A dCDD-Based Transmit Diversity Scheme for Downlink Pseudo-NOMA Systems

Kim, Kyeong Jin; Liu, Hongwu; Lei, Hongjiang; Ding, Zhiguo; Orlik, Philip V.; Poor, H. Vincent

TR2020-176 January 23, 2021

Abstract
In this paper, a new transmit diversity scheme is proposed for cooperative pseudo-non-orthogonal multiple access (Pseudo-NOMA) without assuming full channel state information at the transmitter (CSIT). To support two users under the nearfar user pairing constraint, a distributed cyclic delay diversity (dCDD) scheme is adapted into NOMA by dividing a set of remote radio heads (RRHs) into two groups for multiple cyclicprefixed single carrier transmissions. To maximize a far user’s rate and two users’ sum rate over independently but nonidentically distributed frequency selective fading channels and under near-far user pairing constraint, we first derive the closedform expressions for the rate of two users with full CSIT. Considering that only partial CSIT is available, a new RRH assignment and power allocation scheme is proposed for dCDD-Pseudo-NOMA. For various simulation scenarios, the provided link-level simulations verify that the superior rate can be achieved by dCDD-Pseudo-NOMA over the traditional orthogonal multiple access with dCDD and dCDD-Conventional-NOMA that uses the superimposed signals. Furthermore, the proposed RRH assignment and power allocation scheme makes dCDD-PseudoNOMA achieves almost the same rate as that of ideal dCDD-Pseudo-NOMA which requires full CSIT.

IEEE Transactions on Wireless Communications
A dCDD-Based Transmit Diversity Scheme for Downlink Pseudo-NOMA Systems

Kyeong Jin Kim, Senior Member, IEEE, Hongwu Liu, Senior Member, IEEE, Hongjiang Lei, Senior Member, IEEE, Zhiguo Ding, Fellow, IEEE, Philip V. Orlik, Senior Member, IEEE, and H. Vincent Poor, Life Fellow, IEEE

Abstract—In this paper, a new transmit diversity scheme is proposed for cooperative pseudo-non-orthogonal multiple access (Pseudo-NOMA) without assuming full channel state information at the transmitter (CSIT). To support two users under the near-far user pairing constraint, a distributed cyclic delay diversity (dCDD) scheme is adapted into NOMA by dividing a set of remote radio heads (RRHs) into two groups for multiple cyclic-prefixed single carrier transmissions. To maximize a far user’s rate and two users’ sum rate over independently but non-identically distributed frequency selective fading channels and under near-far user pairing constraint, we first derive the closed-form expressions for the rate of two users with full CSIT. Considering that only partial CSIT is available, a new RRH assignment and power allocation scheme is proposed for dCDD-Pseudo-NOMA. For various simulation scenarios, the provided link-level simulations verify that the superior rate can be achieved by dCDD-Pseudo-NOMA over the traditional orthogonal multiple access with dCDD and dCDD-Conventional-NOMA that uses the superimposed signals. Furthermore, the proposed RRH assignment and power allocation scheme makes dCDD-Pseudo-NOMA achieves almost the same rate as that of ideal dCDD-Pseudo-NOMA which requires full CSIT.

Index Terms—Distributed cyclic delay diversity, Pseudo-NOMA, cyclic-prefixed single carrier transmissions, near-far user pairing, RRH cooperation, QRD-M, power allocation, rate.

I. INTRODUCTION

Because of its capability to meet high spectral efficiency, ultra-reliability, and low-latency required by tactile Internet, mobile edge computing, and beyond fifth generation (B5G) networks, non-orthogonal multiple access (NOMA) has emerged as a key technique for the upcoming decade of wireless communication evolutions [2]–[4]. With the aid of superposition coding in the power-domain, multiple users are multiplexed on the same time-frequency resource block with different power levels. To mitigate intra-cluster interference inherited from the NOMA principle, successive interference cancellation (SIC) is in general applied at the receiver side to recover the signal [5].

To enhance system performance and provide new degrees of freedom (DoF), various diversity techniques were applied in NOMA systems, including multiple-input multiple-output (MIMO) antennas techniques and cooperative transmission schemes. Compared to conventional MIMO orthogonal multiple access (OMA), MIMO-NOMA can achieve a larger diversity order meanwhile severing more users [6]. It has been shown in [6] and [7] that channel gain disparity affects the diversity order achieved by NOMA users. To achieve the full diversity for NOMA systems, signal alignment and transmit power allocation were proposed by [8] and [9]. In [10], user grouping and transmit power allocation were jointly optimized to improve the system performance achieved by downlink beamforming. To avoid sophisticated channel ordering required by SIC, MIMO-NOMA can be decomposed into single-input single-output (SISO) NOMA with a greatly decreased complexity [5]. However, power allocation and user ordering in MIMO-NOMA systems make the system performance evaluation more challenging over that of SISO-NOMA systems [11].

To support a cell-edge user for downlink NOMA systems, coordinated two-transmitter employing Alamouti code was proposed in [12]. By sorting the users in their quality-of-service (QoS) requirements, the impact of relay selection schemes on performance of cooperative NOMA was investigated in [13] and [14] and two-stage relay selection protocols were proposed for cooperative NOMA systems with fixed power allocation and adaptive power allocation, respectively. These existing results show that the diversity gain for the two-stage decode-and-forward (DF) relaying scheme is proportional to the number of relays. Similar results were obtained in [15], where the users were ordered by channel conditions.

With the capability of reducing peak-to-average power ratio (PAPR) and providing robust to carrier frequency offset, cyclic-prefixed single carrier (CP-SC) transmissions were applied for distributed cyclic delay diversity (dCDD) systems to achieve the transmit diversity and frequency-selective diversity without requiring full channel state information at the transmitter (CSIT). Owing to this benefit, several types of CP-
SC transmission have applied dCDD in different distributed systems, for example, cooperative communication systems [16]–[18]; underlaying spectrum sharing systems [19], [20]; and physical layer secrecy (PLS) systems [21], [22]. However, these existing works assume only one information data stream. Considering frequency-selective fading channels, CP-SC was also applied in uplink NOMA systems, where rate splitting was proposed to decrease the outage probability for the paired users [23], [24]. Motivated by this, we apply dCDD as a new transmit diversity approach for a downlink Pseudo-NOMA system.

In contrast to existing work, our main contributions can be summarized as follows:

- To achieve the transmit diversity gain without requiring full CSIT, the dCDD scheme is employed among spatially distributed central unit (CU), remote radio heads (RRHs), and two users. Furthermore, to support near-far user pairing for NOMA [25], we adopt the original dCDD scheme as follows:
 - The CU divides a set of available RRHs into two groups based on partial CSIT that specifies the channel strength. Thus, both users need to feedback only limited information for this purpose. Each group transmits its own information signal to two users simultaneously. The proposed transmission scheme is different from the existing NOMA scheme that transmits the superimposed signals, which is called the conventional-NOMA (C-NOMA), so that the proposed NOMA is called the Pseudo-NOMA.
 - For two separate groups, the CU allocates a different power to meet the near-far user pairing constraint.
 - Due to different locations of two users, non-identical frequency selective fading channels from the RRHs to two users are considered. Over realistic and challenging channels, we provide an analytical framework jointly taking into account a different degree of RRH cooperation via the dCDD protocol and power allocation.

A. Organization

The rest of the paper is organized as follows. In Section II, we detail the system and channel model of the dCDD-based CP-SC Pseudo-NOMA system. After defining random quantities and deriving their distributions, performance analysis of the dCDD-based CP-SC Pseudo-NOMA system is conducted in Section III. Simulation results are presented in Section IV, conclusions and future works are drawn in Section V.

