
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
https://www.merl.com

Reachability-based Decision Making for Autonomous
Driving: Theory and Experiment

Ahn, Heejin; Berntorp, Karl; Inani, Pranav; Ram, Arjun Jagdish; Di Cairano, Stefano

TR2020-165 December 16, 2020

Abstract
We describe the design and validation of a decision making system in the guidance and control
architecture for automated driving. The decision making system determines the timing of
transitions through a sequence of driving modes, such as lane following and stopping, for
the vehicle to eventually arrive at the destination without colliding with obstacles, hence
achieving safety and liveness. The decision making system commands a transition to the
next mode only when it is possible for an underlying motion planner to generate a feasible
trajectory that reaches the target region of such next mode. Using forward and backward
reachable sets based on a simplified dynamical model, the decision making system determines
the existence of a trajectory that reaches the target region, without actually computing it.
Thus, the decision making system achieves fast computation, resulting in reactivity to a
varying environment and reduced computational burden. To handle the discrepancy between
the dynamical model and actual vehicle motion, we model it as a bounded disturbance set
and guarantee robustness against it. We prove the safety and liveness of the decision making
system, and validate it using small-scale car-like robots.

IEEE Transactions on Control Systems Technology

c© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139





JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Reachability-based Decision Making for
Autonomous Driving: Theory and Experiment

Heejin Ahn, Karl Berntorp, Pranav Inani, Arjun Jagdish Ram, and Stefano Di Cairano

Abstract—We describe the design and validation of a decision
making system in the guidance and control architecture for
automated driving. The decision making system determines the
timing of transitions through a sequence of driving modes, such as
lane following and stopping, for the vehicle to eventually arrive at
the destination without colliding with obstacles, hence achieving
safety and liveness. The decision making system commands a
transition to the next mode only when it is possible for an
underlying motion planner to generate a feasible trajectory that
reaches the target region of such next mode. Using forward
and backward reachable sets based on a simplified dynamical
model, the decision making system determines the existence of
a trajectory that reaches the target region, without actually
computing it. Thus, the decision making system achieves fast
computation, resulting in reactivity to a varying environment
and reduced computational burden. To handle the discrepancy
between the dynamical model and actual vehicle motion, we
model it as a bounded disturbance set and guarantee robustness
against it. We prove the safety and liveness of the decision making
system, and validate it using small-scale car-like robots.

Index Terms—Decision making, formal methods, motion plan-
ning, autonomous driving

I. INTRODUCTION

DECISION making is one of the key components to
enable automated driving. Based on a route given by

a navigation system, it makes mission-level decisions such
as if and when to perform lane changing, stopping, waiting,
and intersection crossing. According to the decisions, an
underlying motion planning system generates a state trajectory,
and a vehicle control system computes the input signals to
track the trajectory, as shown in Fig. 1. This modular structure
yields several advantages: increased flexibility by executing
different algorithms, a more effective usage of information
and resources by exploiting different prediction models at
different decision rates, easier maintenance and expandability
as one layer can be modified without affecting the others, and
the parallel and independent development of each layer. On
the other hand, the modules have to be carefully designed to
guarantee, once integrated, the desired overall system behavior,
without side-effects or interference.

This paper proposes the design of the decision making
system that guarantees safety and liveness, and retains them
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Fig. 1. Example architecture of an automated driving system. The focus of
this paper is on decision making and its integration with motion planning.

once it is integrated with the motion planning system. The
decision making system is referred to as just the decision
maker in the rest of the paper. Here, we use the particle
filter motion planner in [1], while the proposed design can
be applied to any other motion planning method aimed at
generating dynamically feasible vehicle trajectories.

The objective of the decision maker design in this paper
is to ensure safety and liveness; that is, the decision maker
should ensure that the ego vehicle (EV) does not collide
with other vehicles (OVs) and reaches a sequence of goal
sets, which represents a route given by a navigation system.
To guarantee the liveness property of the decision maker,
we use backward reachable sets of such goal sets., i.e., the
set of states from which the goal set can be reached by
an appropriate choice of input signals. The key idea of our
design is that the decision maker keeps the EV state inside
the backward reachable sets of all the subsequent goal sets,
thereby ensuring that there exists an input signal to reach
the goal sets. A commonly adopted approach for decision
maker design is forward simulation [2]–[4]. However, such
an approach restricts the prediction of the EV’s trajectories
to a finite horizon, and often does not guarantee persistent
feasibility [5]. Hence, decisions at the current time step may
cause infeasibility in subsequent decision-making problems.
Our method also uses forward reachability to guarantee the
safety property of the decision maker, but in addition uses
backward reachability to guarantee persistent feasibility and
therefore liveness. More details of the relation between this
work and the literature are discussed in Section I-A.

For computationally efficient decision making over a long
horizon, we use a simplified vehicle dynamical model, while
relying on the underlying motion planner to generate a more
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realistic motion profile using a higher fidelity model. As
opposed to our initial study [6], we model the discrepancy
between the simplified model in the decision maker and the
more accurate model in the motion planner as an additive
bounded disturbance. Then, we ensure robustness of the de-
cision maker by applying tools from robust reachability anal-
ysis, which amounts to appropriately shrinking the backward
reachable sets and enlarging the avoidance sets for preventing
collisions with OVs. For validating our approach, we evaluate
the decision maker integrated with the motion planner and
vehicle tracking controller in simulations and experiments of
a small scale testbench for automated driving.

This paper is structured as follows. In the rest of this section,
we introduce notations used throughout the paper and explain
the relation of our work with existing literature. In Section II,
we introduce the discrete and continuous models used in the
decision making and motion planning systems. In Section III,
we state the problem of designing the decision maker, and in
Section IV we present an algorithm that provides the solution
of the problem. In Section V, we present some implementation
aspects of the algorithm, and detail the integration between the
decision making and motion planning systems. We present
the simulation and experimental results in Section VI and
conclude the paper in Section VII.

Notation: Let Z≥0 and R denote the sets of nonnegative in-
tegers and real numbers, respectively. Function composition is
denoted by ◦. For a discrete time signal, xk = x(tk) = x(k∆t)
where ∆t = tk+1 − tk is the sampling period. By x0:N ,
we explicitly denote a sequence (x0, x1, . . . , xN ) over the
prediction horizon N . We simply write x when the prediction
horizon is clear from the context. The same notation applies
to a sequence of inputs u. Given a system with state x and
input u, we denote by x̂k(û, x̂0), the state reached at time
step k starting from x̂0 with input sequence û. A random
vector v ∼ N (m,Q) is Gaussian distributed with mean m
and covariance Q. Given two sets A and B, the Minkowski set
addition is A⊕ B := {a+ b : a ∈ A, b ∈ B}, the Pontryagin
set difference is A 	 B := {a : a + b ∈ A,∀b ∈ B}, the
complement of A is Ac, and the origin-symmetric set of A as
−A, i.e., −A := {−a : a ∈ A}.

A. Relation with Existing Literature

Our decision maker is designed to ensure liveness and safety
of the overall automated driving system, when the remaining
components operate normally. Currently, the methods for
decision making can be categorized into three groups: rule-
based, reactive, and interactive planning.

Rule-based planning refers to algorithms that make deci-
sions using the current states of OVs, without considering their
dynamics and hence the prediction of their trajectories. In the
DARPA Urban Challenge [7], most teams implemented a rule-
based decision making system involving hand-tuned heuristics
for different city-driving scenarios.

Reactive planning refers to algorithms that make decisions
in response to predicted trajectories of OVs over a finite
horizon. A commonly used approach is based on forward
simulation of the EV. For example, decision makers based on

forward simulation allow the action of lane change when there
is a trajectory of the EV that reaches the adjacent lane without
overlapping with the predicted (forward simulated) trajectories
of OVs. The work [2] optimizes trajectories, represented by
cubic splines, that satisfy a required probability of collision
with OVs. Instead of using deterministic mode transitions,
it lets multiple possible trajectories share a single trajectory
segment at the beginning and applies an input that tracks the
shared segment. The works [3], [4] classify trajectories based
on their topological property for different decisions and choose
the best decision based on some metrics. A limitation of some
forward simulation approaches is not to guarantee persistent
feasibility.

Some reachability-based approaches to reactive planning
have also been studied before. The work [8] uses similar tools
to the ones we use in this paper, but for a different purpose.
The method in [8] verifies if a trajectory, which is assumed to
be generated by an external motion planner, is safe to execute
by checking for the intersection of the forward reachable sets
of the EV and OVs over a prediction horizon. The method
accepts a trajectory if it maintains the EV in a safe condition
at all future time steps, for example, by bringing the EV to a
stop in a safe location. The approach of planning until stop was
adopted for rapidly-exploring random trees (RRT) in urban
scenarios [9]. Backward reachability tools are used in [10]
to determine the drivable area, where safety is guaranteed at
all future times by preventing the EV state from entering the
backward reachable sets of the occupied region by OVs.

Interactive planning incorporates the reaction of OVs into
the plans of the EV. One approach, based on game theory,
selects the actions of the EV and OVs that maximize rewards
by evaluating all possible combinations of actions [11] or
assuming that agents have different interaction levels [12].
Another approach based on partially observable Markov De-
cision Processes (POMDPs) determines the optimal action of
the EV in response to the unobservable OVs’ intentions. The
works [13], [14] present computationally tractable POMDPs
by capturing regular behavior of drivers as a finite set of
policies and by planning the longitudinal input along a finite
set of predetermined paths through intersections, respectively.

