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Abort-Safe Spacecraft Rendezvous in case of Partial Thrust Failure

Daniel Aguilar Marsillach1, Stefano Di Cairano2, Avishai Weiss3

Abstract— In this paper a spacecraft rendezvous policy is
developed that yields safe rendezvous trajectories under various
thruster failure scenarios. The policy makes use of polytopic
robust backwards reachable sets to characterize the state-space
that under a given thruster failure scenario would lead to
collision between a deputy and a chief spacecraft no matter the
remaining available thrust. That is, this region of state-space
is such that no feasible evasive abort maneuver exists for the
given failure scenario. Abort-safety constraints are formulated
as local hyperplanes separating the deputy spacecraft and
the unsafe state-space. These constraints are incorporated in
a model predictive control-based online trajectory generation
scheme in order to guide the deputy to rendezvous with its chief
through an inherently safe approach. Simulations demonstrate
the effectiveness of the safety constraints in altering a nominally
unsafe rendezvous to one that is abort-safe.

I. INTRODUCTION

Spacecraft rendezvous approaches must often guarantee
passive safety for a pre-specified amount of time [1], wherein
a spacecraft, called the deputy, avoids collision with a target
spacecraft, called the chief, in the event of a complete loss
of control. This paper expands upon prior work on passive
safety [2] to consider the scenario of partial loss of control,
in which the deputy’s remaining functional thrusters may be
engaged to safely avoid collision. Allowing for active abort
maneuvers relaxes the safety requirements as compared to
the passive case, permitting trajectories pertinent to the final
phase of rendezvous.

Classically, when a deputy spacecraft deviates significantly
from its nominal approach in proximity to the chief and
its current trajectory is not passively safe, a predetermined
active collision avoidance maneuver (CAM) must be engaged
[1]. However, depending on approach trajectory and extent
of partial thruster failure, a CAM may not be possible.
To address this, in [3] a method is proposed for online
generation of nominal trajectories that, in the event of partial
thruster failure, can switch to a safe input sequence to avoid
collision. To guarantee the existence of such a sequence,
the method expands the size of the optimization problem by
solving for both nominal and abort sequences concurrently
given an initial condition for which the method is feasible.

In this work, we formally characterize the region of state-
space in which feasible abort maneuvers exist by using
robust backwards reachable sets. The concept of reachability
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has previously been used for spacecraft relative proximity
operations and docking. While spacecraft relative motion
dynamics are nonlinear and various reachability techniques
have been developed for nonlinear systems [4]–[6], space-
craft relative proximity operations generally occur in the
linear regime and as such most spacecraft applications do not
make use of nonlinear reachability. In [7], backwards reach-
able sets using the linear time-invariant (LTI) Clohessey-
Wiltshire (CW) equations of relative motion are used to
determine successful docking initial conditions. The work
in [8] computes reach-avoid sets to obtain trajectories that
reach the chief while avoiding a line-of-sight set, whereas [9]
focuses on using Lagrangian methods to compute stochastic
reach-avoid sets. Under-approximated reach-avoid sets are
also computed in [10] to ensure a satellite maneuvers to
a new location while avoiding debris. Finally, in our prior
work [2], we generate passively safe rendezvous trajectories
on elliptic orbits by avoiding backwards reachable sets that
characterize the unsafe regions of state-space that, in the
event of total thruster failure, would lead to a collision
between a deputy spacecraft and its chief.

We now expand upon [2] to generate rendezvous tra-
jectories with a guarantee that, in the event of various
thrust failure scenarios along these trajectories, safe abort
maneuvers exist. In order to achieve this guarantee, offline
we compute polytopic robust backwards reachable sets over
a time interval (RBRSI) from the chief that, for a given
thrust failure scenario, characterize the unsafe state-space
that would lead to collision no matter the remaining available
thrust. Failure scenarios are encoded in admissible control
sets and are treated as if the control was a disturbance,
that is, the RBRSI are computed for all possible controls
in the admissible set. Thus, these sets determine the regions
of state-space for which no feasible evasive abort maneuvers
exist. The union represents the unsafe state-space that is to be
avoided in order for there to exist a feasible abort maneuver
under the thrust failure scenario. As avoiding a union of
polytopes results in nonconvex constraints, we convexify by
computing a halfspace that covers a local region of unsafe
sets, which we use as a safety constraint for the online
trajectory generation process.

