high-Reynolds-number shear flows incorporating constraints

from the Navier-Stokes equation,” Journal of Fluid Mechanics, 729, 285–

308.

[32] Rim, D., and Mandli, K.T. (2018), “Model reduction of a parametrized

scalar hyperbolic conservation law using displacement interpolation,”

arXiv:1805.05938 [math.NA].

56


	Title Page
	page 2

	/projects/www/html/my/publications/docs/TR2020-177.pdf
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34
	page 35
	page 36
	page 37
	page 38
	page 39
	page 40
	page 41
	page 42
	page 43
	page 44
	page 45
	page 46
	page 47
	page 48
	page 49
	page 50
	page 51
	page 52
	page 53
	page 54
	page 55
	page 56