The approach developed in this work is an instance of
the reactive planning category. Our decision maker uses both
forward and backward reachability to ensure persistent fea-
sibility. While we also use tools from reachability analysis,
our goal is fundamentally different from [8]. Rather than
verifying a specific trajectory, we determine the existence
of trajectories that safely reach certain target regions before
the motion planner actually computes them. This allows the
motion planner to avoid unnecessary computations in trying
to accomplish unachievable goals. Similar to [10], we ensure
safety with respect to OVs by commanding a mode transition
only if it is possible to avoid their capture sets, the sets
where collision is unavoidable. In addition, a transition is
activated only if the EV state is within the backward reachable
set of corresponding target region, which guarantees liveness.
As opposed to known methods for interactive planning, our
work considers a sequence of decisions to ensure liveness by
appropriately concatenating the reachable sets.
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Fig. 2. Example of city driving. A route to the destination (red flag) from
the navigation system involves a sequence of driving modes such as lane
following (with light blue target regions around centerlines) and stopping
(with dark blue rectangles target regions before stop lines). The motion planner
iteratively generates a trajectory (red line) that reaches the sequence of target
regions, while avoiding collisions with traffic (not shown). The decision maker
determines the current driving mode and target region.

II. VEHICLE MODELING FOR DECISION MAKING AND
MOTION PLANNING

The decision maker in Fig. 1 determines discrete mode
transitions based on continuous-valued signals of a simplified
dynamic model, while the underlying motion planner generates
the actual vehicle trajectories using a more accurate dynamic
model. In this section, we describe the models of discrete
modes and continuous states of the decision maker and motion
planner. We also describe the model of OVs.

A. Discrete Mode Transitions in the Decision Maker

In the architecture in Fig. 1, the route of the EV is
determined by the navigation system; see for instance Fig. 2.
From the route, a sequence of driving modes is generated,

q1 → q2 → . . .→ qM , (1)

where qi ∈ Q for i = 1, . . . ,M , Q is the finite set of driving
modes, and qi → qi+1 denotes the transition from qi to qi+1.
The sequence in (1) can be constructed in different ways. For
example, it may be the sequence of driving lanes, stop areas,
and turns, which is directly given by the navigation system.
Alternatively, it may be a sequence of discrete actions, such as
lane changing, stopping, waiting and crossing an intersection,
generated usually from an automaton [7].

The navigation system may plan the route based on static
information, such as static maps and road rules, but the
timing of the mode switches must be determined in real time,
based on the current road and traffic conditions. Furthermore,
since the traffic conditions may cause scenarios where the
predetermined mode sequence cannot be achieved, switching
to an alternative sequence may be necessary. This may happen
when the EV cannot achieve the appropriate lane before an
intersection, because such lane is jammed with OVs. In this
case, the EV may maintain the current lane, and the navigation
system will provide an alternative route. In the general case,
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Fig. 3. If qi+1 become impossible to achieve in the future, for instance due
to presence of OVs, the decision maker transitions to a backup route given
by the navigation system and returns ε′i+1 when q′i+1 can be achieved.

the mode sequence may not be entirely determined a priori,
but may be partially modified in real time, with enough
preview for the proper operation of the decision maker.

The decision maker in Fig. 1 connects the long-term, static
information-based, navigation system, with the short-term,
dynamic information-based, motion planning by executing
two actions. First, the decision maker determines when to
transition to the next driving mode. Second, the decision
maker determines whether the next driving mode has become
unachievable, and if so, it determines when to transition to the
next mode of an alternative sequence, which is available from
the navigation system; see Fig. 3.

Specifically, in this work we design the decision maker πε
that issues transition commands εi+1 ∈ E based on current
mode, EV state, and environment information. Here, E is the
finite set of all discrete inputs. The discrete input εi+1 ∈ E
causes the transition from qi to qi+1, denoted by qi → qi+1,
and the void input ε0 ∈ E causes the mode to remain the
same, i.e., qi → qi. When the decision maker determines that
qi → qi+1 has become impossible to achieve in the future, it
begins considering the alternative sequence also provided by
the navigation system,

q′i → q′i+1 → . . .→ q′M ′ , (2)

where q′i = qi and q′M ′ = qM , and issues the discrete input
ε′i+1 ∈ E when qi → q′i+1 is feasible. Note that we assume qM
is reachable from any mode, possibly via re-routing executed
by the navigation system.

For the simplicity of exposition, here we consider the case
where the driving modes are the driving lanes and stop areas

Q = {LFi, Si}
nseg

i=1

along the route, where nseg is the number of road segments in
the route. The sequence (1) is determined in real time based
on route information, as we do for experimental validation
in Section VI. Furthermore, we consider a single backup
sequence (2), which amounts to continuing in the current lane
and stopping in the stop area at the end of such lane.

Although this is a slightly simplified case, it still allows
to represent several basic driving operations. A lane change is
modeled as the transition from following a lane to following an
adjacent lane, stopping as the transition from a lane to a stop
area, and intersection crossing as the transition from a stop
area to a lane. Considering all combinations, we can model
lane following and changing, stopping and waiting at an inter-
section, and performing left and right turns at the intersection.
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Thus, the majority of operations in city and highway driving
can be decomposed into these basic driving modes. In this
paper, we consider only intersections with all-way stop, but
other intersection operations can be handled with additional
information. For example, for vehicles to share intersection
occupancy, it requires the definition of additional right-of-
way rules, and signalized intersections require either traffic
signal timing preview or that there is enough time to stop the
vehicle or complete the intersection during the transitioning
from when crossing is allowed (green) to forbidden (red).
Similarly, multiple alternative sequences can be considered
instead of one, by simply repeating the approach for each of
them, and determining the most suitable one either by a static
priority or by estimating their fitness to the current scenario.

B. Ego Vehicle Model in the Decision Maker

The decision maker determines the mode transition based
on the discrete-time real-valued EV motion model

x̂k+1 = f̂(x̂k, ûk), (3)

where k ∈ Z≥0 is the sampling instant, x̂k ∈ X̂ ⊆ Rn̂x is the
EV state, and ûk ∈ Û ⊆ Rn̂u is the EV input. For (3), we use
the discrete-time unicycle model

px,k+1 = px,k + vk cos(θk)∆t,

py,k+1 = py,k + vk sin(θk)∆t,

vk+1 =


vmax if vk + ûv,k∆t ≥ vmax,

0 if vk + ûv,k∆t ≤ 0,

vk + ûv,k∆t otherwise,

θk+1 =

{
θk + ûθ,k∆t if vk ≥ vmin,

θk otherwise.

(4)

Here, the EV state is x̂ = (px, py, v, θ) where (px, py) are the
x and y positions in the global frame, v is the longitudinal
velocity and θ is the heading angle, and the EV input is û =
(ûv, ûθ) where ûv is the longitudinal acceleration and ûθ is the
heading angular rate. In (4), vmax is the maximum velocity,
imposed by road regulations or personal driving preference,
and vmin is the minimum velocity necessary to achieve any
admissible orientation rate ûθ, according to the actual behavior
of vehicles. In (4), we impose input constraints

ûk ∈ Û := [ûv,min, ûv,max]× [ûθ,min, ûθ,max],

where ûv,min ≤ 0 so x̂k+1 = x̂k is allowed when vk = 0.
Let h be the output function of (3) that returns the longitu-

dinal component of the EV state,

yk = h(x̂k) (5)

where the longitudinal state y consists of the longitudinal
position pl and velocity v. Function (5) maps the EV position
(px, py) into the longitudinal position pl by projecting onto its
nominal path and computing the traveled distance between the
projected point and a reference point. Thus, by composing (3)
and (5), the longitudinal dynamics is

yk+1 = ĝ(x̂k, ûv,k) := h ◦ f̂(x̂k, ûk). (6)

C. Ego Vehicle Model in the Motion Planner

The motion planner uses another discrete-time model for
the EV motion,

xk+1 = f(xk, uk) (7)

where xk ∈ X ⊆ Rnx and uk ∈ U ⊆ Rnu are the EV state
and input, respectively. In general, n̂x < nx, while usually n̂u
= nu. Models (3) and (7) are different due to their different
purpose. Model (3) is used over a long horizon to determine
the feasibility of a certain goal, i.e., if there exists a trajectory
that achieves such a goal. Model (7) is used over a shorter
horizon to compute a trajectory for the EV to achieve the goal.
Thus, (3) should be simple, to allow fast computations over
long horizons, although possibly with some approximations,
while (7) should be precise to produce drivable trajectories
that the vehicle can follow closely.

Given model (7), the goal of the motion planner is to
generate an input trajectory u0:N−1 over the planning horizon
N such that when applied to (7), leads to a safe, collision-
free trajectory x0:N that reaches the goal set selected by the
decision maker. In this paper, we integrate the decision maker
with the motion planner presented in [1], where we developed
a particle filter (PF) based motion planner for computationally
efficient generation of vehicle trajectories. The planner relies
on a priori defined requirements ck, modeled as

ck = r(xk) + dk, (8)

where r is the known requirement function and dk is inter-
preted as a stochastic disturbance determining the tolerance
to deviations. The PF based motion planner in [1] constructs
the state trajectory probability density function given the
requirements, that is, p(x0:N |c0:N ), and extracts the state
trajectory from the posterior density, which is subsequently
used as the motion plan. The motion planning problem can be
interpreted as an estimation problem, where in (8) ck is the
the measurement vector, dk ∼ N (0, R) is the measurement
noise, and uk ∼ N (0, Q) in (7) is the process disturbance.