We develop a model predictive control (MPC) policy that
enforces the constraints, thus ensuring that the spacecraft
remains outside of the union of RBRSI , and hence guar-
anteeing the existence of abort maneuvers for the given
thrust failure scenario. MPC has previously been applied for
spacecraft rendezvous under nominal propulsion conditions,
see [11]–[15] and references therein.



A. Preliminaries and Notation

Vectors are shown in boldface. A reference frame, Fx, is
defined at an origin and consists of three orthonormal dextral
basis vectors {ı̂, ̂, k̂}. The angular velocity vector of frame
Fx with respect to Fy is denoted by ωx/y. Rn denotes the
n-dimensional Euclidean space. Given a matrix A ∈ Rn×n,
det(A) denotes its determinant. In denotes the n-dimensional
identity matrix. The special orthogonal group SO(3) = {R ∈
R3×3 : det(R) = +1, R>R = I3}. The matrix Cy

x ∈ SO(3)
denotes the direction cosine matrix (DCM) that transforms
vectors in Fx to Fy. A derivative with respect to the inertial
frame is denoted by (·)′ whereas a derivative with respect
to another frame is denoted by ˙(·). A vector resolved in
frame Fx is denoted x(·), any unit vector is denoted by (̂·),
and the euclidean norm of a vector is given by || · ||. We
denote the value of a signal at a discrete time t as xt, and
xk|t denotes the value of x predicted k steps ahead from
t. For two sets, X , Y , the Minkowski sum is denoted by
X
⊕
Y , the complement by X c, the set of subsets as 2X ,

and the cardinality as |X |. The hyperplane representation
(H-representation) of the polyhedron P ⊆ Rn is P(H,k) =
{x ∈ Rn : Hx ≤ k} with H ∈ Rp×n, k ∈ Rp. Given a
matrix H , [H]i denotes the ith row of the matrix.

II. MODEL AND PROBLEM STATEMENT

Consider a chief and a deputy in orbit around a central
body, e.g., Earth. The frame Fe is the Earth-Centered Inertial
(ECI) frame, e is an unforced particle, and it is assumed that e
is collocated with the center of the Earth. The deputy’s center
of mass is denoted by d and has a deputy-fixed frame Fd.
The chief’s center of mass is denoted by c and has a chief-
fixed frame Fc. The chief’s orbit frame Fo = {ı̂r, ı̂θ, ı̂h} is
Hill’s frame with radial, along-track, and cross-track basis
vectors [16]. The deputy is controlled and assumed to be
aligned with the chief’s orbital frame Fo, i.e. ωd/o = 0.

We denote rc, rd as the position vectors of the chief and
deputy centers of mass relative to the center of Earth, mc,md

are the chief and deputy masses, and fc, fd represent
perturbing forces acting on the chief and deputy, respectively.
In this study, the chief is assumed to follow Keplerian
motion, i.e. fc = 0, and we neglect orbital perturbations on
the deputy i.e. fd = u . Given a chief and deputy spacecraft,
the position of the deputy relative to the chief is given by
ρ = rd−rc. The nonlinear equations of relative motion can
be linearized about the chief’s trajectory and resolved in the
chief’s orbital frame Fo, yielding [16], [17]
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where oρ =
[
δx δy δz

]T
is the relative position resolved

in Fo, rc = ‖rc‖, h = ‖rc×r′c‖ is the inertial specific angu-
lar momentum of the chief’s orbit, and u =

[
ux uy uz

]T
is the control input applied to the deputy resolved in Fo. As

Fig. 1: Deputy model and thruster configuration.

rc and h vary along the orbit, the equations of motion (1)
result in the linear-time varying system

ẋ(t) = A(t)x(t) +Bu(t), (2)

where x =
[
δx δy δz δẋ δẏ δż

]T
. In this work we

consider a discrete time formulation of (2)

xt+1 = f(t,xt,ut) = A∆(t)xt +B∆(t)ut, (3)

with sampling period ∆t, which is assumed to be small
enough not to lose significant behavior between samples.