B. Notation

\mathbb{C} denotes the set of complex numbers; \mathbb{R} denotes the set of real numbers; I_Q denotes the Q-by-Q identity matrix; and $0_{n \times n}$ denotes the m-by-m zero matrix. $CN(\mu, \sigma^2)$ denotes the circularly symmetric complex Gaussian distribution with mean μ and variance σ^2; $F_{\varphi}(\cdot)$ and $f_{\varphi}(\cdot)$ respectively denote the cumulative distribution function (CDF) and probability density function (PDF) of the random variable (RV) φ; and $E\{\cdot\}$ denotes expectation. $\left(\begin{array}{c} a \\ b \end{array}\right) = \frac{a!}{(a-b)!b!}$ denotes the binomial coefficient. Cardinalities of a vector a and a list S are respectively denoted by $|a|$ and $|S|$. In addition, $\sum_{\{M_1, \ldots, M_K\} \in \{M_0, M_j\}} M_i = \sum_{l_1=0}^{M_{a_1}} \cdots \sum_{l_{a_n}=0}^{M_{a_n}} \sum_{m_{a_{n+1}}=0}^{M_{a_{n+1}}} \cdots \sum_{m_{a_{n+K-1}}=0}^{M_{a_{n+K-1}}} \sum_{n_{a_{n+K}}=1}^{M_{a_{n+K}}} \sum_{n_j=1}^{B} \cdots \sum_{n_{j-1}=1}^{B} \sum_{n_{j-2}=1}^{B} \cdots \sum_{n_{1}=1}^{B} \sum_{n_{1}=1}^{B} \cdots \sum_{n_{1}=1}^{B}$

II. SYSTEM AND CHANNEL MODEL

Fig. 1 illustrates the proposed dCDD-based cooperative Pseudo-NOMA system with L RRHs and two users, UE1 and UE2.

Fig. 1 illustrates a block diagram of the cooperative Pseudo-NOMA system considered in this paper, which comprises a single CU, L RRHs, and two users1, i.e., UE1 and UE2. The set of RRHs, $\{RRH_i\}_{i=0}^{L-M+1}$, appears as the first group. Similarly another set of RRHs, $\{RRH_i\}_{i=L-M+1}^{L-M+L-1}$, appears as the second group. Only one antenna is assumed to be deployed at each of the two users and RRHs due to hardware and power constraints. It is assumed that UE1 is far away than UE2 from RRHs, so that UE1 appears as a far user in the considered system. For this cooperative and distributed system, the CU specifies how to control L RRHs [16] via dedicated highly reliable backhauls2, $\{b_l\}_{l=1}^{L}$. The CU forms two independent

1Although this paper assumes only two users, more users can be considered as an extension. However, a tight restriction on power allocation and RRH assignment is required due to an employed near-far user pairing constraint.

2In contrast to the works [26]–[28], we assume optical fiber backhaul [29], such that a limited backhaul capacity and unreliable backhaul is beyond of the scope of this paper. With an installation of a single antenna at the RRHs, the set of RRHs can be configured as a distributed antenna system and coordinated multiple point (CoMP) with additional hardware resources [20], [29]–[33].
information signals, s_1 and s_2 being transmitted simultaneously to UE$_1$ and UE$_2$. The half-duplex constraint is assumed for all the users and RRHs.

As a transmit diversity scheme, dCDD is employed [16]. It has been known that the maximum number of RRHs for dCDD operation is limited by the transmission symbol block size and the maximum number of multipath components over frequency selective fading channels connected from L RRHs to UE$_1$ and UE$_2$. Thus, this paper investigates only a finite-sized cooperative NOMA system comprising a finite number of L RRHs for full dCDD operation and two users. By employing appropriate channel sounding schemes or channel reciprocity [34], [35], we further assume that each user is able to know the maximum number of multipath components of the channels connected to the RRHs. Note that dCDD has a very similar but non-identically distributed (i.n.i.d.) in the whole system. We also assume that all the channels are connected to the RRHs. Note that dCDD has a very similar constant over one symbol block transmission interval due to different distances from the RRHs to UE$_1$, whereas UE$_2$ needs to feed back only $N_{f,CP}$ by feeding back from UE$_1$ and UE$_2$, the CU determines N_{CP} as $N_{CP} = \max(N_{g,CP}, N_{f,CP})$. Based on N_{CP}, the CU assigns the CDD delay, as a function of N_{CP}, to every RRH. According to [16], the nth CDD delay is given by $\Delta_m = (n-1)N_{CP}$. Note that when $\Delta_m \neq \Delta_n$, $\forall m \neq n$, a particular CDD delay assignment does not cause any performance differences when the maximum-likelihood detector is used at the receiver [16], [36], [37]. For example, when Δ_m is assigned to the RRH sequentially, it is called a linear mapping.

2) The block size of the information symbol, denoted by B, is determined by CP-SC transmissions [36], that is, B is known at the CU. To achieve ISI-free reception at the receiver from multiple CP-SC transmissions, the CU needs to determine the maximum allowable number of RRHs for dCDD as follows: $K = \lfloor B/N_{CP} \rfloor$, where $\lfloor \cdot \rfloor$ denotes the floor function. In general, N_{CP} is specified by $N_{CP} = B/4$ in wireless systems [38], [39], so that four RRHs can be available for dCDD. When the system is overpopulated, K RRHs that are resulting in greater channel strength at UE$_1$ are selected in order to reduce system overhead caused by the coordination of the RRHs. The remaining RRHs are not allowed by the CU to transmit signals. To simplify the performance analysis, we assume an underpopulated system that comprises L RRHs, with $L \leq K$. Since the proposed system is required to transmit two independent symbol blocks, $s_1 \in \mathbb{C}^{B \times 1}$ and $s_2 \in \mathbb{C}^{B \times 1}$, it is necessary to adjust the original dCDD scheme.

3) The channel strength of g_m measured at UE$_1$ is given by $\lambda_m = \|g_m\|^2$. For available L channel strengths, UE$_1$ arranges them as $0 < \lambda_1 \leq \cdots \leq \lambda_L < \infty$ and the corresponding list specifying a set of channel strengths arranged in an ascending order is defined by $X_g = \langle 1, \ldots, L \rangle$. When more than K RRHs are available in the system, UE$_1$ selects only K RRHs based on the channel strength, and then forms the list, $X_g = \langle 1, \ldots, K \rangle$. After receiving this list, the CU prevents $L-K$ RRHs, which are not determined by X_g, from transmission. Thus, interference from $L-K$ RRHs can be removed during dCDD operation.

4) From 1) to 3), UE$_1$ needs to feed back $N_{g,CP}$ and X_g to the CU, whereas UE$_2$ needs to feed back only $N_{f,CP}$.
to the CU. Thus, the employed dCDD requires only a partial CSIT for its operation.

B. dCDD for CP-SC-Pseudo-NOMA Transmissions

Considering that U_1 and U_2 are the far and near users, respectively, more transmit power should be allocated to the U_1’s signal according to the NOMA principle. To meet these heterogeneous constraints and considering only L available RRHs for cooperative CP-SC transmissions, this paper modifies the original dCDD [16] as follows:

- RRHs are grouped to generate a relatively higher received power for s_1 and a relatively lower received power for s_2. Based on the available \mathfrak{X}_g, the CU divides L RRHs into two groups4 for multiple transmissions as follows:
 - First group: This group is composed by M RRHs, each of which is indexed by the set $S_1 \triangleq \{(L - M + 1), \ldots, (L)\} \subset \mathfrak{X}_g$, and transmits s_1.
 - Second group: This group is composed by the remaining $(L - M)$ RRHs, each of which is indexed by the set $S_2 \triangleq \{1, \ldots, (L - M)\} \subset \mathfrak{X}_g - S_1$, and transmits s_2. Since S_2 is mainly determined by the channels connected to UE_1, it should be shared with UE_2 by interaction with the CU.