D. Disturbance Set for Model Discrepancy

To determine mode transitions based on (3) that the motion
planner can accomplish based on (7), we model the discrep-
ancy between (3) and (7) as an additive disturbance w ∈ W .
We use a bounded set W and a well-defined, usually non-
invertible, function Ψ that maps an element of X into an
element of X̂ such that

Ψ(x)− x̂ = w ∈W.

An example of Ψ is the projection operator onto X̂ . Formally,
the decision maker needs Ψ and W that satisfy the following.

Assumption 1. There exist a bounded set W ⊂ Rn̂x and a
well-defined function Ψ : X → X̂ such that for all x̂ ∈ X̂ ,
û ∈ Û , and x ∈ {x ∈ X : Ψ(x)− x̂ ∈W}, there exists u ∈ U
that satisfies

Ψ (f(x, u))− f̂(x̂, û) ∈W.

According to Assumption 1, if there exists a sequence x̂0:N ,
then there exists a sequence x0:N within a tube obtained by
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x̂

x

x̂⊕W

Fig. 4. Projection of x̂, x̂⊕W , and x onto the position space. Considering
the disturbance w ∈ W allows the motion planner to find a trajectory x
according to the more precise model (7) inside the tube surrounding x̂, which
is based on the simplified model (3).

x̂0:N and W . In other words, the set {(x̂, x) : Ψ(x) − x̂ ∈
W} is robust control invariant [5] for (3) and (7) with respect
to disturbance û ∈ Û and control u ∈ U . The effects of
Assumption 1 are depicted in Fig. 4 using the notation of
x̂⊕W = (x̂k ⊕W )Nk=0. In this paper, we consider W that is
the symmetric hyperrectangle

W := [wx,min, wx,max]× [wy,min, wy,max]

× [wv,min, wv,max]× [wθ,min, wθ,max],

where w?,min = −w?,max with ? ∈ {x, y, v, θ}. The distur-
bance set W can be either constructed from the models (3) and
(7) or numerically through extensive simulation. The bounded
set W exists because the input and state sets of (3) and (7)
are bounded. However, if the set W is large, the decision
maker may be conservative as the motion planner trajectory
may significantly deviate from the decision maker expectation.
In this case, the models (3) and (7) should be changed to be
more similar, yielding a smaller set W . Conditions similar to
Assumption 1 have already been considered, for instance for
interconnecting motion planning with vehicle control [15], and
shown to be satisfiable in automated driving applications.

E. Modeling of Other Vehicles

We assume that OVs behave non-cooperatively yet ratio-
nally, meaning that they do not aim at causing collisions
on purpose, but do not make excessive efforts in avoiding
them either if the EV does something improper. The OV
immediately behind the EV is responsible for maintaining a
safety distance from the EV, and the OVs on adjacent lanes do
not suddenly change lanes, i.e., without proper notification, if
that results in a likely collision with the EV. Thus, we focus
on avoiding rear-end collisions with the preceding OV in the
EV lane, and collisions during lane changing. We assume that
positions and velocities of OVs are measured with no noise
and the spatial extent of OVs is known. For the o-th OV, we
compute the predicted occupancy set Sk,o ⊂ Rn̂x for each
k ∈ [0, N ] based on the road geometry, on the spatial extent,
and on the available OV position and velocity measurement.

The area that the motion planner must avoid is

Sk =

nOV⋃
o=1

Sk,o, (9)

where nOV is the number of OVs. Although the predicted
occupancy sets can be estimated [16], here we robustify the

decision maker by using capture sets, rather than explicitly
using the occupancy sets, as described in Section IV.

With respect to the OV immediately in front, the EV is
responsible for avoiding rear-end collisions. For that, we define
the longitudinal error between the preceding OV and EV as
e = (ep, ev) ∈ E ⊆ Rne , where ep and ev are the longitudinal
position and velocity differences, respectively. By using as
OV motion model the same model used for the EV (3) the
longitudinal error dynamics are

ek+1 = ge(ek, ûv,k, û
OV
v,k ), (10)

where ûOVv,k is the longitudinal acceleration of the preceding
OV at time step k. In (10), we need to know the relative longi-
tudinal velocities and positions between EV and OV, while we
assume that ûOVv,k is not directly known, yet it is bounded in a
known range ûOVv,k ∈ [ûOVv,min, û

OV
v,max]. Here, ûv,min ≤ ûOVv,min

to ensure that the EV can prevent collisions even when the
OV brakes at full force. An alternative assumption is that the
minimum EV speed is no larger than that of the OVs, which
however seems more conservative. Using the same model for
OV and EV simplifies the construction of (10), but it is not
strictly necessary as additional states can be allowed in (10).

In this paper, we consider a rear-end collision to occur if
two vehicles are in the same lane and the position error is less
than the minimum safety distance dmin. The configurations
that cause such rear-end collisions define the bad set B,

B := {e = (ep, ev) ∈ E : ep < dmin}.

The error should be kept out of the bad set B at all times to
prevent any rear-end collision.

III. DECISION MAKING: PROBLEM DEFINITION

Before formally stating the decision maker design problem,
we define the goal sets. Each mode is associated with a goal
set G(qi) ⊂ X̂ . When the current state x̂ is inside the goal
set G(qi), we say that the EV has reached mode qi. The lane-
following goal set G(LF ) is the set of states around the lane’s
centerline with velocity between [0, vmax], and the stopping
goal set G(S) is the set of states with zero velocity before the
stop line. The projections of these goal sets onto the position
space are depicted in Fig. 2, where the light blue regions
around centerlines represent the projections of the LF goal
sets, and the dark blue regions before stop lines represent the
projections of the S goal sets.

We design the decision maker such that when it commands
a mode transition, there is a sequence of inputs û0:N−1 that
makes the state reach the next goal set for all disturbances
w ∈W . The decision maker is based on the map information
M ∈ M, which includes the state of OVs and the mode
sequences (1) and (2).

Problem 1. Design a decision maker

πε : Q×X ×M→ E (11)

that, given the current discrete mode qi ∈ Q, the EV state
x ∈ X , and the map information M ∈ M, issues the mode
transition command ε ∈ E such that there exists an input
sequence u that satisfies:



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

• Liveness: For all qj , j ≥ i there exists a time step k such
that Ψ(xk(u, x)) ∈ G(qj) or Ψ(xk(u, x)) ∈ G(q′j).

• Safety: For all time steps k, Ψ(xk(u, x)) ∩ Sk = ∅.

Given a route (1) in the map information M, the liveness
property imposes that the EV reaches each mode in the
sequence. If it is impossible to execute the mode transition
qi → qi+1 in route (1), the EV instead should reach the
modes of the new route (2). Therefore, the liveness constraints
can keep changing as the EV travels along a route due to
uncertain behavior of OVs. The safety property imposes that
there exists a motion planner trajectory that does not overlap
with the occupancy sets of OVs. The decision maker (11) only
determines the timing of mode transitions and the switch to
the backup sequence to guarantee the existence of an input
sequence u computed by the underlying motion planner to
achieve the corresponding goal sets.

In Problem 1, we assume that at any time the normal and
alternative sequences both reach the final mode and at least one
of them is feasible. If both become infeasible, the navigation
system must be capable of planning a different route, yielding
a different sequence of driving modes to the final mode. This
assumption is commonly satisfied by a navigation system that
allows for re-routing when requested by the decision maker.

IV. DECISION MAKER DESIGN

In this section, after some preliminaries, we present an
algorithm that solves Problem 1.

A. Preliminaries

1) Forward and Backward Reachable Sets: The backward
reachable set of a goal set is the set of initial states for which
there exists an input sequence that reaches the states in the
goal set. A forward reachable set of an initial set is the set of
states that is reachable with an input sequence starting from
the states in the initial set.

Definition 1. For a given set K ⊆ X̂ , the one-step backward
reachable set Pre(K) and the one-step forward reachable set
Reach(K) are

Pre(K) := {x̂ ∈ X̂ : ∃û ∈ Û , f̂(x̂, û) ∈ K},
Reach(K) := {x̂ ∈ X̂ : ∃x̂0 ∈ K, ∃û ∈ Û , x̂ = f̂(x̂0, û)}.

The k-steps backward reachable set, k ∈ Z≥0, is recursively
defined as Pre0(K) = K, Prek(K) = Pre

(
Prek−1(K)

)
.

Similarly, the k-steps forward reachable set, k ∈ Z≥0, is
recursively defined as Reach0(K) = K, Reachk(K) =

Reach
(

Reachk−1(K)
)

.

The one-step backward reachable set is also called one-
step predecessor set [5], motivating the notation Pre(K).
The overall backward reachable set of G(qi) is the union of
backward reachable sets for different numbers of steps

∞⋃
k=0

Prek(G(qi)).

Our design for decision maker (11) maintains the EV state
within the backward reachable set of the next goal set until

the mode transition is triggered. Thus, it ensures that there
exists an input sequence û for the EV to reach the next mode.

