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Abstract—Imaging photoplethysmography (iPPG) could

greatly improve driver safety systems by enabling capabilities

ranging from identifying driver fatigue to unobtrusive early

heart failure detection. Unfortunately, the driving context

poses unique challenges to iPPG, including illumination and

motion. First, drastic illumination variations present during

driving can overwhelm the small intensity-based iPPG signals.

Second, significant driver head motion during driving, as well as

camera motion (e.g., vibration) make it challenging to recover

iPPG signals. To address these two challenges, we present

two innovations. First, we demonstrate that we can reduce

most outside light variations using narrow-band near-infrared

(NIR) video recordings and obtain reliable heart rate estimates.

Second, we present a novel optimization algorithm, which we

call AutoSparsePPG, that leverages the quasi-periodicity of

iPPG signals and achieves better performance than the state-

of-the-art methods. In addition, we release the first publicly

available driving dataset that contains both NIR and RGB video

recordings of a passenger’s face with simultaneous ground truth

pulse oximeter recordings.

Index Terms—remote photoplethysmography, imaging photo-

plethysmography, near-infrared, heart rate, driver monitoring

I. INTRODUCTION

E
VERY year, there are 6 million car accidents in the U.S.,
of which 94% are caused by human error, including

distraction and fatigue [2], [3]. Furthermore, heart disease
is the leading cause of death—every 40 seconds someone
suffers from a heart attack in the U.S. [4]. If a heart attack
happens during driving, the driver is no longer able to control
the vehicle and poses an immediate threat to himself and to
others present on the road. Continuous and unobtrusive vital
signs measurements could prevent a large number of these
accidents by early detection of fatigue [5], distraction [6], and
potentially even life-threatening episodes such as heart attacks
and tachycardia [7]–[13].

Over the last few years, camera-based measurement of vital
signs, including heart rate (HR) [14], breathing rate [15],
and heart rate variability (HRV) [15], has reached sufficient
accuracy to have potential in diverse realistic applications [14],
[16], [17]. These measurements of vital signs with a camera
are known as imaging photoplethysmography (iPPG). They are
derived from minuscule intensity variations of skin regions
with each cardiac cycle, caused by varying blood volume
over time. Remotely measuring vital signs with cameras
could improve driver monitoring systems and be seamlessly
incorporated inside the car, without requiring the user to wear
a contact device.

Fig. 1. A. Spectrum of ambient light sources present during driving. Most
of the ambient light is reduced in NIR, especially around 940 nm [25]–[27].
B. RGB cameras are more susceptible to ambient light variations than NIR
cameras.

In addition to measuring vital signs, recording a driver’s face
with a camera can provide information about gaze [18], head
pose [19], blinking rate [20], changes in facial expression [21],
and other subtle facial parameters [22]–[24], for more accurate
multi-modal measurements of the driver’s mental and health
status.

Unfortunately, there are unique sources of noise in a moving
vehicle that make most existing iPPG methods unsuitable for
this application. First, the outdoor ambient light varies drasti-
cally and suddenly during driving (e.g., while driving through
the shadows of buildings, trees, etc.), making it difficult to dis-
tinguish iPPG signals from other intensity variations. Second,
there is significant motion of the driver’s head and face due to
a number of factors, such as the motion of the car, the driver
looking around both within and outside the car (for oncoming
traffic, looking into rear- and side-view mirrors, etc.), and the
driver talking. Third, there are currently no publicly available
datasets with video recordings captured during driving that
have simultaneous ground truth measurements of vital signs.
Therefore, it is difficult to fully understand the challenges that
driving poses for iPPG measurement.

While iPPG methods using RGB color cameras are more
robust to motion than iPPG using near-infrared (NIR), they fail
in presence of uncontrolled ambient illumination. On the other
hand, iPPG using NIR cameras (with NIR illumination that is
invisible to the subject) can be robust in most illumination set-
tings, but it is not as robust to large motion as RGB methods.
However, when large motion and light variations are present,
no existing methods, in either NIR or RGB, work well (See
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TABLE I
ROBUSTNESS OF NIR AND RGB SYSTEMS TO DIFFERENT LIGHT AND MOTION SETTINGS.

Camera Low Light Varying Light Controlled Light Small Motion
(MR-NIRP Indoor [1])

Large Motion
(e.g., Driving)

Large Motion and
Low / Varying Light

NIR X X X X ⇥ ⇥
RGB ⇥ ⇥ X X X ⇥

Fig. 2. The top row illustrates state-of-the-art approaches for measuring
iPPG signals with RGB camera recordings, which leverage multiple camera
channels to obtain motion-robust iPPG signals. However, RGB cameras
are susceptible to ambient light variations. The bottom row illustrates our
proposed monochromatic NIR system, which is robust to ambient light
variations, and our AutoSparsePPG algorithm that is capable of robustly
recovering iPPG signals in the presence of motion.

a. non-uniform b. saturated c. day d. night

Fig. 3. Examples of ambient light variations in RGB during driving.