- After having applied a group separation for L RRHs, the CU assigns the CDD delays to every RRH. Furthermore, the CU allocates a greater power to the RRHs included in S_1.

Based on this unique feature of dCDD, we can describe the signal received at UE_1 and UE_2 as follows.

a) Received signal at UE_1: Having applied dCDD, the received signal at UE_1 is given by

$$r_1 = \sqrt{\alpha_1 P_s} \sum_{m=L-M+1}^{L} (d_{1,(m)})^{-\epsilon_L/2} \hat{G}_{(m)} s_1,m + \sqrt{\alpha_2 P_s} \sum_{m=1}^{L-M} (d_{1,(m)})^{-\epsilon_L/2} \hat{G}_{(m)} s_2,m + z_1$$

where P_s is the peak transmission power at all RRHs, and $\hat{G}_{(m)}$ denotes the right circular matrix determined by $\hat{g}_{(m)}$. The additive noise over all the frequency selective fading channels is denoted by $z_1 \sim CN(0, \sigma_1^2 I_B)$. In addition, α_1, with $\alpha_2 = 1 - \alpha_1$, denotes the power allocation coefficient for UE_1 in transmitting s_1. The mth transmitted block symbols are defined as $s_{1,m} = P_{\Delta_m} s_1$ and $s_{2,m} = P_{\Delta_m} s_2$, where $m \in S_1$ and $m \in S_2$. The permutation shifting matrices $P_{\Delta_m} \in \mathbb{C}^{B \times B}$ and $P_{\Delta_m} \in \mathbb{C}^{B \times B}$ can be obtained from the identity matrix I_B by respectively circularly shifting down by Δ_m and Δ_m. Note that $[.]_L$ is the interfering signal at UE_1. By simultaneously taking into account the power allocation and the use of set S_1 for the transmissions of s_1, UE_1 can achieve a desired rate even in the presence of interfering signals.

With the use of permutation matrices, (1) can be rewritten as follows:

$$r_1 = \alpha_1 P_s \sum_{m=L-M+1}^{L} (d_{1,(m)})^{-\epsilon_L/2} \hat{G}_{(m)} P_{\Delta_m} s_1 + \sqrt{\alpha_2 P_s} \sum_{m=1}^{L-M} (d_{1,(m)})^{-\epsilon_L/2} \hat{G}_{(m)} P_{\Delta_m} s_2 + z_1$$

where $\hat{G}_{(m)} P_{\Delta_m}$ and $\hat{G}_{(m)} P_{\Delta_m}$ are right circular matrices.

b) Received signal at UE_2: Similar to (2), the received signal at UE_2 is given by

$$r_2 = \alpha_1 P_s \sum_{m \in S_1} (d_{2,m})^{-\epsilon_L/2} \tilde{F}_m P_{\Delta_m} s_1 + \sqrt{\alpha_2 P_s} \sum_{m \in S_2} (d_{2,m})^{-\epsilon_L/2} \tilde{F}_m P_{\Delta_m} s_2 + z_2$$

where we assume that $z_2 \sim CN(0, \sigma_2^2 I_B)$. Recall that $|S_1|$ and $|S_2|$ respectively denote the cardinality of S_1 and S_2. Since \tilde{F}_m is determined by f_m, $\tilde{F}_m P_{\Delta_m}$ and $\tilde{F}_m P_{\Delta_m}$ are right circular matrices. From Eqs. (2) and (3), we extract the following facts:

- The received signal at UE_2 depends on the order statistics in assigning CDD delays. However, the performance of CP-SC-NOMA does not depend on its assignment [16]. Thus, it is not necessary to use the order statistics in analyzing the performance of UE_2. In contrast, the order statistics are related with large-scale and small-scale fading, and CDD delay assignment for UE_1, so that it is necessary to use the order statistics in analyzing the performance of UE_1.

- The selection mechanism for S_1 and S_2 will be critical in achieving the balanced rate of UE_1 and UE_2. However, the CU has only B, NC_{CP}, \mathfrak{X}_g, S_1, and S_2 for controlling the RRHs by dCDD. Thus, the CU uses only a partial CSIT for CP-SC-NOMA.

III. PERFORMANCE ANALYSIS OF CP-SC-PSEUDO-NOMA TRANSMISSIONS WITH dCDD

A. Operation at UE_2

UE_2 starts decoding s_1. After that, it decodes s_2. Thus, according to (3), the receive SNR for the decoding of s_1 is given by

$$\gamma_{2,s_1} = \min \{ \frac{\alpha_1 A}{\sigma_2 B + I_B}, \frac{1}{\beta_{2,m}} \} + \min \{ \frac{\alpha_2 A}{\sigma_2 B + I_B}, \frac{1}{\beta_{2,m}} \}$$

where $A = \sum_{m \in S_1} P_{\Delta_m} \| f_m \|^2 / \beta_{2,m}$ and $B = \sum_{m \in S_2} P_{\Delta_m} \| f_m \|^2 / \beta_{2,m}$ with $\rho = P_s / \sigma_2^2$ denoting the transmit SNR, $1/\beta_{2,m} = \rho (d_{2,m})^{-\epsilon_L}$, and P_{Δ_m} denotes the selection probability of $\mathbb{R}RH_{m \in a}$, for $a \in \{S_1, S_2\}$. Furthermore, we have assumed that $E\{s_j(s_j)^H\} = 0$ and $E\{s_j(s_j)^H\} = I_B$, for $j = 1, 2$. In addition, $E\{s_j(s_j)^H\} = I_B$ with the Kronecker delta function, $\delta_{l,j}$, $\delta_{l,j} = 1$ if $l = j$, and $\delta_{l,j} = 0$ otherwise. Note that γ_{2,s_1} can be derived empirically by the maximum-likelihood type detector for CP-SC transmissions [36], [37].

Corollary 1: The PDF of γ_{2,s_1} is given by (4). In (4), $\theta_{L,M}(\cdot, \cdot)$ and $\theta_{L-L,M}(\cdot, \cdot)$ respectively denote partial fraction (PF) coefficients, which are defined in Appendix A. The complete gamma function is denoted by $\Gamma(\cdot)$.

Proof: See Appendix A.

To decode s_1 by UE_2, the whitening process is applied to (3), then the system model can be rewritten as follows:

$$\tilde{r}_2 = W \sqrt{\alpha_1 P_s} \sum_{m \in S_1} (d_{2,m})^{-\epsilon_L/2} \tilde{F}_m P_{\Delta_m} s_1 + \tilde{z}_2 + W F_{2,1}s_1 + \tilde{z}_2$$

(5)
\[f_{\gamma_2,s_1}(x) = \sum_{l_1 \in s_1, l_2 = 0}^{L_{f,s_1}} \theta_{L,M}(i_1,j_1)/\Gamma(j_1) \sum_{i_2 \in s_2} \sum_{l_2 = 0}^{L_{f,s_2}} \sum_{j_2 = 1}^{\beta_{2,i_2}} \sum_{l = 0}^{L_{f,s_2}} \sum_{j_1 = 1}^{\beta_{1,i_1}} (\theta_{L,M}(j_2,j_2)/\Gamma(j_2))(\alpha_1)^{-j_1} (\beta_2)^{-j_2} e^{-(\beta_{2,i_2}/\alpha_1)x - \beta_{1,i_1}x_j - 1}. \]

When \(|S_2| = 1\) and \(|S_2| = 2\), then PDFs of \(\gamma_2,s_2\) can be simplified, which are respectively provided in the following Corollary 3 and Corollary 4.