Given a route (1), we define the new goal set G∗(qi, qi+1) as
the intersection between the original goal set and the backward
reachable set of the subsequent goal sets,

G∗(qM , ·) := G(qM ),

G∗(qi, qi+1) := G(qi) ∩
∞⋃
k=0

Prek(G∗(qi+1, qi+2)),
(12)

for i = 1, 2, . . . ,M − 2, and G∗(qM−1, qM ) := G(qM−1) ∩⋃
Prek(G∗(qM , ·)) for i = M − 1. In other words, x̂0 ∈

G∗(qi, qi+1) implies that the state is inside the original goal
set G(qi) and there is an input sequence û that makes
x̂k(û, x̂0) ∈ G∗(qi+1, qi+2) for some k ∈ Z≥0. In Section V,
we explain how to efficiently compute G∗(qi, qi+1) or its
under-approximation, based on computing the intersection in
(12), which is more efficient than computing the backward
reachable sets separately.

For an intersection crossing, transition from S to LF ,

G∗(S,LF ) = G(S), (13)

because the road intersections are assumed to be constructed
such that there exists an input to travel through them. This
allows the modular computation of backward reachable sets
in (12). Specifically, although by definition, G∗(qi, qi+1) is the
intersection between G(qi) and the backward reachable sets of
all the subsequent goal sets, we can compute it by considering
the subsequent modes until the stopping mode appears.

Also, as discussed in Section II, when the mode transition
qi → qi+1 is impossible for any input due to OVs, the
alternative mode sequence (2) provided by the navigation
system is used, in which a new mode transition qi → q′i+1

is possible to execute. This implies that the current state x̂ is
outside of G∗(qi, qi+1) but inside G∗(qi, q′i+1), so that the EV
is able to reach q′i+1 at some future time step.

2) Control Invariant Sets: A control invariant set is the set
of states for which there exists an input that keeps the state
evolution inside the set.

Definition 2. A set K ⊆ X̂ is control invariant for (3) if for
any x̂ ∈ K there exists û ∈ Û such that f̂(x̂, û) ∈ K.

For ensuring safety, i.e., collision avoidance, we use the
capture set of the bad set B.

Definition 3. Given (10) and the set B, the one-step capture
set C(B) ⊆ Rne is

C(B) = {e ∈ E :

∀ûv ∈ Ûv,∃ûOVv ∈ ÛOVv , ge(e, ûv, û
OV
v ) ∈ B},

The k-steps backward reachable set, k ∈ Z≥0, is recursively
defined as C0(B) = B, Ck(B) = C

(
Ck−1(B)

)
.

When e ∈ C0(B), regardless of the EV’s control input ûv ∈
Ûv there is an input of the preceding OV that results in a
collision at the next time step. The overall capture set is the
union of the capture sets for any number of steps

∞⋃
k=0

Ck(B).
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By Definition 3, if the error is outside the capture set, there
must exist a control input ûv ∈ Ûv that keeps the error outside
of the capture set for any ûOVv ∈ ÛOVv for all future times.
Thus, the complement of the capture set is control invariant
for the system describing the longitudinal error (10).

Also, the stopping mode goal set G(S) is control invariant,
since if the state is within G(S), the vehicle is stopped, i.e.,
v = 0, and zero acceleration ûv = 0 keeps it within the set.

B. Decision Maker Design

The disturbance w ∈W models the difference between (3)
and (7), so that if a trajectory of (3) achieving the properties
in Problem 1 for all w ∈ W exists, then a trajectory of (7)
satisfying such properties is guaranteed to exists.

For the goal set, the effect of W is to tighten the set

Ĝ(qi, qi+1) := G∗(qi, qi+1)	W.

Similarly, WE tightens the complement of the capture set

Î :=

( ∞⋃
k=0

Ck(B)

)c
	WE ,

where WE := {e = h(x̂k)− h(Ψ(xk)) ∈ Rne : ∃x̂ ∈ X̂, x ∈
X, x̂k −Ψ(xk) ∈W}, that is, WE is the set of disturbances
that represents the discrepancy between the longitudinal states
of (3) and (7). In proving the main theorem presented later in
this section, we let the set WE be an hyperrectangle WE :=
[wep,min, wep,max]×[wev,min, wev,max] that over-approximates
the actual disturbance set WE , for simplicity.

The computations for Ĝ(qi, qi+1) and Î mostly consist in
the computations of G∗(qi, qi+1) and

(⋃∞
k=0 Ck(B)

)c
, respec-

tively, because the Pontryagin set difference is a computation-
ally efficient operation. Thus, in Section V, we compute the
efficient approximations of Ĝ(qi, qi+1) and Î by determining
the set boundaries from the extreme values of w ∈W .

To describe the solution, we define a sequence of states over
the planning horizon that are considered to be safe.

Definition 4. Given the current state x0 and next mode qi+1,
a safe reference state sequence, denoted by x̂safe(qi+1, x0), is
a finite sequence x̂0:N that satisfies

(i) Ψ(x0)− x̂0 ∈W ;
(ii) x̂k /∈ Sk ⊕W for all k ∈ {0, . . . , N};

(iii) x̂Nreach ∈ Ĝ(qi+1, qi+2) for some Nreach ∈ {0, . . . , N};
(iv) If qi+1 = S, then x̂k ∈ Ĝ(S, ·) for all k ∈
{Nreach, . . . , N}. If qi+1 = LF , then ek ∈ Î for all
k ∈ {0, . . . , N}.

When the decision maker considers the mode transition
qi → qi+1, a safe reference state sequence is a sequence
of states over the planning horizon N that does not collide
with the OVs (Condition (ii)), reaches the goal set of the
next mode qi+1 at some time step Nreach (Condition (iii)),
and remains inside a control invariant set, which is either
Ĝ(S, ·) or Î (Condition (iv)). Recall that the sets G∗(S, ·) and
(∪Ck(B))c are control invariant. It is not difficult to prove
that the shrunken sets Ĝ(S, ·) or Î are still control invariant;
for Î, the proof is in Lemma 2 in Appendix A. Condition (iv)

ensures liveness by imposing that in stopping mode the EV
is in the stopping goal set, and that in lane following mode
the error state is outside the capture set to prevent rear-end
collisions with OVs.

Remark 1. If the predicted OVs occupancy sets Sk are
significantly wrong, the performance may degrade. However,
the motion planner can ultimately avoid collisions, at the
expense that the goal may be missed and the current mode may
become infeasible. In those cases, the decision maker switches
to the alternative sequence, or a different emergency route may
be needed, yet the vehicle safety will be preserved. Moreover,
the occupancy sets Sk in Condition (ii) of Definition 4 are
effectively used only to avoid “corner collisions” in two
cases: when the EV changes between two lanes and when
it turns inside an intersection. Thus, they are unnecessary if
a safety distance during lane change is imposed, and if at
most one vehicle is allowed to be inside the intersection. In
all other cases, collision avoidance, and hence Condition (ii),
is enforced by the constraints on the capture set in Condition
(iv). The capture set needs the position and velocity of OVs,
but is robust to their longitudinal input range ÛOVv . Moreover,
capture sets are based on closed-loop prediction subject to
uncertainty [17], and provide a less conservative method than
open-loop predictions of OV motion.

Thus, the algorithm for solving Problem 1 is as follows.

Algorithm 1 Decision maker πε(qi, x0,M)

• If Ψ(x0) ∈ G∗(qi, qi+1),
– If there exists x̂safe(qi+1, x0), then return
πε(qi, x0,M) = εi+1.

– Else if Reach({x̂0}) ∩ Ĝ(qi, qi+1) = ∅ for all x̂0
such that Ψ(x0)− x̂0 ∈W ,
∗ If there exists x̂safe(q

′
i+1, x0), then return

πε(qi, x0,M) = ε′i+1.
∗ Otherwise, return πε(qi, x0,M) = ε0 and request

Ψ(x1) ∈ G∗(qi, q′i+1).
– Otherwise, return πε(qi, x0,M) = ε0 and request

Ψ(x1) ∈ G∗(qi, qi+1).
• Otherwise, return πε(qi, x0,M) = ε0.

Algorithm 1 keeps the state inside the backward reachable
set of all the subsequent goal sets and changes the discrete
mode to qi+1 when the EV can safely reach the next goal
set Ĝ(qi+1, qi+2) within the N -step planning horizon. That is,
Algorithm 1 returns:

• εi+1, if there exists x̂safe(qi+1, x0).
• ε′i+1, if the state at the next time step cannot be inside

the backward reachable set of the goal set of qi+1 for
any control input, i.e., Reach({x̂0}) ∩ Ĝ(qi, qi+1) = ∅,
and there exists a state trajectory that reaches the goal
set of q′i+1 within the planning horizon. In this case, the
EV will be able to reach the backup mode q′i+1 at some
future time step.