Table I). In this work, we present a system-level solution. We
leverage the robustness of narrow-band NIR to uncontrolled
illumination, and we design an AutoSparsePPG algorithm to
enable robustness to motion in NIR. The contributions of this
paper include the following:

1) Hardware: We design a narrow-band NIR system, and
we find an optimal wavelength range that reduces the ma-
jority of ambient light variations during driving, including
sunlight (see Fig. 1).

2) Algorithm: We develop an iPPG algorithm robust to
motion which outperforms the state-of-the-art methods
in NIR recordings (see Fig. 2).

3) Dataset: We release the first publicly available video
dataset that contains video recordings in RGB and NIR
captured during driving, as well as synchronized ground
truth pulse oximeter measurements.1

II. CHALLENGES FOR IPPG IN THE CAR

In videos, iPPG signals are detectable as minuscule ampli-
tude variations modulating the intensity of skin pixels. Due

1Our MR-NIRP Car Dataset may be downloaded here: https://
computationalimaging.rice.edu/databases/.

to the weakness of the iPPG signal, existing techniques for
estimating iPPG are highly susceptible to nuisance factors
that affect image intensity. In order for iPPG techniques to be
successfully deployed in car-related applications, the primary
challenges that need to be overcome are ambient illumination
variations and motion of both the car and the person in the
car.

A. Ambient illumination variations
Because iPPG is a low-intensity signal, the signal-to-noise

ratio needs to be amplified by signal processing techniques,
such as spatial averaging and incorporating information from
multiple heartbeat cycles. In most existing work, temporal
averaging is performed over 5–10 seconds (about 5–10 cardiac
cycles) [28]. In many applications, it is reasonable to assume
that ambient illumination is constant over this time span,
and that the intensity variations on a stationary subject’s face
are primarily due to iPPG variations. In the driving context,
however, traditional algorithms that assume constant or slowly
varying illumination do not work well.

There are several illumination-based challenges for iPPG in
the driving context. First, during driving the amount of light
falling on the driver’s face can change suddenly and drastically,
as sunlight is blocked and revealed by buildings or trees during
the day, or as the car drives underneath streetlamps or past
oncoming vehcles’ headlights at night. Second, the ambient
light can illuminate different facial regions from different
angles and with different brightness. This results in a non-
uniform pattern of light and shadow across the face (Fig. 3a),
making it difficult to directly combine these facial regions
to compute iPPG signals. Third, there is a high dynamic
range across time and space. The driver’s face may be very
bright (even completely saturated) when it is in direct sunlight
(Fig. 3b), but very dark either when the car is in the shadow
cast by a building during the day (Fig. 3c) or at night (Fig. 3d).
As a result of these high-frequency, high-amplitude spatio-
temporal variations in facial illumination, traditional iPPG
algorithms that operate on RGB videos fare poorly in driving
applications.

B. Large motion
During driving, the car’s velocity changes frequently due

to the driver engaging the accelerator or the brakes, steering
around turns, and traversing hills and bumps in the road. All of
these changes in velocity produce involuntary motion of the
driver’s head. Moreover, the driver exhibits both rigid head
motion (looking around for oncoming traffic, looking into
the rear- or side-view mirrors, and looking at other objects
inside or outside the car) and non-rigid facial motion (talking,
singing, eating, or making facial expressions). See Fig. 4 for
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a. out-of-plane rotation b. facial expressions

Fig. 4. Examples of sources of motion present during driving.

motion examples. Head motion can rapidly change the surface
normals at each pixel, leading to substantial changes in image
intensity that often overwhelm the minuscule iPPG signals.
Additionally, the motion of the car causes some vibrations of
the camera and lights used for data collection.

We compared the amount of facial motion of subjects under
two categories of car motion and two categories of subject
motion. The car was either parked in a garage with the engine
running or driving in a city. The subjects were either asked to
sit as still as possible so that any motion (e.g., due to changes
in car velocity) was unintentional, or they were asked to
behave as if they were driving: look out the windshield, glance
at rear-view and side-view mirrors, and talk naturally. We
computed the amount of facial motion within each 10-second
time window as the average Euclidean distance between the
positions of each detected facial landmark in two adjacent
frames:

1
K

K�1P
k=1

T�1P
t=1

p
(Tt+1,k,x � Tt,k,x)2 + (Tt+1,k,y � Tt,k,y)2,

where K is the number of facial landmarks and T is the
duration of the time window. We averaged the motion
(measured in pixels) over all 10-second time windows and
across all subjects.