Corollary 3 When only one RRH is included in \(S_2\), the employed dCDD realizes the SNR, \(\gamma_2,s_2\), whose PDF over i.n.i.d. frequency selective fading channels is given by

\[f_{\gamma_2,s_2}(x) = \sum_{m=1}^{L} Pr_{m}(\beta_{2,m})^{-N_{f,m}}(\alpha_2)^{-N_{f,m}}(x)^{-N_{f,m}}/\Gamma(N_{f,m}) \]

where

\[Pr_{m} = (\beta_{1,m})^{-N_{f,m}} \Phi_1(\tilde{m}/\Gamma(N_{g,m})) \]

with \(\tilde{m} = \sum_{k=1,k\neq m}^{L} l_k + N_{g,m} \) and \(\tilde{\beta} = \sum_{k=1}^{L} \beta_{1,k} \cdot 1.\) An additional term, \(\Phi_1\), is defined in Appendix C.

Proof: See Appendix C for the derivation of (12).

Corollary 4 When two RRHs are included in \(S_2\), i.e., \(|S_2| = 2\), the employed dCDD can realize the SNR, \(\gamma_2,s_2\), whose PDF over i.n.i.d. frequency selective fading channels is given by

\[f_{\gamma_2,s_2}(x) = \sum_{m=1}^{L} \sum_{n=1,n\neq m}^{L} Pr_{m,n} \sum_{i=1}^{2} \sum_{j=1}^{2} \tilde{E}_{m,n}(i,j)(\alpha_2)^{-j}(x)^{-1} e^{-(\beta_{1,i}/\alpha_2)x}/\Gamma(j) \]

where \(\tilde{E}_{m,n}(i,j)\) denotes the PF coefficients, whose steering elements are \(\beta_{2,m}\) and \(\beta_{2,n}\). In addition, we have defined \(I_f = [\gamma_{f,m}, \gamma_{f,n}]^T \in \mathbb{R}^{2L}\) and \(b_f = [\beta_{2,m}, \beta_{2,n}]^T \in \mathbb{R}^{2L}\) with their ith elements are denoted by \((I_f)_i\) and \((b_f)_i\), and \(E_{m,n}(i,j)\) denotes the PF coefficients, whose steering elements are the elements of \(b_f\). The selection probability, \(Pr_{m,n}\) for \(S_2 = \{m, n\}\), where RRH_m and RRH_n respectively provide the least and second least channel strength at UE_1, can be derived as follows:

\[Pr_{m,n} = (\beta_{1,n})^{-N_{f,n}} \Psi_2 \Phi_2(\tilde{m}_n)/\Gamma(N_{g,n}) \]

where \(\tilde{m}_n = \sum_{k=1,k\neq m,n}^{L} l_k + N_{g,n} + \eta_{m} \) and \(\tilde{\beta}_{1,m,n} = \beta_{1,n} + \sum_{k=1,k\neq m,n}^{L} \beta_{1,k} + \beta_{1,m} \cdot R_{m,n}.\) Additional terms, \(\eta_{m}, r_{m}, \Phi_2\), and \(\Psi_2\) are defined in Appendix D.

Proof: See Appendix D for the derivation of (14).

Note that (10), (12), and (14) are mainly determined by the channel connected from RRHs to UE_1.

B. Operation at UE_1

According to (2), the SNR in decoding \(s_1\) is given by

\[\gamma_{1,s_1} = \frac{\alpha_1 C_{\text{max}}^{U}}{\alpha_2 D_{\text{min}}^{U}} + 1 \]

where

\[C_{\text{max}}^{U} = \sum_{m=1}^{L} \|g_m\|_2/\beta_{1,m} \]

and

\[D_{\text{min}}^{U} = \sum_{m=1}^{L} \|g_m\|_2/\beta_{1,m} \]

with \(1/\beta_{1,m} = \rho(d_{1,m})^{-\alpha}\). From (15), we can observe the following facts:

Note that since the outage event that UE_2 cannot decode \(s_1\) is not considered, this is a distinct feature of a typical NOMA system.
where unspecified terms are defined in Appendix E. Further-

Thus, we first derive the distribution since it depends on the correlated order statistics, C. Analysis for the achievable rates (\(R \)) is given by (17) provided at the top of the next page.

\[R \text{s} = \frac{1}{1 + R D} \text{ and } M \text{s} \text{ denote } R \text{s} \text{ related with } \min \text{ and } \max, \text{ respectively.} \]

The two users, \(\text{UE}_1 \) and \(\text{UE}_2 \), are respectively placed at \((3, -3)\) and \((-3, 3)\).

According to [46], we assume that \(\epsilon_L = 2.09. \)

- We consider a non-identical number of multipath components and a non-identical distance between two nodes in the system. Thus, a non-identical frequency selective fading is assumed for all channels in the system.

- We use a fixed \(P_s = 1 \) for link-level simulations.

- For performance comparisons, the dCDD based C-NOMA is also considered, where the CU prepares superimposed symbol blocks \(s = \alpha_1 s_1 + \alpha_2 s_2 \). Among chosen RRHs, the same dCDD operation as that of dCDD-Pseudo-NOMA is applied. The corresponding performance of the dCDD based C-NOMA is obtained by link-level simulations.

The curves obtained via link-level simulations are denoted by Ex, whereas analytically obtained performance curves are denoted by An. As an additional notation, \(N_{g,s} = \{5, 4, 3, 4\} \) means that \(N_{g,1} = 5, N_{g,2} = 4, N_{g,3} = 3, \) and \(N_{g,4} = 4. \) The same assignment is used for \(N_f s \).

A. Symbol error rate

Since interference caused by coexisting multiple users is an intrinsic problem in dCDD-Pseudo-NOMA, we investigate the impact of whitening on the uncoded symbol error rate (SER). For this, we consider the scenario with \(N_{g,s} = \{4, 6, 5, 4, 5, 5\} \) and \(N_f s = \{4, 6, 5, 5, 4, 5\} \). As the key
The number of branches at each detection stage is set to 48. For binary phase-shift keying (BPSK), Fig. 2 shows the SER for various values of \((L, M)\) and \(\alpha_1\). This figure shows the following observations:

- At the considered transmit SNRs, 3 – 36 dBs, a performance floor in the SER of UE2 to decode \(s_2\) is not observed up to \(5 \times 10^{-7}\). This benefits from the employed whitening process and the use of QRD-M.

- As \(\alpha_1\) increases, a lower SER can be achieved by UE1 and UE2 to decode \(s_1\). However, UE2 results in a greater SER to decode \(s_2\) since a less transmit power is allocated to the RRHs indexed by the set \(\mathcal{S}_2\).

- By employing more RRHs, UE2 can achieve a lower SER to decode \(s_2\), while a greater SER is resulted from decoding \(s_1\) by UE1. For example, \((L = 7, M = 5)\) and \((L = 6, M = 5)\) with \(\alpha_1 = 0.95\).

- Due to the employed near-far user pairing constraint, a lower SER is achieved by UE1 and UE2 to decode \(s_1\) comparing with UE2 to decode \(s_2\).