A. Thrusters and Failure Modes

The deputy, depicted in Figure 1, has eight thrusters rigidly
fixed with respect to Fd that provide thrust in lines coincident
with their positions and the center of mass of the spacecraft
such that they do not impart any torque. The total force
applied to the deputy resolved in Fo is

u = ofd =

8∑
j=1

γj
of̂d,τj , (4)

where γj ∈ [0, um,j ] is the magnitude of thruster j, um,j

is the maximum thrust of thruster j, of̂d,τj = Co
d

df̂d,τj is
the fixed thrust direction of thruster j resolved in Fo, and
Co

d = I3 is the DCM that transforms a vector in Fd to Fo,
where we recall the assumption that the deputy is aligned
with the chief’s orbital frame.

In the course of executing a rendezvous maneuver, any
number of thrusters may fail. Given the set of thruster indices
I = {1, 2, . . . , 8}, the set of working thruster combinations
isM = 2I , nF = |M|. The setMi ∈M, i ∈ {1, . . . , nF },
denotes a specific set of functional thrusters, also called a
thrust mode. Mi = I indicates nominal operation of all
thrusters, and Mi = ∅ indicates total loss of control. The
set of all possible failure modes is FM = M \ I. The
admissible control set Ui associated with thrust mode Mi ∈
M is given by

Ui =

|Mi|⊕
j∈Mi

{γjof̂d,τj : γj ∈ [0, um,j ]}. (5)



B. Problem Statement

A compact target set Sf fixed in the orbital frame Fo

is given, that includes the origin and where the extension
along the position dimensions over-approximates the chief’s
physical geometry, and the extension along the velocity
dimensions spans the deputy’s admissible operational ve-
locities. The set Sf defines a region in state-space that the
deputy must avoid in the event of partial thruster failure. The
objective of the abort-safe spacecraft rendezvous problem is
for the deputy to approach the chief in a manner that, in the
event of a thruster failure Mi ∈ FM at a generic discrete
time instant tfail, there exists an N step abort sequence such
that the deputy does not enter Sf for t ∈ [tfail, tfail+N], i.e.
there exists utfail , . . . , utfail+N−1 ∈ Ui such that xt /∈ Sf for
all discrete times t ∈ [tfail, tfail+N].

III. ROBUST REACHABLE SETS AND ABORT SAFETY

We enforce abort safety by maintaining the deputy vehicle
outside of the unsafe region of state-space, that is, the region
where if a failure occurs, a safe abort does not exist ie. a
collision cannot be avoided. We determine such region by
the robust backwards reachable sets (RBRS) of the target set
with respect to the input set, that is the set of states that will
enter the target set regardless of the inputs. Thus, when the
failure occurs and the state is in the RBRS, no admissible
control exists to avoid collision.

Definition 1: Given xt+1 = f(t,xt,ut), where u ∈ U ,
and final time tf , the N -step robust backward reachable set
Rb(N ;Sf ,U , tf ) of target region Sf ⊆ Rn is

Rb(0;Sf ,U , tf ) = Sf , (6)
Rb(j;Sf ,U , tf ) = {x ∈ Rn :

f(tf − j,x,u) ∈ Rb(j − 1;Sf ,U , tf ),∀u ∈ U}.
Here the RBRS is the set of initial conditions at time
t0 = tf − N from which the deputy will not be able to
avoid collision at time tf , regardless of the admissible control
sequence applied.

Definition 2: The robust backwards reachable set over the
time interval [t0, tf ] (RBRSI), where t0 = tf − N , is the
union of the j-steps RBRS,

RN (Sf ,U , tf ) =

N⋃
j=0

Rb(j;Sf ,U , tf ). (7)

The RBRSI denotes the set of states x̄ for which there exists
t ∈ [t0, tf ], such that from x(t) = x̄, the deputy will not be
able to avoid collision at time tf , regardless of the admissible
control sequence applied.