The amount of involuntary motion caused only by the mov-
ing car was large (⇠224 pixels)—comparable to the amount
of voluntary motion performed when the car was still (⇠216
pixels). The amount of voluntary motion was twice as large
as the amount of involuntary motion, both during driving
(voluntary:⇠415 pixels, involuntary:⇠224 pixels) and when
the car was parked (voluntary:⇠216 pixels, involuntary:⇠114
pixels), making this a very challenging high-noise scenario.
An average size of the face for these videos was 130 ⇥ 180
pixels.

C. Lack of publicly available driving datasets

As the challenges facing iPPG estimation in the car are
fundamentally different from those in more stationary appli-
cations, such as video-conferencing [29], datasets that were ac-
quired in other contexts are not useful to study iPPG estimation
in the driving context. Almost all existing publicly available
iPPG datasets were captured indoors, with RGB cameras and
with controlled illumination. Some of these datasets have head
motion, but the motion is mostly caused by facial expressions
and talking, which is radically different from the head motion
caused by a moving vehicle. Consequently, previous datasets
are not useful for understanding the challenges for iPPG during
driving. There have been few papers attempting to measure
iPPG in the car using cameras [8], [30], and so far only one

group is planning to publicly release their dataset [30]. There-
fore, it is difficult to understand how the ambient light and
motion artifacts impact the iPPG signal quality during driving,
and how much more severe these artifacts are compared to
those in indoor recordings.

III. RELATED WORK

A. Algorithms based on multiple color channels
Almost all state-of-the-art iPPG algorithms achieving the

highest accuracy and motion robustness rely on combinations
of the [R, G, B] channels. Linear combinations of the color
channels can be used to separate the heart rate signal from
noise [14], [31], [32]. However, the use of RGB cameras
requires sufficiently bright and controlled visible light, and
will not work well at night or when the ambient light is
varying drastically. Van Gastel et al. used three NIR cameras,
each fitted with a different narrow-band filter, to achieve
robustness to both motion and light variations [33]. However,
using multiple cameras can be cost-prohibitive, and image
registration from multiple camera views may be challenging.

B. Algorithms applicable to monochrome recordings
When the ambient illumination is either dark or varying

rapidly, as in the driving context, monochrome NIR recordings
(with NIR illumination) are a cost-effective way to eliminate
illumination-based noise. However, most of the state-of-the-art
algorithms use three color channels (e.g., RGB) for motion
robustness, so they will not work on monochrome recordings.
There have been a few algorithmic solutions proposed that
model the properties of the iPPG signal without relying on
multiple channels. Kumar et al. showed that by identifying
which facial regions have strong signals and weighing them
by their SNR measure, robust heart rate estimates can be
obtained using only the green color channel [28]. We proposed
the SparsePPG algorithm, which leveraged the fact that iPPG
signals are sparse in the frequency domain and low-rank
across facial regions [1]. However, many of these methods
require setting fixed optimization parameters or thresholds
beforehand, making it hard to generalize them to new datasets
with different cameras or lighting conditions.

C. Addressing uncontrolled illumination
Blackford et al. demonstrated the feasibility of obtaining

iPPG measurements with RGB cameras outdoors with sunlight
as the source of illumination [34], but the subjects were
stationary and the outside light was not varying suddenly.
Chen et al. [35] used broadband NIR light for night and
low-light settings. However, the iPPG signals obtained using
NIR are much more noisy than using visible light [36], [37].
Using broadband NIR recordings improves the signal strength
compared to narrow-band NIR because it allows more light
to be captured by the camera. However, broadband NIR is
still susceptible to ambient light variations that may occur
at NIR frequencies, especially those caused by sunlight. We
demonstrate the feasibility of using very narrow-band (10 nm
passband) filters with a monochrome NIR camera to achieve
heart rate estimation accuracy comparable to benchmark meth-
ods that use RGB cameras.
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Fig. 5. Sunlight spectrum measured with the car window open (solid blue
line) and closed (solid green line), and passband of the 940 ± 5 nm bandpass
filter (dotted magenta line). The majority of sunlight energy that reaches the
car interior is in wavelengths shorter than 930 nm. The glass in the car window
also blocks a significant portion of the NIR light from the sun.

D. iPPG during driving

There have been few papers that attempted to estimate iPPG
during a realistic driving scenario. Kuo et al. used spatially
averaged green-channel intensities from a single region on
the face to compute the average heart rate during driving,
but obtained accuracy below 20% for more than half of the
subjects in their dataset [8]. Wu et al. used a k-nearest neighbor
classifier applied to the strongest five frequency peaks of
the chrominance signal’s frequency spectrum [7]. However,
they only reported results for two participants. We release the
first publicly available iPPG driving dataset and show that
we obtain reliable results in heart rate estimation using the
proposed NIR set up.