• ε0, i.e., the void input that maintains the same mode, if
the next goal set cannot be reached within the planning
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Ĝ(qi+1, qi+2)

Ĝ(q′i+1, q
′

i+2)

Ĝ(qi

Reach({x̂0})

G(qi)

Fig. 5. Illustration of the decision maker in Algorithm 1. When the state is at
•, the decision maker returns εi+1 because there exists a safe reference state
sequence that reaches Ĝ(qi+1, qi+2). At ◦, the decision maker returns ε′i+1

because the state will go outside Ĝ(qi, qi+1) regardless of control input and
there exists a safe reference state sequence that reaches Ĝ(q′i+1, q

′
i+2). At

×, the decision maker returns ε0 because the state is outside of Ĝ(qi, qi+1)
and in the middle of moving towards the next goal set Ĝ(qi+1, qi+2).

horizon. In this case, the algorithm enforces that the next
state Ψ(x1) is inside the current goal set G∗(qi, qi+1)
or G∗(qi, q′i+1) to keep the state in the current goal set.
Hence, the decision maker restricts the range of velocities
for the motion planner, as described in Section V-B.

• ε0 also if Ψ(x0) /∈ G∗(qi, qi+1), as the state is inside
the backward reachable set

⋃
k Prek(G∗(qi+1, qi+2)), but

outside the current goal set G(qi). Since the transition to
qi is not complete, the current goal must be maintained.

Some operations of Algorithm 1 are shown in Fig. 5.
The decision maker in Algorithm 1 returns only one discrete

input value, as this makes the decision maker deterministic
and simplifies its analysis. However, the decision maker can
be extended to return a set of discrete inputs, leaving the final
choice to a motion planner that can handle multiple modes
in parallel, e.g., [1]. In this case, when Ψ(x) ∈ G∗(qi, qi+1)
and there exists x̂safe(qi+1, x), the decision maker may provide
to the motion planner πε(qi, x,M) = {εi+1, ε0} and let the
motion planner select the one mode that results in the best
performance. Still, the decision maker guarantees the existence
of a feasible trajectory for all the discrete inputs provided to
the motion planner, which then will not waste computation or
get stuck in trying to achieve an unfeasible goal.

Next, we state the main result of this paper.

Theorem 1. Under Assumption 1, if at some time instant
Algorithm 1 returns ε1 to initiate the first mode q1 of a route
(1), then Algorithm 1 provides the solution of Problem 1.

The proof of Theorem 1 is in Appendix A.

V. IMPLEMENTATION OF THE DECISION MAKER

In this section, we present our approach to the approximate
computation of the reachable sets in Algorithm 1, based on
model (3), which is efficient and can be executed at high
rates. This allows the decision maker to retain reactivity to
a changing environment, and the possibility to implement the
method in automotive-grade embedded platforms that are more
limited than standard desktop computers [18]. We also discuss
how to integrate the decision maker with the motion planner.

A. Efficient Computation of the Conditions in Algorithm 1

In this section, we present our approach to the computation
of the sets G∗(qi, qi+1) and

(⋃
Ck(B)

)c
. The evaluation of

all the other conditions will be discussed in Appendix B. The
main idea is to use the extreme inputs ûv,min, ûv,max, ûθ,min,
and ûθ,max to characterize the boundaries of the sets. Although
the extreme inputs generate sharp trajectories, these are only
used in determining the feasibility of the mode transitions. The
motion planner will generate significantly smoother trajecto-
ries by exploiting the tube around the sharp trajectories of the
decision maker; see Fig. 4.

For a lane change, where we suppose that lane 1 is on
the left side of lane 2, we compute the sharp lane-changing
trajectory computed with ûθ,min and ûθ,max in the lateral
dynamics. Consider the lane changing LF2 → LF1, for
some nonnegative integers k1 and k2, define ûLF2,LF1

0:N−1 =

(ûv,k, ûθ,k)N−1k=0 as

ûv,k :=

{
ûv,min if vk > vmin

0 if vk = vmin

ûθ,k :=


ûθ,max for 0 ≤ k ≤ k1 − 1,

ûθ,min for k1 ≤ k ≤ k2 − 1,

ûlane-following,k for k2 ≤ k ≤ N − 1.

(14)

Here, ûlane-following,k denotes the orientation rate that follows
the centerline of the current lane. The integers k1 and k2
can be computed by a simple numerical search (e.g., bisection
methods) to satisfy conditions given later in this section. For
the opposite lane change, LF1 → LF2, the computations are
as in (14) but swapping the roles of ûθ,max and ûθ,min.

1) Computation of G∗(qi, qi+1): Recall from definition (12)
that G∗(qi, qi+1) is the intersection between the goal set G(qi)
and the backward reachable set of G∗(qi+1, qi+2). Since the
goal set G(qi) has simple geometry, the direct computation of
G∗(qi, qi+1) is easier than computing its subsets separately. In
fact, the goal set G(qi) is determined only by the longitudinal
dynamics, where in details G(LF ) and G(S) consist of the po-
sition (px and py) around the lane’s centerline, and the position
right before the stop line, respectively, with corresponding yaw
angles and velocities.

As the longitudinal dynamics are monotone with respect to
the input, the boundary of reachable sets is determined only by
the extreme inputs [17]. For braking, LF → S, the boundary
of G∗(LF, S) is

{x̂ ∈ G(LF ) : ∃k ∈ Z≥0 s.t. yk(ûv,min, x̂) ∈ h(G(S))},
(15)

where yk(ûv,min, x̂) is the longitudinal state reached at time
step k starting from x̂ with a sequence of inputs all equal
to ûv,min, and h(G(S)) is defined as {h(x̂) : x̂ ∈ G(S)}.
According to (15), at the boundary of G∗(LF, S), the state
enters the goal set G(S) at some time step k by maximum
braking. Fig. 6a shows an illustration of the set G∗(LF, S).

For lane changes, the dynamics are not always monotone,
and hence we under-approximate the boundary of the set
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pl

v

G∗(LF → S)

G(S)

ûv,min

G(LF )

(a)

pl

v

G(LF2)
G∗(LF2, LF1)

G(S1)

G(LF2)

G(LF1)

vmin

ûθ,max

ûθ,min

(b)

Fig. 6. Projections of G(qi) and (approximation of) G∗(qi, qi+1) onto the
pl–v plane (upper graphs) and the px–py plane (lower figures). The extreme
inputs are used to compute the boundaries of such sets.

ep

ev

0
dmin

(
⋃

k C
k(B))cB

û
OV
v,min

− ûv,min

(a)

ep

ev

0

ÎB

WE

(b)

Fig. 7. Maximum braking of the EV and preceding OV determines the
complement of the capture set (gray region in (a)) and its shrunken set Î
(gray region in (b)).

G∗(LF2, LF1) as

{x̂ ∈ G(LF2) :

∃k, k1, k2 ∈ Z≥0 s.t. x̂k(ûLF2,LF1
0:N−1 , x̂) ∈ G∗(LF1, S1)}.

(16)

According to (16), at the boundary of G∗(LF2, LF1), the
sharp trajectory x̂k(ûLF2,LF1

0:N−1 , x̂) reaches at some time step
k the next lane and also the backward reachable set of the
stopping goal set. Fig. 6b shows the under-approximation of
G∗(LF2, LF1).

It is worth noting that the combined longitudinal-lateral
dynamics (3) are not monotone with respect to (ûv, ûθ),
whereas the longitudinal only dynamics (6) are monotone
with respect to ûv . Thus, the computation of the boundary
of G∗(LF2, LF1) by (16) is an under-approximation as we
consider only the extreme inputs rather than the entire input
set, whereas the computation of the boundary of G∗(LF, S) by
(15) is exact. Under certain driving conditions, the combined
longitudinal-lateral dynamics of vehicles are in fact monotone
[19], in which case also the computation (16) becomes exact.

2) Computation of
(⋃
Ck(B)

)c
: We compute the boundary

of the complement of the capture set based on the extreme
braking of the preceding OV and EV. Specifically,(⋃
Ck(B)

)c
= {e ∈ E : ek(ûv,min, û

OV
v,min, e) /∈ B, ∀k ≥ 0},

where ek(ûv,min, û
OV
v,min, e) is the longitudinal error reached

at time step k by applying ûv = ûv,min and assuming
ûOVv = ûOVv,min, starting from e. Hence, inside the complement
of the capture set, applying maximum braking of the EV can
always avoid rear-end collisions regardless of the input of the
preceding OV. Fig. 7a shows an illustration of

(⋃
j Cj(B)

)c
.

(qi, x0,M)

πε(qi, x0,M)
Decision

making

Motion

planningvbound

Fig. 8. Integration between the decision making and motion planning systems.
The decision maker propagates the discrete input πε(qi, x0,M) and a profile
for the velocity range vbound that bounds the range of velocities of the motion
planner.

B. Integration with the Motion Planner

The motion planner in Section II-C generates a state tra-
jectory and corresponding input signals over the planning
horizon that connects the initial state x0 with the goal set
G∗(qi+1, qi+2). Specifically, a state sequence of the motion
planner should satisfy the following three conditions:
(a) no EV state in the sequence overlaps with any of the OV

occupancy sets;
(b) some EV states in the sequence reach the goal set
G∗(qi+1, qi+2) at some time step;

(c) the last state in the sequence resides in a control invariant
set, either G(S, ·) or

(⋃
j Cj(B)

)c
.

These conditions are the same as (ii)–(iv) in Definition 4 of
the safe reference state sequence x̂safe(qi+1, x0), except (a)–(c)
do not consider the disturbance w ∈ W because the motion
planner considers the more detailed dynamical model (7).