B. Accuracy of the derived rate

Since the derivation of the closed-form expression for \(R_{1, (L, M)}\), expressed by (20), is challenging in the proposed system, we first verify its accuracy comparing with the corresponding exact rate in Fig. 3. The corresponding rate of UE2 is provided in Fig. 4. For various combinations of \((L, M)\), \(\alpha_1\), \(\alpha_2\), and \((N_f, N_g)\), Figs. 3 and 4 show that (20) and (19) provide accurate analysis for the rates of UE1 and UE2.

C. Rate analysis

a) The impact of the cardinality of \(\mathcal{S}_1\): We use a fixed \(\alpha_1 = 0.9\) and \(N_{g, m} = 2, \forall m\) to investigate the impact of the
Fig. 3. Achievable rate of UE$_1$ for various system parameters with $N_{fs} = \{2, 2, 2, 2\}$.

Fig. 4. Achievable rate of UE$_2$ for various system parameters.

Fig. 5. Achievable rate of UE$_1$ for various pairs of (L, M)s in underpopulated and overpopulated systems.

Fig. 6. Achievable rate of UE$_1$ and UE$_2$ for various values of $|S_2|$ in underpopulated and overpopulated systems.

The cardinality of set S_1 on the rate. In Fig. 5, we used fixed $|S_1| = 2$ and $|S_1| = 3$ for two values of L. Both underpopulated and overpopulated systems are considered. This figure shows that when the maximum value of $|S_1|$ is fixed, more RRHs in S_1 results in greater rate up to a certain transmit SNR. However, in the high transmit SNR region, an asymptotic rate advantage is determined by the ratio of $|S_1|$ to L for underpopulated and overpopulated systems. Thus, we can observe the following results:

- $R_{1,(4,3)} > R_{1,(5,3)}$ for underpopulated system, i.e., $L \leq K$.
- $R_{1,(5,3)}$ in the system with six RRHs is greater than that of the system with seven RRHs.
- Similar results can be seen with $|S_1| = 2$, i.e., $R_{1,(4,2)} > R_{1,(5,2)}$. From these observations, a greater $|S_1|$ does not guarantee a greater rate in the asymptotic transmit SNR region.

A few more observations can be made from Fig. 6, which uses fixed values of $\alpha_1 = 0.7$ and $N_{gs} = N_{fs} = \{2, 4, 3, 3\}$ for the underpopulated system, and $N_{gs} = N_{fs} = \{2, 4, 3, 2, 3, 3\}$, for the overpopulated system, as listed in the following:

- As $|S_2|$ increases, $R_{2,|S_2|}$ can be greater than $R_{1,(4,4) - |S_2|}$.
- When $L = 4$ and $|S_1| = 1$, UE$_1$ achieves a slightly greater rate than that of in the overpopulated system with $L = 6$.
- When $|S_2| = 3$, UE$_2$ can achieve a slightly greater rate as the system is more populated, that is, L increases.
- For this considered scenario, $R_{2,(3)}$ can be greater than $R_{1,(4,1)}$ in the underpopulated system and $R_{1,(5,1)}$ in the overpopulated system over the considered whole SNR range.
- In general, at a fixed value of α_1, a greater $|S_1|$ results in a greater achievable rate of UE$_1$.

b) The impact of the number of multipath components: In Fig. 7, we also investigate the impact of the multipath compo-
nents on the rate. Comparing with the reference scenario with $N_g s = N_f s = \{2, 4, 3, 3\}$, we also consider two cases with $N_g s = N_f s = \{3, 5, 4, 4\}$ and $N_g s = N_f s = \{4, 6, 5, 5\}$. Since the SNR decoding s_1 by UE1 is related with the ratio of C^{max} to D^{L-M}, each of which increases as $N_g s$ increases, the rate of UE1 is less affected when the number of multipath components of the channels connected to UE1 are all simultaneously increased. However, the rate of UE2 is increased since the SNR decoding s_2 is increased.

\[\text{Fig. 7. Achievable rate of UE}_1 \text{ and UE}_2 \text{ for various values of } \alpha_1 s \text{ with } N_g s = N_f s = \{2, 4, 3, 3\}, L = 4, \text{ and } |S_1| = 3. \]

\[\text{Fig. 8. Achievable rate of UE}_1 \text{ and UE}_2 \text{ for various values of } \alpha_1 s \text{ with } N_g s = N_f s = \{2, 4, 3, 3\}, L = 4, \text{ and } |S_1| = 2. \]

\(c) \text{ The impact of power allocation to RRHs specified by } S_1 \text{ and } S_2: \) For four RRHs and $|S_1| = 3$, we investigate the impact of α_1 on the rates of UE1 and UE2 in Fig. 7. In this scenario, only one RRH out of four RRHs is used to transmit s_2. This figure shows that as α_1 increases, UE1 achieves a greater rate, whereas UE2 achieve a lower rate since a less power is allocated to RRHs specified by S_2. This figure also shows that $R_{1,(L-M)}$ increases as the transmit SNR increases, whereas $R_{2,(L-M)}$ is upper bounded by its limit since γ_{1,s_1} is approximated by $\gamma_{1,s_1} = \frac{\alpha_1 L_{\text{min}}^{\text{max}}}{\alpha_2 L_{\text{min}}^{\text{max}}}$ as the transmit SNR increases. That is, UE1 enters the interference-limited region. From these observations, the sum rate is like a double-edged sword. If the pair of (L, M) and the power allocation are not properly handled, the sum rate will be dominated by UE2, which violates the near-far user pairing constraint. Since the CU knows only X_g and controls α_1, every pair of (L, M) is not possible to meet this constraint. For $|S_1| = 2$, i.e., two RRHs are assigned to transmit s_2, we can see distinctive results in Fig. 8 comparing with Fig. 7. For the considered scenario, $(L = 4, M = 2, \alpha_1 = 0.6)$ and $(L = 4, M = 2, \alpha_1 = 0.7)$ are not feasible near-far user pairs. Although other pairs $(L = 4, M = 2, \alpha_1 = 0.8)$ and $(L = 4, M = 2, \alpha_1 = 0.9)$ are feasible, they have limited operating SNR ranges to support the near-far user pairing.

However, when we mainly focus on the rate of UE1, Figs. 6, 7, and 8 suggest the following RRH assignment and power allocation scheme:

- A larger $|S_1|$ results in $R_{1,(L-M)} > R_{2,(L-M)}$, so that it is necessary to assign more RRHs to transmit s_1. Since only a partial CSIT is available at the CU, the value of M is determined in such a way that $M \geq \lceil L/2 \rceil$. In addition, as α_3 decreases, it is required that $M \rightarrow L - 1$, that is, only one RRH is assigned to transmit s_2.

- Due to the existence of the interfering signal at UE1, the CU needs to assign more transmit power to the RRHs specified by S_1.

In the next, we will investigate another case, in which we consider UE1 and UE2 simultaneously under the near-far user pairing constraint.

\(D. \text{ Optimum sum rate} \)

When perfect CSIT and locations of the RRHs and two users are available at the CU\(^6\), the following optimization can be achieved by maximizing the sum rate as follows:

\[\max_{\alpha_1} \quad R_{1,(L-M)}(\alpha_1) + R_{2,(L-M)}(1 - \alpha_1) \]

\[\text{s.t.} \quad R_{1,(L-M)}(\alpha_1) > R_{2,(L-M)}(1 - \alpha_1) \quad (21) \]

\[0.5 < \alpha_1 < 1.0. \]

In generating Figs. 9 and 10, we use $N_g s = N_f s = \{2, 4, 3, 3\}$ for $L = 4$ and $N_g s = N_f s = \{2, 4, 3, 3, 2\}$ for $L = 5$. These two figures also show a feasible set of $\alpha_1 s$ supporting the near-far user pairing constraint. From Fig. 9 we can observe the following results:

- As $|S_1|$ decreases, the size of the feasible set $\alpha_1 s$ decreases as the transmit SNR increases. The near-far user pairing constraint is the key factor that determines this result.