Next, we account for changing final time, considering that
the orbit, and hence the time-varying system, is periodic. To
this end the orbit-RBRSI is the union of the RBRSI (7) for
tf that varies along one orbit

R̄N (Sf ,U) =

2tp⋃
tf=tp+1

RN (Sf ,U , tf ), (8)

where tp is the orbital period, and we assumed N < tp due
to the type of spacecraft maneuver we target.

By taking the union of the RBRSI for changing final
time around one orbit, (8) contains sets of states for which
there exists a time in the chief’s periodic orbit such that
a collision will necessarily occur after at most N steps,⋃N
j=0Rb(j;Sf ,U , t0 + j).
Remark 1: We arrive at the construction of R̄N (Sf ,U)

“backwards,” by fixing first the final time and considering
all initial times within N -steps in (7), and then considering
all final times within the orbit in (8). We did that to stay
closer to the definition and computation of RBRS, which
are backwards in time.

A. Case of Polytopic Target Set and LTV Dynamics

When the dynamics are linear as in (2) and the target
set Sf is a polytope, the RBRS is also a polytope and
is computed by solving linear programs [18]. Consider the
target set Sf = P(Hf ,kf ). Let the j-steps RBRS from final
time tf be Rb(j;Sf ,U , tf ) = P(Hj ,kj), the j + 1-steps
RBRS is Rb(j + 1;Sf ,U , tf ) = {x ∈ Rn : Hj+1x ≤
kj+1}, where

Hj+1 = HjA∆(tf − (j + 1)), (9a)
[kj+1]i = min

u∈U
[kj ]i − [Hj ]iB∆(tf − (j + 1))u. (9b)

In practice, additional linear programs to the ones in (9b)
are solved to remove redundant hyperplanes for obtaining a
minimal representation of P(Hj ,kj).

When the RBRS is computed for all thrusters failed, i.e,
Mi = ∅, it becomes the set of passively unsafe states, i.e.
initial conditions for which free-drift trajectories enter Sf .
This is similar to [2] where, however, ellipsoids are used
instead of polyhedra.

B. Abort-Safe Sets

Consider a time interval [t0, tf ], and a target set Sf
constant in such interval. Given the state at an initial time
t0, the state at any time t > t0 is found using

xt = Φ(t, t0)x0 + Cũ, (10)

where C is the controllability matrix of the LTV system,
ũT =

[
uT
t−1 . . . uT

t0

]
, and Φ(t, t0) = A∆(t)A∆(t −

1) · · ·A∆(t0) is the t0-to-t transition matrix. For the sake
of notation let

xt = φ(t;x0, ũ, t0), (11)

where ũ ∈ Uh, and, with a little abuse of notation, h ≥
t − t0, i.e., we may include more inputs in ũ even though
the ones with indexes j > t − 1 have no impact on xt.
Letting tf − t0 = N , we define the safe set X safe

N as the
set of initial conditions that can be made to not collide with
Sf within the desired interval X safe

N = {x ∈ Rn : ∃ũ ∈
UN , φ(t;x0, ũ, t0) /∈ Sf , ∀t ∈ [t0, tf ]}.

Proposition 1: Let x0 ∈ R̄N (Sf ,U)c. Then, for any
t0 and tf = t0 + N , there exists ũ ∈ UN , such that
φ(t;x0, ũ, t0) 6∈ Sf , for all t ∈ [t0, tf ]. Hence,

X safe
N = R̄N (Sf ,U)c. (12)



Proof: By construction (7), (8), R̄N (Sf ,U), contains
all the initial conditions x0 such that for all ũ ∈ UN there
exists t ∈ [t0, t0 + N ] such that φ(t;x0, ũ, t0) ∈ Sf . The
properties of the complement R̄N (Sf ,U)c are obtained by
negating the properties of R̄N (Sf ,U). Thus, R̄N (Sf ,U)c

contains the initial conditions x0 such that there exists ũ ∈
UN such that for all t ∈ [t0, tf ], φ(t;x0, ũ, t0) /∈ Sf , which
is the desired safety condition. The validity for any t0 is
due to (6) and to including in (8) the RBRSI for all tf ∈
[tp+1, 2tp], which covers all the time instants by considering
that the LTV system is periodic with period tp. Thus, X safe

N =
R̄N (Sf ,U)c.