For achieving (a)–(c), the decision maker propagates infor-
mation necessary for the motion planner to achieve such a state
sequence; see Fig. 8 that depicts the integration of decision
making with motion planning. Specifically, the decision maker
propagates a profile for the velocity range vbound = (vl,vh)
over the planning horizon as a function of the longitudinal dis-
tance to bound the velocity of a motion planner state sequence
x0:N, where vl and vh are the velocity lower and upper bound
profiles, respectively. This transmits all necessary information
on G∗(qi, qi+1) and

(⋃
j Cj(B)

)c
, since their boundaries are

fully described by the velocity profiles as shown in Figs. 6 and
7a. For instance, if qi = S, the velocity profile vh decreases
to zero at the stop location, to ensure that stopping can be
performed. Similarly, the constraints Ψ(x1) ∈ G∗(qi, qi+1) and
Ψ(x1) ∈ G∗(qi, q′i+1) in Algorithm 1 are imposed through the
velocity profile vbound. Then, the motion planner only needs
to satisfy velocity limits (see for example [1]). The motion
planner ensures avoidance of collision with OVs by Condition
(a) above, since by construction any trajectory that does not
satisfy Condition (a) will have a zero fitness or an infinite cost.

VI. VALIDATION IN SIMULATION AND EXPERIMENTS

We integrate the decision maker given in Algorithm 1 with
the motion planner and a trajectory tracking vehicle controller
[20] and implement it on the test scenario consisting of
the EV and two OVs on an ∞-shaped loop with two one-
direction lanes, as shown in Fig. 9. On this scenario, we
perform both software simulation and hardware experiments.
For experiments, we use Hamster v5 robots [21] that are
small-scale car-like robots with Ackerman steering geometry
similar to regular cars, equipped with an inertial measurement
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unit, lidar, camera, and motor encoders and with Raspberry
PI3 processors. For robot localization, we use a camera-based
Optitrack [22] motion-capture system that fuses data from 10
cameras to determine the pose of the rigid bodies of EV and
OVs, as barycenter position and orientation.

Algorithm 1 and the motion planner are implemented in
MATLAB, while the trajectory tracking vehicle controller is
a Nonlinear Model Predictive Control (NMPC) [23] imple-
mented in C. All these modules are implemented as nodes
in a ROS network and executed on a desktop workstation1.
The EV and OVs motion simulators and hardware drivers are
also implemented as ROS network nodes in simulations and
experiments, respectively, while the first ones are executed
in the same computer as the controller, and the second ones
are executed on the Hamsters’ Raspberry PIs. The decision
making and motion planning algorithms are executed every
0.85 s, while the NMPC is executed every 0.04 s. According
to the discrete mode determined by the decision maker,
the motion planner generates a trajectory and the NMPC
computes the commands for steering angle and velocity to
track the trajectory. These control commands are transmitted
to the EV simulator or hardware drivers, for simulations and
experiments, respectively. Instead, the OVs are controlled by
fairly standard PI tracking controllers commanding steering
position and velocity, with inner-loop PD actuation controllers.
Also, the OVs are equipped with a simple logic to stop at the
intersections for a fixed amount of time, and proceed when
the intersection is free. In addition, an operator can command
the OVs to change lane and target velocity.

As for prediction models, the decision maker uses the
kinematic unicycle model (4), the motion planner uses a
kinematic bicycle model, and the NMPC uses a kinematic
bicycle model with actuation dynamics, delays, and a time
varying input offset, which is estimated in real-time by an
extended Kalman filter to provide integral action [20]. The
set W is obtained offline by extensive simulation, and slightly
enlarged to account for additional robustness. As discussed in
Section II-E, for the OVs we use the the same model as for
the EVs where the heading angle is considered to be aligned
with the centerlane, and we compute WE similarly to W .

The decision maker operates in eight discrete modes

Q = {LF1, LF2, LF3, LF4, S1, S2, S3, S4},

where LFi represents the mode of following lane i and Si
represents the mode of stopping at the end of lane i; see Fig. 9
for numbering. For compactly showing the results, in Figs. 10-
12 we show the actions that the decision maker is commanding
rather than the internal modes. Such actions are lane changing
(LC), lane keeping (LK), stopping (ST), turning left (TL),
going forward (GF), and turning right (TR). In simulation
and experiments, we do not specify the entire route ahead of
time; rather, the decision maker receives randomly generated
candidate modes and accepted or rejected them according to
the conditions described in Section IV to run continuously and

1We use a computer with Intel Core i7 processor at 4.20GHz and 64GB
RAM for simulation and a computer with Intel Core i7 processor at 3.20GHz
and 64GB RAM for experiments.

lane 1

lane 2

lane 3

lane 4

Fig. 9. Test circuit for simulation and experimental validation. The lanes
and the stop lines at their end are also shown, LFi, Si, respectively, i ∈
{1, 2, 3, 4}.

Time: 661.30 s
Current Mode: LF2

LKLC ST

TL GF TR

(a)

Time: 663.00 s
Current Mode: LF1

LKLC ST

TL GF TR

(b)
Time: 664.70 s
Current Mode: LF1

LKLC ST

TL GF TR

(c)

Time: 668.10 s
Current Mode: S1

LKLC ST

TL GF TR

(d)
Time: 684.25 s
Current Mode: S1

LKLC ST

TL GF TR

(e)

Time: 689.35 s
Current Mode: LF3

LKLC ST

TL GF TR

(f)

Fig. 10. Simulation results. The EV (the red box) starts changing lanes in
(a), and rejects the request of stopping because it has not reached lane 1 yet
in (b). It starts braking in (c), waits for the OVs (the blue boxes) to cross the
intersection in (d), starts crossing in (e), and completes the crossing in (f).

stress-test the system. Similarly, the decision maker determines
if it is necessary to transition to the mode sequence in the
alternative route, which always amounts to remain in the same
lane and stop in the corresponding stop area.

At the intersection, each vehicle must stop for at least three
seconds and start moving when there is no other vehicle within
the intersection area. While any intersection coordination rule
can be implemented to the EV and OVs, we programmed the
EV to always yield to the OVs. That is, the EV waits as long
as there is an OV that is stopped at or crossing the intersection.

A. Simulation Results

Fig. 10 shows the simulation results. The red and blue
rectangles represent the EV and OVs, respectively. The green
line is the trajectory that the motion planner generates using
particles (purple dots) according to discrete inputs of the
decision maker, and the plus marker indicates a reached point
in goal sets. In the directed graph, a green node is the current
action of the decision maker, and a node surrounded by the
red thick circle is the randomly generated requested action.
When the decision maker accepts the requested action, this is
shown as a green circle with red border.
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Time: 130.66 s
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Time: 139.18 s
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(a) (b)
Time: 145.13 s
Current Mode: LF1

LKLC ST
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Time: 152.93 s
Current Mode: S1

LKLC ST

TL GF TR

(c) (d)

Fig. 11. Experimental results where the EV (car with the red flag) follows
an OV (car with the blue flag) and slows down as the OV stops. After the
OV leaves, the EV reaches the stop line and crosses the intersection.

In Fig. 10a, the decision maker determines that the EV
is able to change lane from 2 to 1, and the motion planner
generates a trajectory that accomplishes such a lane change.
In Fig. 10b, the mode has changed from LF2 to LF1. Because
the EV is in the middle of lane change and hasn’t reached
lane 1 yet, the EV’s state is outside the set G∗(LF1, ·) and
the decision maker rejects the request of stopping. Near the
intersection in Fig. 10c, the decision maker returns stopping,
and changes the discrete mode from LF1 to S1. Note that a
lane change is allowed in Fig. 10a because the EV can reach
the stopping mode even after such a lane change. In Fig. 10d,
the EV successfully stops before the intersection and waits
for the two OVs crossing the intersection. When the decision
maker verifies that the intersection is not occupied by any of
the OVs in Fig. 10e, it lets the motion planner generate a
trajectory that goes through the intersection. After crossing in
Fig. 10f, the EV reaches lane 3 and maintains the lane because
it is still too far from the stop line to start the requested braking
action. During this segment of simulation tests, the sequence
of the executed driving modes is LF2 → LF1 → S1 → LF3.

The computation time of Algorithm 1 is never longer than
0.0079 s. This confirms that the decision maker achieves fast
computation, thus capable of reacting to rapidly changing en-
vironments and also suitable for implementation in platforms
with limited computational capabilities.

B. Experimental Results

In the experiments, we use three car-like Hamster robots
whose pose is measured by the OptiTrack system, while the
on board IMU and wheel speed are used to estimate velocity

Time: 101.11 s
Current Mode: LF4

LKLC ST

TL GF TR

Time: 104.39 s
Current Mode: LF4

LKLC ST

TL GF TR

(a) (b)
Time: 110.34 s
Current Mode: LF3

LKLC ST

TL GF TR

Time: 112.86 s
Current Mode: LF4

LKLC ST

TL GF TR

(c) (d)

Fig. 12. Experimental results of the EV overtaking an OV. The decision maker
accepts the request of lane changing in (c) because the EV is far enough from
the intersection to sequentially change lane and stop at the stop line.

and yaw rate. Shown in Figs. 11 and 12 are two scenarios. The
EV is the Hamster with the red tail flag, represented by the red
rectangle, and the OVs are the Hamsters with the blue tail flag,
represented by blue rectangles. The first scenario, shown in
Fig. 11, is the queuing and intersection crossing. Specifically,
in Fig. 11a, the decision maker rejects the request of stopping
because there is no safe reference state sequence x̂safe(S1, x0)
that reaches the stop line within the planning horizon due to
the presence of the preceding OV. In Fig. 11b, the EV stops
behind the OV, while still maintaining the current mode of
lane keeping. In Fig. 11c, as the OV no longer occupies the
stop goal region, the decision maker allows the EV to resume
moving and reaching the stop goal region. In Fig. 11d, after
waiting for three seconds, the EV crosses the intersection.