- As the transmit SNR increases, the optimum sum rate is determined by $|S_1| = 3$.

Similarly, we can observe the following results from Fig. 10:

- As L increases, the cardinality of S_1 does not provide the optimum sum rate.

\(^6\text{Note that this is not possible from the proposed dCDD scheme.}\)
As the transmit SNR increases, the difference between two schemes becomes negligible.

- The performance gap is almost irrespective of the number of multipath components of the whole channel.

F. Achievable rate for three users

The following setup is used to justify the extension of the proposed dCDD-Pseudo-NOMA into three users cases.
With $B = 96$ and $N_{CP} = 8$, twelve RRHs can be supported by dCDD operation.
- Twelve RRHs are placed at $\{(0, 12), (-12, 12), (-3, 12), (-9, 12), (-16.9145, 6.1564), (6, 8), (-12, 10), (-10, 9.4), (-7, 8.7), (-9.3, 9.7), (-4.3, 5.7), (-1.3, 8.4)\}$ in a 2-D plane.
- The three users, UE1, UE2, and UE3, are respectively placed at $(5, -4)$, $(3, -3)$, and $(-3, 3)$.
- A multipath channel from the mth RRH to UE3, h_m, is similarly defined as f_m with $N_{h,m} = h_m$ multipath components.
- We assume $N_f s = \{2, 3, 4, 3, 2, 3, 3, 2, 2, 3, 3\}$ and $N_g s = N_h s = \{4, 6, 6, 5, 4, 4, 5, 3, 5, 4, 5\}$.

Fig. 12 provides the following results for the full-populated system, i.e., $K = L$:
- In contrast to the two users case, a more number of RRHs is required to support more than two users.
- As in the two users case, only a small number of RRHs is required to transmit the signals targeting at the nearest user satisfying near-far user pairing constraint.
- In general, as the number of RRHs for dCDD increases, a_2 can be increased. However, it should be less than a_1.
- When we compare the case $(|S_1| = 9, |S_2| = 2, |S_3| = 1, \alpha_1 = 0.50, \alpha_2 = 0.30)$ with $(|S_1| = 9, |S_2| = 2, |S_3| = 1, \alpha_1 = 0.55, \alpha_2 = 0.39)$, it is necessary to consider more tight restriction on choosing as and $(|S_1|, |S_2|, |S_3|)$. Especially, when we choose $(|S_1| = 9, |S_2| = 2, |S_3| = 1, \alpha_1 = 0.50, \alpha_2 = 0.30)$, the operating SNR is only up to 27 dB by near-far user pairing constraint.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we have proposed a new transmit diversity scheme for the two-user CP-SC Pseudo-NOMA system. To support the near-far user pairing, a new joint RRH assignment and power allocation scheme for dCDD-based CP-SC transmissions to achieve transmit diversity for downlink NOMA systems has been proposed without requiring perfect CSIT of the whole channels at the CU. For i.n.i.d. frequency selective fading channels, new closed-form expressions for rate of two users have been derived. Its accuracy has also been verified. The proposed RRH assignment and power allocation scheme, that uses as many as RRHs to transmit the information signal to the far user and allocates as much as transmit power to transmit this signal, can achieve almost the same rate as that of the ideal system. As the transmit SNR increases, a difference in the sum of rate has been shown to be decreased, and irrespective of the number of multipath components of the whole channel. Extension to the system that supports multi-clusters, each of which is composed of two users, will be one of the future works.

APPENDIX A: DERIVATION OF COROLLARY 1

The PDF of the RV A can be derived as follows:

$$f_A(y) = \sum_{i_1=L-M+1}^{L} \sum_{j_1=1}^{L_i} \frac{e^{-\beta_{2,i_1} y}}{\Gamma(j_1)} \left(y \right)^{j_1-1}$$

where $\theta_{L,M}(i_1,j_1) = \frac{d^{N_{j_1-1}}}{d x^{N_{j_1-1}}} \left((s + \beta_{2,i_1})^{N_{j_1-1}} \prod_{n=L-M+1}^{L} (s - \beta_{2,n})^{N_{j_1-n}} \right)_{s=\beta_{2,i_1}}^{x=\Gamma(j_2)}$

Similarly the density function of the RV B can be derived as follows:

$$f_B(y) = \sum_{i_2=1}^{L-M} \sum_{j_2=1}^{L_{i_2}} \frac{e^{-\beta_{2,i_2} y}}{\Gamma(j_2)} \left(y \right)^{j_2-1}$$

APPENDIX B: DERIVATION OF COROLLARY 2

With the condition $0 < \lambda_{n_1} < \lambda_{n_2} \ldots < \lambda_{n_{L+1}} < \infty$, $Pr_{\{n_1, \ldots, n_{L+1}\} \in S_2}$ is given by

$$Pr_{\{n_1, \ldots, n_{L+1}\} \in S_2} = \int_{0}^{\infty} f_{\lambda_{n_1}}(x) \left[\prod_{i=2}^{L_{i_2}} F_{\lambda_{n_i}}(x) \right]_{j_2} \left[\prod_{j=L_{i_2}+1}^{L} (1 - F_{\lambda_{n_j}}(x)) \right]_{j_3} dx$$

where $F_{\lambda_{n_i}}(x)$ can be expressed as follows:

$$F_{\lambda_{n_i}}(x) = \sum_{k_{i,1}, \ldots, k_{i,N_{g,n_i}+1}}^{k_{i,1}, \ldots, k_{i,N_{g,n_i}+1}} \frac{1}{(k_{i,1}, \ldots, k_{i,N_{g,n_i}+1})} \left(-1 \right)^{N_{n_i}} \left(\theta_{n_i} \right)^{N_{n_i}} e^{-\beta_{1,n_i} r_{n_i} x}.$$
With the use of the multinomial theorem [48], \(r_{n_i}, \eta_{n_i}, \) and \(\theta_{n_i} \) are defined as follows:

\[
\begin{align*}
 r_{n_i} &\triangleq \sum_{l=2}^{N_g,n_i+1} k_{l,i},
 \eta_{n_i} \triangleq \sum_{l=3}^{N_g,n_i+1} (l-2)k_{l,i}, \text{ and } \\
 \theta_{n_i} &\triangleq \prod_{l=2}^{N_g,n_i} (\Gamma(l))^{k_{l,i}+1}.
\end{align*}
\]

(B.3)

Thus, \([.]\) can be evaluated as follows:

\[
 [.] J_2 = \Psi x_{(\sum_{l=2}^{N_g,n_i} \eta_{n_i})} e^{-\sum_{l=2}^{N_g,n_i} \theta_{l,i} r_{n_i} x} (\cdot).
\]

(B.4)

with \(\Psi \triangleq \sum_{k_1,\ldots,k_{N_g,n_i}+1} \ldots \sum_{k_{l,i}+1} \ldots \sum_{k_{l,i}+1} \ldots k_{l,i}+1 \ldots k_{l,i}+1 \ldots \frac{1}{\theta_{n_i}} \). Similarly, \([.]\) can be evaluated as follows:

\[
 [.] J_3 = \Phi x_{(\sum_{l=1}^{L-1} + l_{j})} e^{-\sum_{l=1}^{L-1} \beta_{1,i} n_{j} x}.
\]

(B.5)

with \(\Phi \triangleq \sum_{n_i+1}^{N_g,n_i+1} \ldots \sum_{n_{j}+1}^{N_g,n_j+1} \ldots \sum_{n_{j}+1}^{N_g,n_j+1} \prod_{l=1}^{L} (\beta_{1,i} n_{j})^{n_{j}} \). Having used (B.4) and (B.5), (B.1) can be derived as (10).