Due to the definition of X safe
N , if the state is kept inside

it, the existence of a control sequence that avoids the set Sf
in any interval [t0, t0 +N ] is guaranteed.

IV. ABORT-SAFE RENDEZVOUS CONTROL

Next, we develop an abort-safe control policy that exploits
the safe set (12) and its complement (8). Specifically, we
develop a model predictive control (MPC) policy that gener-
ates a trajectory constrained to remain within (12), and hence
outside its complement (8), while minimizing a cost function
designed based on performance metrics.

The MPC policy solves the optimal control problem

min
Ut

E(xNp|t) +

Np−1∑
k=0

F (xk|t,uk|t) (13a)

s.t. xk+1|t = A∆(t+ k)xk|t +B∆(t+ k)uk|t (13b)
gt(xk|t,uk|t) ≤ 0 (13c)
uk|t ∈ U(t) (13d)
x0|t = xt (13e)

where Np is the prediction horizon length, usually (much)
smaller than N in (8), the prediction model (13b) is (3),
(13c) is the constraint ensuring that collision can be averted
in presence of propulsion system failures, and U(t) ∈ {Ui}i
is the input set at time t, which depends on the propulsion
system condition according to (5). Since the control sequence
over the horizon is Ut = (u0|t . . .uNp−1|t), the following
control is applied as an input

ut = κmpc(xt) = u∗0|t, (14)

where U∗t = (u∗0|t . . .u
∗
Np−1|t) is the optimizer of (13).

A. Safety Constraints

For (13c) we construct the unsafe set as the union of the
orbit-RBRSI in (8) over the input sets (5). Since some failure
modes may not need to be considered, e.g., they cannot occur
or the spacecraft may be re-oriented to change the location
of faulty thrusters, the unsafe set is constructed from given
q ≤ nF input sets (5) as

R̄rdv
N (Sf ) =

q⋃
i=1

R̄N (Sf ,Ui). (15)

In (15), it is enough to consider all input sets that are
not supersets of others, i.e., {Ui : i, j ∈ {1, . . . q},@j ≤

i, Ui ⊇ Uj}, so that we can ignore the input set for nominal
conditions. While ideally (13c) could be implemented simply
as xk|t ∈ X safe

N = R̄rdv
N (Sf )c, such a constraint is non-

convex and will make (13) hard to solve numerically. Instead,
we impose constraints on the state to remain outside of (15)
by computing a hyperplane that excludes (15) from the
feasible space of (13), based on the following well known
result.

Result 1: ([18, Prop.3.31]) Given polyhedra P1(H1,k1),
P2(H2,k2), it holds that P2(H2,k2) ⊃ P1(H1,k1), if and
only if there exists a non-negative matrix Λ such that

ΛH1 = H2

Λk1 ≤ k2.
(16)

Given a subset of the polyhedra {P(HR̄i , k
R̄
i )}`i=1 within

R̄rdv
N (Sf ), where HR̄i ∈ Rnci×n, we use Result 1 to

construct a halfspace Ph(h, 1) = {x ∈ Rn : hx ≤ 1}
such that Ph(h, 1) ⊃ {P(HR̄i ,k

R̄
i )}`i=1. Given x̄ ∈ Rn, let

h∗(x̄), {λ∗i (x̄)}`i=1, s∗(x̄) be the solution of

min
s,h,{λi}`i=1

− s (17a)

s.t. s ≥ 0 (17b)
hx̄ ≥ 1 + s (17c)
[λi]j ≥ 0, j = 1, . . . , nci (17d)