The second scenario, shown in Fig. 12, is overtaking and
stopping at the intersection. Specifically, the decision maker
rejects the request of stopping action in Fig. 12a because the
EV is too far from the intersection to fully stop at the stop line
within the planning horizon. In Fig. 12b, it accepts the request
of lane-change action because there exists a safe reference
state sequence x̂safe(LF3, x0). In Fig. 12c, the EV has changed
lane without conflict (so mode has changed to LF3), and again,
the decision maker accepts another request of lane-change
action. In Fig. 12d, the decision maker allows the stopping
action for the EV to stop before the intersection. The decision
maker accepts the second lane change in Fig. 12c because at
that point, it was possible for the EV to sequentially perform
a lane change and a full stop. For various other scenarios, see
the video of the experiments at [24].

In Fig. 13, we present a scenario when the EV starts to
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Fig. 13. In the condition shown in (a), the velocity upper bound profile vh by
the decision maker (red dotted line) and the velocity profile computed by the
motion planner (green line) are shown in (b). The velocity upper bound guides
the motion planner in computing a trajectory stopping in the stop region.

Fig. 14. Trace of the EV for 600 s. The red dots represent the positions at
which the EV has stopped. During the entire experiment, the EV stopped
before the stop lines, crossed intersections when free, and avoided all
obstacles. The motion planner never returned failure, and hence could always
achieve the goal received from the decision maker, validating the method
developed in this paper.

brake and velocity profiles generated at that moment with
respect to the longitudinal distance from its current position.
The decision maker computes the velocity profile vbound (red
line in Fig. 13b) with vmax = 0.4 m/s, based on the backward
reachable set G∗(LF1, S1) (depicted in Fig. 6a). The motion
planner generates a velocity profile (green line in Fig. 13b) that
satisfies the velocity bound. By satisfying the bound constraint,
the motion planner is able to generate a trajectory that reaches
the stop goal region with zero speed2. In Fig. 13b, the actual
velocity as the EV progresses is shown as the black line.

In Fig. 14, we present the entire trace of the EV for 600 s of
the experiment. The EV stopped at the positions indicated by
the red dots, which are all in the goal sets for stopping modes.
Fig. 14 shows that the EV executes lane changing, braking,
and intersection crossing without conflicts with the OVs, and
indicates that the decision maker always continues operating
and never reaches a fault condition.

In the experiments, there are a number of imperfect con-
ditions, such as: (i) ROS communication delays, ranging
from 0.1 to 0.3 s between sensing and command execution,
and lack of synchronization, due to all vehicles operating as
stand-alone ROS nodes with the EV actually using different
nodes for the different layers; (ii) imperfect tracking due

2In the experiment, the EV stops if its speed is lower than 0.1m/s.

to the entire control stack using approximated models; (iii)
imprecise actuation due to low-cost servo-motors and traction
motors; (iv) noise in the sensors, especially for velocity and
IMU, but also for positioning; (v) uneven surfaces, due to
carpet with power plug holes and deterioration; (vi) imperfect
prediction of the OVs. All these conditions cause uncertainties
in the prediction of the EV and OVs behavior. However, we
observe that the decision maker is robust to such uncertainties.
In particular, the decision maker is robust to the uncertainty in
the OVs behavior due to the use of the capture set and since it
operates in conjunction with the motion planning system and
the vehicle control system that reject part of the disturbances.

VII. CONCLUSION

We presented the design of a decision maker that ensures
safety and liveness. From a sequence of modes defining the
route provided by a navigation system, the decision maker
determines the timing of discrete mode transitions. Also, if the
next mode becomes impossible to reach ever in the future, the
decision maker determines the transition to a backup route.
The underlying motion planner generates a trajectory that
reaches the goal set of the next discrete mode. The key idea of
the design is that the decision maker keeps the EV state inside
the backward reachable sets of the subsequent modes’ goal
sets so that there always exists at least one input sequence that
makes the EV reach all the modes at some time. To efficiently
compute the sets, the decision maker uses a simplified vehicle
dynamical model, leaving the motion planner to care for a
more accurate and realistic behavior of the EV. The resulting
discrepancy is modeled as a bounded set representing additive
model errors, and handled by designing the decision maker
to be robust to the disturbances in such set. We validated
the decision maker integrated with the motion planner and
vehicle controller in simulations and experiments using small-
scale car-like robots. The results show that the decision maker
enables the EV to travel in city scenarios, which include lane
following, following a slower vehicle, overtaking, stopping,
waiting and crossing an intersection, and queuing in traffic.

APPENDIX A
PROOF OF THEOREM 1

In this section, we prove that Algorithm 1 solves Problem 1.
The proof is based on the following ideas:

1) if a safe reference state sequence exists, there exists a
state sequence of the motion planning model (7), called
a safe state sequence, that reaches the goal set without
collisions;

2) if there exists a safe state sequence at some time instant,
there exists a safe state sequence at any future time
instant.

The first idea connects the existence of a safe reference state
sequence with that of an input sequence of the motion planning
model (7) that satisfies liveness and safety. The second idea
ensures the existence of a safe state sequence at all executions
of Algorithm 1, thereby proving the liveness.

We first formalize the first idea, by defining a safe state
sequence and relating it to the existence of a safe reference
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state sequence. Then, we use the second idea in the main proof
of Theorem 1.

Definition 5. A safe state sequence xsafe(qi+1, x0) is a finite
sequence of states x0:N that satisfies

(i) Ψ(xk) /∈ Sk for all k ∈ {0, . . . , N};
(ii) Ψ(xNreach) ∈ G∗(qi+1, qi+2) for some Nreach ∈
{0, . . . , N};

(iii) If qi+1 = S, then Ψ(xk) ∈ G∗(S, ·) for all k ∈
{Nreach, . . . , N}. If qi+1 = LF , then h(x̂OVk ) −
h(Ψ(xk)) /∈

⋃∞
j=0 Cj(B) for k ∈ {0, . . . , N}.

Here, x̂OVk denotes the state of the preceding OV at time
step k. The following lemma states the relation between the
safe state sequences x̂safe(qi+1, x0) and xsafe(qi+1, x0).

Lemma 1. Under Assumption 1, if there exists x̂safe(qi+1, x0)
according to Definition 4, then there exists xsafe(qi+1, x0)
according to Definition 5.

Proof. Given x̂0:N that satisfies Definition 4, we construct
x0:N that satisfies Definition 5.

First, we show by induction on k that there exists a sequence
of inputs u0:N−1 such that uk ∈ U and

Ψ(xk(u, x0))− x̂k ∈W, ∀k ∈ {0, 1, . . . , N}. (17)

Due to Condition (i) of Definition 4, Ψ(x0)−x̂0 ∈W . Suppose
Ψ(xk(u, x0)) − x̂k ∈ W . By Assumption 1, for any û ∈ Û ,
there exists u ∈ U such that Ψ(f(xk(u, x0), u))− f̂(x̂k, û) ∈
W . Thus, there exists an input sequence u satisfying (17).

Next, we show that the sequence of xk(u, x0) for k =
0, . . . , N satisfies the conditions in Definition 5. Since x̂k /∈
Sk ⊕ W , for all w ∈ W we have x̂k − w /∈ Sk. Thus,
Ψ(xk) /∈ Sk by the symmetry of W (Condition (i) of
Definition 5). Regarding Condition (ii) of Definition 5, the
condition x̂Nreach ∈ Ĝ(qi+1, qi+2) is equivalent to x̂Nreach +w ∈
G∗(qi+1, qi+2) for all w ∈ W . Since Ψ(xNreach) = x̂Nreach + w
for some w ∈ W , we have Ψ(xNreach) ∈ G∗(qi+1, qi+2).
Similarly, x̂N ∈ Ĝ(S, ·) implies xN ∈ G∗(S, ·), and eN ∈ Î
implies that h(x̂OVN ) − h(Ψ(xN )) ∈ (

⋃
j=0 Cj(B))c because

h(x̂N )− h(Ψ(xN )) ∈WE .

We prove one more lemma before delving into the proof
of Theorem 1. Recall that the complement of the capture set,(⋃

k Ck(B)
)c

, is control invariant. The following lemma states
that its tightened set is also control invariant.

Lemma 2. If eN ∈ Î, there exists a longitudinal input ûv ∈
Ûv that satisfies ge(eN , ûv, ûOVv ) ∈ Î for all ûOVv ∈ ÛOVv .

Proof. The worst case action that the preceding OV can take
is ûOVv,min. For this case, ûv,min keeps the error eN inside
the complement of the capture set. Moreover, since WE has
a box shape, the boundary of the tightened set Î maintains
the same shape as the boundary of

(⋃
k Ck(B)

)c
, shrunk by

the range of WE , see Fig. 7b. Therefore, if eN ∈ Î, then
ge(eN , ûv,min, û

OV
v ) ∈ Î for all ûOVv ∈ ÛOVv .