\section*{Appendix C: Derivation of Corollary 3}

When \(|S_2| = 1 \), \(Pr_{m \in S_2} \) is computed as follows:

\[
 Pr_{m \in S_2} = \int_{0}^{\infty} f_{\tilde{\lambda}_m}(x) dx (1 - F_{\tilde{\lambda}_m}(x))
\]

(C.1)

where \(\tilde{\lambda}_m \triangleq \|g_m\|^2/\beta_{1,m} \). The PDF and CDF of \(\tilde{\lambda}_m \) are respectively given by

\[
 f_{\tilde{\lambda}_m}(x) = (\beta_{1,m} N_{g,m} x^{N_{g,m}-1} e^{-\beta_{1,m} x}) / \Gamma(N_{g,m}) \quad \text{and} \quad F_{\tilde{\lambda}_m}(x) = \Gamma(U(N_{g,m}, \beta_{1,m} x)) / \Gamma(N_{g,m})
\]

(C.2)

where \(\Gamma(U(\cdot)) \) denotes the incomplete upper-gamma function [48]. Thus, (C.1) is given by

\[
 Pr_{m \in S_2} = (\beta_{1,m} N_{g,m} \Phi_{1}) \int_{0}^{\infty} x^{\sum_{l=1,k \neq m}^{L} k_{l,i} + N_{g,m}-1} e^{-\sum_{l=1}^{L} \beta_{1,i} x} / \Gamma(N_{g,m}) dx
\]

(C.3)

with \(\Phi_{1} \triangleq \sum_{n_i+1}^{N_g,n_i+1} \ldots \sum_{n_{j}+1}^{N_g,n_j+1} \ldots \sum_{n_{j}+1}^{N_g,n_j+1} \prod_{l=1}^{L} (\beta_{1,i} n_{j})^{n_{j}} \). After some manipulations, we can readily derive (12).

\section*{Appendix D: Derivation of Corollary 4}

When \(m \) and \(n \) are elements of \(S_2 \), i.e., \(|S_2| = 2 \), then \(Pr_{(m,n) \in S_2} \) with the condition \(0 < \bar{\lambda}_m < \bar{\lambda}_n < \infty \) is given by

\[
 Pr_{(m,n) \in S_2} = \int_{0}^{\infty} f_{\tilde{\lambda}_m}(x) F_{\tilde{\lambda}_n}(x) \left[\prod_{k=1,k \neq (m,n)}^{L} (1 - F_{\tilde{\lambda}_k}(x)) \right] J_4 dx
\]

(D.1)

where \(F_{\tilde{\lambda}_n}(x) \) can be expressed as follows:

\[
 F_{\tilde{\lambda}_n}(x) = \sum_{k_{1},\ldots,k_{N_g,n_i}+1} \ldots \sum_{k_{1},\ldots,k_{N_g,n_i}+1} (-1)^{m} (\beta_{1,m})^{\eta_{m}} (\beta_{1,m})^{m} x^{m} e^{-\beta_{1,m} x m}
\]

(D.2)

Due to the use of the multinomial theorem [48], we define the following terms:

\[
 r_{m} \triangleq \sum_{l=2}^{N_g,m+1} k_{l}, \quad \eta_{m} \triangleq \sum_{l=3}^{N_g,m+1} (l-2)k_{l}, \text{ and } \\
 \theta_{m} = \prod_{l=2}^{N_g,m} (\Gamma(l))^{k_{l,i}+1}.
\]

(D.3)

Furthermore, \([.]\) is given by

\[
 [.] J_4 = \Phi_{2} x_{(\sum_{l=1,k \neq (m,n)}^{L} l_{k})} e^{-\sum_{l=1,k \neq (m,n)}^{L} \beta_{1,k} x}.
\]

(D.4)

where \(\Phi_{2} \triangleq \sum_{n_i+1}^{N_g,n_i+1} \ldots \sum_{n_{j}+1}^{N_g,n_j+1} \ldots \sum_{n_{j}+1}^{N_g,n_j+1} \prod_{l=1}^{L} (\beta_{1,i} n_{j})^{n_{j}} \). Having applied (D.4) along with (D.2) into (D.1), we can readily derive (13).

\section*{Appendix E: Derivation of Corollary 5}

Recall that \(X_k \) is the \(k \)th smallest instantaneous SNR. Its complementary CDF (CCDF) and PDF are respectively defined as follows:

\[
 \tilde{F}_{X_k}(x_k) = \Gamma_U(N_{g,k}, \beta_{1,k} x_k) / \Gamma(N_{g,k}) \quad \text{and} \quad f_{X_k}(x_k) = (\beta_{1,k} N_{g,k} x_k e^{-\beta_{1,k} x_k}) / \Gamma(N_{g,k}).
\]

(E.1)

\(a)\) Derivation of the PDF of \(D_{m}^{L-M} \): The joint PDF of \(X_1, \ldots, X_{L-M} \) is given by

\[
 f_{X_1,\ldots,X_{L-M}}(x_1, \ldots, x_{L-M}) =
 \sum_{n_i+1}^{N_g,n_i+1} \ldots \sum_{n_{j}+1}^{N_g,n_j+1} \prod_{l=1}^{L-M} \Gamma(m_{n_j}, \beta_{1,k} x_{l}) / \Gamma(m_{n_j})
\]

(E.2)

where \(\beta_{1} \triangleq \beta_{1,i}(j) \) and \(m_{j} \triangleq N_{g,j} \). The moment generating function (MGF) of \(D_{m}^{L-M} \) can be given by (E.3). In (E.3), \([.]\) is given by (E.4). In (E.4), we have defined \(C_{2} \triangleq \prod_{j=1}^{L-M} \beta_{1,j}^{\nu_{j}} / \Gamma(l_{j}+1) \), \(m_{\text{min}} \triangleq \sum_{j=L-M+1}^{L} l_{j} + m_{\text{min}} \), and \(\beta_{\text{min}} \triangleq \sum_{j=L-M+1}^{L} \beta_{1,j} \). Due to the dependency on preceding RVs in the lower integration limit, the computation of (E.3) is in general infeasible [16]. In addition, it is necessary to compute the distribution of the ratio of two RVs, which are correlated to each other. Thus, it is desirable to convert \(D_{m}^{L-M} \) and \(C_{\text{max}} \) into the sum of independent RVs, which will make \(M_{D_{m}^{L-M}} \) the product of MGFs, each of which corresponds to an independent RV. This can be possible by using the spacing statistics of the order statistics. To obtain the spacing statistics, we apply the transformation from \{\(X_1, \ldots, X_{L-M} \)\} to \{\(Y_1, \ldots, Y_{L-M} \)\} by \(Y_1 = X_1, Y_2 = X_1 + X_2, \ldots, Y_{L-M} = X_1 + \ldots + X_{L-M} \). For (E.4), we can have the form given by (E.5). In (E.5), we have defined \(\xi_{i} = (\frac{L-M+i}{L-M+i+1} + \sum_{j=2}^{L-M} p_{j,i} \) for \(i = 1 \)