λiH
R̄
i = h (17e)

λik
R̄
i ≤ 1, i = 1, . . . , ` (17f)

where λi ∈ R1×nci , for all i = 1, . . . , `. Any feasible
solution of the linear program (17) is such that Ph(h, 1) ⊃
{P(HR̄i ,k

R̄
i )}`i=1. Furthermore, any feasible solution of (17)

is such that x̄ /∈ Ph(h, 1), and the cost function (17a)
maximizes the “distance” of x̄ to the half space Ph(h∗, 1),
for reasons that will be clear next.

At any time t, we construct (13c) exploiting the
optimal trajectory according to (13) at time t − 1,
(x∗0|t−1 . . .x

∗
Np|t−1). Given x∗k|t−1, k ∈ {1, . . . , Np}, we

select the ` closest polyhedra among those in R̄rdv
N (Sf )

based on the distance

d(x∗k|t−1,Pi) = min
y

‖x∗k|t−1 − y‖2

s.t. y ∈ Pi.
(18)

Then, we compute hk|t = h(x∗k+1|t−1) from (17) based on
the selected {Pi}`i=1 and implement (13c) as its complement

−hk|txk|t ≤ −1− ρ, (19)

where ρ > 0 is an arbitrarily small constant, in order
for (13c) to be feasible in a closed set, and possibly to
add a safety margin. Since Ph(h, 1) ⊃ {Pi}`i=1, its com-
plement (19) does not intersect {Pi}`i=1.

Remark 2: If ` is chosen to include all polyhedra
of R̄rdv

N (Sf ), the feasible set of (19) is contained in X safe
N .

We consider the possibility of including only the subset
of closest polyhedra to take advantage of the receding
horizon nature of (14) for reducing the computational burden
of (13) and (17), and to avoid possible infeasibility of (17),



which are local (over)-approximations of R̄rdv
N (Sf ). In fact,

R̄rdv
N (Sf ) considers all terminal times around the orbit, while

the final approach of the rendezvous maneuver considered
here terminates in a small, albeit difficult to predict, fraction
of the orbital period.

Cost function (17a) is meant to increase the residual of
x∗k|t−1 in satisfying (19), so that the deputy has more clear-
ance to maneuver and select an optimal trajectory without
riding on or near the constraint, if possible.

B. Cost Function

In order to obtain in (13) a linear quadratic MPC, we
design the stage cost and the terminal cost in (13a) as

F (x,u) = x>Qx+ u>Ru, (20a)

E(x) = x>Mx, (20b)

where the weight matrices Q = Q> ≥ 0, R = R> >
0, M = M> > 0 are selected to achieve the desired
performance. The primary objective is to approach the chief,
which amounts to reaching zero position and velocity, and
can be affected by Q. A secondary objective is to minimize
the total required propellant, since this allows for increased
payload, which often requires minimizing the thrust, and
hence is affected by R.

V. SIMULATION RESULTS

We run the discrete-time MPC (13), (14) in closed-loop
with the continuous-time model of the nonlinear equations
of relative motion resolved in Fo. The number of steps in
the MPC horizon and the MPC sampling period are Np = 8,
∆tMPC = 30s. Each thruster can apply a maximum thrust of
um = 20 N. The terminal set is defined by a polytope with
position bounds pm = 20 m and velocity bounds vm = 6
m/s. The LTV RBRSI sets are computed for a quarter of the
orbital period, such that the safety horizon is N = d tp4∆te+
1 = 54 and the RBRS sampling period is chosen such that
∆tRBRS < ∆tMPC.

The failure occurs at tfail, when the state is x(tfail), so that
for t < tfail, ut ∈ U1, which corresponds to M1 , I, i.e.,
nominal control. For t ≥ tfail, ut ∈ Ui where Mi ∈ FM,
i.e., some thrusters have failed. For t ≥ tfail we set Q,M = 0
so that the only objective is to avoid the constraints, i.e.,
safety. Next we show the behavior of the safe controller,
that is designed as described in Section IV to be safe in case
of partial thruster failure by enforcing x ∈ X safe

N , so that safe
abort maneuvers exist, as per Proposition 1. We compare it
with a standard design, called unsafe controller, that only
aims at avoiding Sf using that itself as a constraint, yet has
no formal guarantees.