Now, we are ready to prove Theorem 1.

Proof of Theorem 1. Due to the possible outputs of
πε(qi, x0,M), for liveness we need to prove that there

always exists one among xsafe(qi+1, x0),xsafe(q
′
i+1, x0), and

xsafe(qi, x0), and that is not always xsafe(qi, x0) to avoid the
system to be stuck in qi forever.

Algorithm 1 returns πε(qi, x0,M) = εi+1 or ε′i+1 if
there exists x̂safe(qi+1, x0) or x̂safe(q

′
i+1, x0), respectively. This

implies, by Lemma 1, the existence of xsafe(qi+1, x0) or
xsafe(q

′
i+1, x0). Thus, in the rest of the proof, we focus on

the case when Algorithm 1 returns πε(qi, x0,M) = ε0.
When Ψ(x0) /∈ G∗(qi, qi+1), the mode has changed to qi

because there existed x̂safe(qi, x−k) (and thus xsafe(qi, x−k))
at some previous time step −k. For each time step between
−k + 1 and −1, the algorithm returns ε0 because the state
is outside G∗(qi, qi+1). Suppose there was a safe sequence
xsafe(qi, x−1) at the previous time step. Then, at the current
time (k = 0), there exists a safe sequence xsafe(qi, x0)
because it can take the last N − 1 states in xsafe(qi, x−1)
and concatenate a last state xN that satisfies Ψ(xN ) /∈ SN
and h(x̂OVN ) − h(Ψ(xN )) ∈

(⋃
Ck(B)

)c
. Such xN exists

because the OVs do not seek collisions, and Î is control
invariant by Lemma 2. More precisely, for the last state xN−1
of xsafe(qi, x−1), we can find x̂N−1 within xN−1 ⊕W that
satisfies x̂N−1 ∈ Î. Because Î is control invariant, there exists
x̂N ∈ Î and hence there exists xN ∈ I.

Similarly, when Ψ(x0) ∈ G∗(qi, qi+1), xsafe(qi, x0) exists
by induction on time step k. Suppose that in the previous step
(k = −1), there existed a safe sequence xsafe(qi, x−1). Again,
xsafe(qi, x0) can take the last N − 1 states in the sequence
xsafe(qi, x−1) and concatenate a last state xN that satisfies
Ψ(xN ) /∈ SN and h(x̂OVN )− h(Ψ(xN )) ∈

(⋃
Ck(B)

)c
.

Algorithm 1 does not return ε0 indefinitely because
• when the algorithm returns ε0, it will reach the condition

for the transition to the next mode at some future time
step, unless this becomes unreachable;

• in case the next mode becomes or has become unreach-
able, a fallback state sequence xsafe(q

′
i+1, x0) will be

eventually feasible at some future time step.
The first is due to the EV state not exiting the backward
reachable set at the next time step, which is guaranteed by
enforcing Ψ(x1) ∈ G∗(qi, qi+1) or Ψ(x1) ∈ G∗(qi, q′i+1) when
the algorithm returns ε0. Because the algorithm keeps the state
inside the backward reachable set of the next mode, there
exists an input sequence that enables the EV to reach the next
mode at some future time, unless this becomes unreachable
due to the OVs behavior. The second is true because we can
consider a backup sequence that follows the current lane and
stops at the next intersection. As the EV is following the
current lane, stopping at the end of the same lane within the
N -step planning horizon will eventually be feasible.

The safety proof follows by construction, because the deci-
sion maker returns a mode transition only when there exists a
safe state sequence, and in that case the motion planner can
compute a trajectory that satisfies Definition 5.

APPENDIX B
IMPLEMENTATION OF CONDITIONS IN ALGORITHM 1

In Section V-A, we discussed the computation of
G∗(qi, qi+1) and

(⋃
Ck(B)

)c
. In this section, we briefly
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discuss the computation of the other conditions in Algorithm 1,
namely ∃x̂safe(qi+1, x0) and Reach({x̂0}) ∩ Ĝ(qi, qi+1) = ∅.

The input sequence ûLF2,LF1

0:N−1 achieving the sharpest lane
change trajectory (LF2 → LF1) was defined by (14). For
stopping (LF → S), given k1, k2 ∈ Z≥0, the input sequence
for the sharpest trajectory are ûLF,S0:N−1 = (ûv,k, ûθ,k)N−1k=0 ,

ûv,k =


ûv,max for 0 ≤ k ≤ k1 − 1,

0 for k1 ≤ k ≤ k2 − 1,

ûv,min for k2 ≤ k ≤ N − 1,

ûθ,k = ûlane-following,k for all k

(18)

and ûlane-following,k is the orientation rate for following the lane.
1) Existence of x̂safe(qi+1, x0): We seek a state sequence

that satisfies Definition 4. For stopping (LF → S), we
apply the ûLF,S0:N−1 and find k1, k2 ∈ Z≥0 in (18) that make
x̂Nreach ∈ Ĝ(S, ·) for Nreach ≤ N . For lane changing, we
apply the extreme input sequence ûLF2,LF1

0:N−1 and find integers
k1, k2 ∈ Z≥0 in (14) that make x̂Nreach ∈ Ĝ(LF1, ·) for some
Nreach ≤ N . For intersection crossing (S → LF ), we also
consider k1, k2 ∈ Z≥0, and apply an extreme input sequence,
ûv,k = ûv,max until reaching vk = vmax and ûθ,k taking first
0 until k = k1, then either ûθ,min or ûθ,max depending on turn
directions for k ∈ [k1, k2] and then ûlane-following,k for k > k2.
Again, we find integers k1, k2 that make x̂Nreach ∈ Ĝ(LF, ·) for
some Nreach ≤ N .

If the resulting state trajectory satisfies x̂k /∈ Sk⊕W for all
k and x̂N ∈ Ĝ(S, ·) or ek ∈ Î for all k, then x̂safe(qi+1, x0)
exists. These checks are explained next.

2) x̂k /∈ Sk ⊕ W and x̂k ∈ Ĝ(qi, qi+1) : Let x̂k =
(px,k, py,k, vk, θk). To check whether x̂k ∈ Ĝ(qi, qi+1), sup-
pose that G(qi) is the goal set allowing position margins
∆px and ∆py around the x and y positions, respectively,
and angle margin ∆θ around the path direction angle. That
is, x̂k = (px,k, py,k, vk, θk) ∈ G(qi) if px,k ∈ p∗x +
[−∆px,∆px], py,k ∈ p∗y + [−∆py,∆py], vk ∈ [0, vmax],
and θk ∈ θ∗ + [−∆θ,∆θ] where (p∗x, p

∗
y) is a point on

the centerline and θ∗ is the path direction at the point. We
compute the positions (p∗x,k, p

∗
y,k) on the centerline such that

x̂k satisfies px,k ∈ p∗x,k + [−∆px + wx,max,∆px + wx,min]
and py,k ∈ p∗y,k + [−∆py + wy,max,∆py + wy,min]. At these
positions (p∗x,k, p

∗
y,k), suppose the angle of the path direction

is θ∗k, and the lower and upper bounds of the velocity given
by the backward reachable sets are v∗l,k and v∗h,k, see Fig. 6.
If there is a position (p∗x,k, p

∗
y,k) such that θk ∈ θ∗k + [−∆θ+

wθ,max,∆θ+wθ,min] and vk ∈ [v∗l,k +wv,max, v
∗
h,k +wv,min],

then the state x̂k is inside the set Ĝ(qi, qi+1), where we
compute the Pontryagin set difference by shifting the set
boundary by the disturbance bounds.

To check whether x̂k /∈ Sk⊕W , we discretize the boundary
of Sk and express its position as [p̄x,j , px,j ] × [p̄y,j , py,j ]

for discretized point j. Then, we can determine the truth
of x̂k /∈ Sk ⊕ W by checking that (px,k, py,k) /∈ [p̄x,j +
wx,min, px,j+wx,max]×[p̄y,j+wy,min, py,j+wy,max] for all j.
As discussed in Section IV, this condition is effectively used
only when OVs are changing lanes to avoid collisions with
the corners of such OVs. The collision avoidance in a single

lane is implied by the capture set condition ek /∈ Î and the
collision avoidance at intersections is implied by uniqueness
in intersection occupancy.

3) Reach({x̂0}) ∩ Ĝ(qi, qi+1) = ∅: The condition is
checked in Algorithm 1 when Ψ(x0) ∈ G∗(qi, qi+1), for
detecting that the state will exit Ĝ(qi, qi+1) at the next time
step, regardless of the input. Since the boundary of Ĝ(qi, qi+1)
is determined by ûv,min, the condition is equivalent to

f̂(x̂0, (ûv,min, ûlane-following)) /∈ Ĝ(qi, qi+1). (19)

In practice, for computational reasons we determine that
Reach({x̂0}) ∩ Ĝ(qi, qi+1) = ∅ when (19) holds for all
the vertexes of x̂0 ⊕ W . Since (19) is not convex as w
appears nonlinearly in the unicycle model (4), this is a slight
approximation that increases the conservativeness, but retains
the property that the motion planner will never be asked to
generate a trajectory for an infeasible goal. For our choice of
models (3), (7), and the resulting W , the loss due to such an
approximation is small.
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