After expanding each sum of the RVs by the multinomial theorem [48], we can obtain (E.5). Due to the transformation of continuous RVs, the lower integration limits of (E.3)
\[M_{D_{\min}}(s) = \sum_{n_1, \ldots, n_M} \int_0^\infty \cdots \int_0^\infty \left[\prod_{j=1}^{L-M} \left(\frac{(x_j)^{m_{nj}}}{\Gamma(m_{nj})} \right) \right] dx_{L-M} \ldots dx_1. \]

(E.3)

\[\prod_{j=1}^{L-M+1} \Gamma(m_{nj}, \beta_{nj} x_{L-M}) e^{-s(\sum_{j=1}^{L-M} x_j)} / \Gamma(m_{nj}) \]

\[\int dx_{L-M} \ldots dx_1. \]

(E.4)

\[\prod_{j=1}^{L-M+1} \left((s + \xi_j) - (\nu_{ij} - 1) \right) A_i. \]

(E.6)

where \(n_1, \ldots, n_M \) are independent of each other, so that \(M_{D_{\min}}(s) \) can be evaluated as follows:

\[M_{D_{\min}}(s) = \sum_{n_1, \ldots, n_M} \left[\prod_{j=1}^{L-M} \left((s + \xi_j) - (\nu_{ij} - 1) \right) \right] A_i. \]

(E.7)

b) Derivation of the PDF of \(C_{\text{max}}^M \): The joint density function of \(Z_1, \ldots, Z_{L-M+1} \) can be written as

\[f_{Z_1, \ldots, Z_{L-M+1}}(z_1, \ldots, z_{L-M+1}) = \sum_{n_1, \ldots, n_M} \left[\prod_{j=1}^{L-M} \Gamma(m_{nj}, \beta_{nj} z_j) \right] F_{Z_{nk}}(z_k). \]

(E.8)

where \(F_{Z_{nk}}(z_k) = \left[\Gamma(N_k x_{L-M-n_k}, \beta_{nk} x_{L-M-n_k}) / \Gamma(N_k x_{L-M}) \right] \) with \(\xi_l \) denoting incomplete lower-gamma function. To simplify notation, we use \(\tilde{\xi}_l = L - M - n_k \) in the sequel. The MGF of \(C_{\text{max}}^M \) can be defined as

\[M_{C_{\text{max}}^M}(s) = \int_0^\infty \cdots \int_0^\infty \left[\prod_{j=1}^{L-M+1} \left((s + \xi_j) - (\nu_{ij} - 1) \right) \right] j_s dZ_{L-M} \ldots dZ_1. \]

(E.9)

where \(j_s \) can be expressed as follows:

\[j_s = D_1 D_2(z_1)^{m_{max}} e^{-z_1+s} \sum_{M+1}^{M+1} \beta_{n_k} \]

(E.10)

\[\left(\prod_{i=2}^{M} (z_i)^{m_{nj}-1} e^{-z_i(s+\beta_{nj})} \right) \]

(E.11)

In the derivation of (E.10), binomial and multinomial theorems [48] are used. We also use the spacing statistics, that is, \(Y_1 = Z_1 \) and \(Y_{k=2} = \sum_{j=1}^{K} Z_k \). Then, we can have an alternative expression for \(j_s \) given by (E.12). In (E.12), we have defined \(\tilde{\xi}_l = \left[\Gamma(N_k x_{L-M-n_k}, \beta_{nk} x_{L-M-n_k}) / \Gamma(N_k x_{L-M}) \right] \) for \(2 \leq i \leq M \), \(\mu_i = \left(\sum_{j=1}^{M} \beta_{nj} \right) / (M+1) \) for \(2 \leq i \leq M \), and \(\xi_l = \sum_{j=1}^{M} N_k x_{L-M-n_k} + \sum_{j=1}^{M} j_s y_{ji} \) for \(2 \leq i \leq M \). Since \(y_{ji} \) are independent of each other and lower integration limits are zero, it is possible to integrate separately. Thus, the MGF can be derived as (E.13), where \(D_3 \triangleq (M - 1)^{-\mu_i-1} \left(\sum_{j=1}^{M} \beta_{nj} \right) / (M+1) \). Note that \(\xi_l \) for \(\forall i, j \) with \(i \neq j \). Thus, after applying the PF to \(j_s \) and then the inverse MGF, the PDF can be derived as follows:

\[\int f_{C_{\text{max}}^M}(t) e^{-t(s+\beta_{nj})} \]

(E.14)
\[J_b = D_1 D_2 \sum_{p_1, p_2, 1 \leq p_1 \leq p_2 \leq \min(m_1, m_2)} \Gamma(m_{n_1}) \prod_{i=1}^{3} p_{i, t} ! \Gamma(p_3, t) \prod_{i=1}^{3} p_{3, i} ! \sum_{M, 1 \leq M \leq \min(m_1, m_2)} \prod_{i=1}^{M} y_{i}^{m_{n_1}} e^{-y_{i}((M-i+1)(s+\zeta_i))} \cdot \]

(A.12)

\[M_{\text{max}}(s) = \sum_{L} \sum_{n_1, \ldots, n_L \geq 1, n_1 \neq \ldots \neq n_L} D_1 D_2 \sum_{p_1, p_2, 1 \leq p_1 \leq p_2 \leq \min(m_1, m_2)} \Gamma(m_{n_1}) \prod_{i=1}^{3} p_{i, t} ! \Gamma(p_3, t) \prod_{i=1}^{3} p_{3, i} ! \sum_{M, 1 \leq M \leq \min(m_1, m_2)} \prod_{i=1}^{M} y_{i}^{m_{n_1}} e^{-y_{i}((M-i+1)(s+\zeta_i))} \cdot \]

(A.13)

\[\frac{\Gamma(m_{n_1}) \prod_{i=1}^{3} p_{i, t} !}{\prod_{i=1}^{3} p_{3, i} !} D_3, \text{ and } E_{\text{max}}^{n_1}(i, j) = \prod_{i=1}^{M} \left[1 - \frac{\Gamma(\mu_i - 1 + j) \prod_{i=1}^{3} p_{3, i} !}{\prod_{i=1}^{3} p_{i, t} !} \right] \left(s + \zeta_i \right)^{\mu_i - 1 + j} \left(s + \zeta_i - 1 \right)^{\mu_i - 1} |_{s = -\zeta_i}. \]

APPENDIX F: DERIVATION OF THEOREM 1

The rate, \(R(M, L, M) \), is given by

\[R(M, L, M) = \int_{0}^{\infty} \log_2(1 + x) f_{\xi_1, x_1}(x) dx. \]

(E.1)

To compute (F.1), we first express the following functions of \(x \) in terms of Meijer G-functions [43]:

\[\log_2(1 + x) x^{l-1} = \left(\log(2) \right)^{-1} G_{2, 2}^{1, 1}(x \mid j_1, j_2, j_4, j_4 - 1), \]

\[e^{-((\zeta_1 + \alpha_1) x)} = G_{0, 1}^{1, 0}(0 \mid \zeta_1, \alpha_1, 0), \text{ and} \]

\[((\alpha_2 \zeta_1 + \alpha_3) x + \zeta_3)^{-l-j_3} = G_{1, 1}^{1, 1}(0 \mid \zeta_3, \alpha_2 \zeta_1 + \alpha_3, 0 \mid 1 - l - j_3, 0). \]

(E.2)

Having applied [49], we can derive (20).

REFERENCES

[38] IEEE P802.11ad/D0.1, “Wireless LAN medium access control (MAC) and physical layer (PHY) specifications: Enhancements for very high throughput in the 60GHz band,” Jun. 2010.