A. Safe Controller vs. Unsafe Controller

In this section, a simulation is presented to compare the
trajectories of the unsafe and safe controllers. In Figure 2a,
the dashed lines represent the part of the trajectory before
the failure time t ∈ [t0, tfail], where in these simulations
tfail = 240s, while the solid lines represent the part after the
failure time and within the safety horizon, t ∈ [tfail, tfail+N ].

The mark on the trajectory indicates the position at which
the failure occurs, x(tfail). The unsafe approach is shown in
red while the safe approach is shown in blue. The positions
within the target set Sf are shown as a transparent cube. For
these simulations, q = 1 so safety is only maintained with
respect to one failure mode in each trajectory.

The case when only thruster 1 has failed is shown in
Figure 2a, where M2 , I \ {1} ∈ FM, so that, after the
failure occurs, ut ∈ U2 for the remainder of the simulation.
The initial state in the chief’s Hill frame is x(t0) =[
−0.3178 0.7149 −0.1200 0.0017 −0.0021 0.0004

]T
for both controllers. The trajectories for the safe and unsafe
controllers are shown in Figure 2a, while the control
histories are shown in Figure 2b. Indeed, while the unsafe
controller cannot avoid colliding with the chief, when the
safe controller is used, an avoidance maneuver is possible.

(a) Approach trajectories for the controllers. State at time of failure
shown by mark.
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(b) Control histories for the controllers. Vertical dash line marks tfail.

Fig. 2: Comparison of the safe and unsafe controllers when
only thruster, τ1, fails i.e. M2 = I \ {1}.

B. Varying Initial Conditions

We demonstrate that within the orbit-RBRSI safe-abort
is impossible, while outside it is guaranteed. This is shown
by using the safe controller for various safe initial states,
x(t0) ∈ X safe

N , and unsafe, x(t0) /∈ X safe
N , where for



the unsafe initial conditions, (13c) is softened by slack
variables. For simplicity and clarity, we consider a sce-
nario of a planar rendezvous, δz, δż = 0. Here, a more
significant failure mode is considered defined by M3 ,
{8} ∈ FM, such that thrusters τ1 through τ7 simul-
taneously fail. In these simulations, the failure occurs at
t0 = tfail = 0, and as a consequence ut ∈ U3, for all
t ≥ 0. We generate random initial conditions in xsafe,i

0 ∈
X safe
N and xunsafe,i

0 ∈ R̃N (Sf ,U , tf ) ⊂ X unsafe
N . Ad-

ditionally, the following position and velocity norm con-
straints are imposed on the samples: ‖xp(t0)‖2 ∈ [r1, r2]
and ‖xv(t0)‖2 ∈ [v1, v2], where

[
r1 r2 v1 v2

]
=[

0.1km 0.16km −1.5ms−1 1.5ms−1
]
.

All of the initial conditions that start in the safe set remain
so for the remainder of the simulation as shown in Figure 3a.
For comparison, Figure 3b shows the resulting trajectories
when the safe controller is used on initial conditions in
R̃N (Sf ,U , tf ). In this case, the safe controller is incapable
of avoiding a collision with the chief, despite safety be-
ing enforced, which is true by construction of (6). This
highlights the importance of the proposed method, which
formally allows the deputy to avoid the chief by remaining
in R̃N (Sf ,U , tf )c at all discrete times.

VI. CONCLUSIONS

We developed an abort-safe control policy against partial
thruster failures for spacecraft rendezvous on generic elliptic
orbits using robust backwards reachable sets and model
predictive control. The proposed control policy generates
rendezvous trajectories such that if a fault occurs in the
propulsion system, it is always possible to maneuver the
deputy spacecraft to avoid colliding with the chief.
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