IV. HANDLING ILLUMINATION NOISE WITH NIR IMAGING

A. Illumination variations in visible and NIR

The sources of the ambient light in images captured dur-
ing driving include sunlight, streetlamps, and headlights of
other vehicles. Most modern street lighting uses low-pressure
sodium lamps which predominantly emit visible light [38].
The light bulbs used in car headlights are usually halogen or
xenon bulbs which also mostly operate in the visible range,
though they also emit some NIR light. However, sunlight
contains energy in NIR, visible, and ultraviolet wavelengths
(see Figure 1).

We measured which wavelengths dominate the ambient light
in the car due to sunlight by capturing measurements with a
spectrometer (Ocean Optics USB2000+) through a car window
that was either open or closed (see Figure 5). There is a
large drop off in the energy at longer wavelengths, starting
at about 930 nm. The reason for the sudden drop-off in the
spectral energy of the sunlight at the Earth’s surface at around
930 nm is that water in the atmosphere absorbs light in a
wavelength band that includes 940 nm [39]. The other sources
of illumination variations during driving, such as street lights
and headlights, are predominantly in the visible spectrum and
can also be reduced using an NIR filter.

B. Design choices in active NIR imaging
In this subsection, we discuss several design choices and

trade-offs necessary to consider when building an active NIR
illumination system for measuring iPPG.

1) Achieving Uniform Illumination: Illumination intensity
across the face can be non-uniform due to the variation in the
3D directions of the normals across the face surface, due to
shadows cast on the face, and due to different parts of the face
being at different distances from each illuminator. To make the
illumination more uniform across the face, we used two light
sources, placed on each side of the face and at roughly equal
distances from the head. In addition, we placed horizontal and
vertical diffusers on the light sources to widen the light beams
reaching the face, so that the center of the face would not be
much more brightly lit than the periphery.

2) Capturing Well-Exposed Images: We would like the
images of the face to be sufficiently well exposed in order
to measure strong iPPG signals. However, the intensity of
the illumination is inversely proportional to the square of the
distance from the light source to the face. If the face is too
close to the illumination, the images will be saturated and
will not contain iPPG information, but as the person moves
farther back from the lights, the images will become dimmer
and have weaker iPPG signals. It is also important to keep the
camera exposure fixed during the duration of the recording
to obtain clean iPPG signals. We experimentally selected the
most favorable position of the illuminators inside the car and
their brightness setting to avoid capturing saturated images,
while recording well-exposed images at a range of possible
distances between the subject’s face and the camera. We tested
different distances (ranging from 7 cm to 50 cm) by having the
participant sit inside the car and lean forward and backward,
while the position of the camera was fixed.

3) Bandwidth, Light Efficiency, and Eye Safety: The more
narrow the optical bandpass filter on the camera, the more
ambient light can be rejected, reducing the amount of noise
corrupting the iPPG signals during driving. However, when
very narrow filters are used, the captured images become dark
and the strength of the iPPG signals decreases. Therefore,
using narrow-band filters requires using bright illumination
matching the passband wavelength of the filter to obtain well-
exposed images.

NIR light can be shined on a person’s face without causing
discomfort because it is invisible to the human eye, making
it easy to use very bright lights. Because the NIR lights are
not visible to the human eye, however, the pupillary light
reflex does not narrow the pupils to limit the amount of light
reaching the eyes, even when very bright NIR lights are used.
Consequently, care needs to be taken to ensure that the NIR
illumination is within the eye safety limits. We conducted
these computations (included in Supplementary Materials),
according to the OSRAM eye safety note [40].

C. Lower iPPG SNR in NIR
The iPPG signals are strongest in the green part of the

light spectrum because of larger absorption of hemoglobin
in that wavelength range [37]. In contrast, iPPG recordings
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in NIR are significantly weaker and less robust to noise than
recordings captured in RGB [16], [36], [37]. Moreover, most
camera sensors’ sensitivity decreases in the NIR range with
increasing wavelength, leading to larger camera quantization
noise. Finally, monochrome recordings do not enable using
redundant information in multiple camera channels for de-
noising, which is commonly used for motion robustness in
RGB recordings (see Fig. 2) [14], [31], [32]. In summary,
while narrow-band NIR can be used to reduce the noise due
to ambient light, it is at the cost of lower signal-to-noise ratio
(SNR) and less robustness to motion. Therefore, one must use
iPPG algorithms that can be robust to motion in the low-SNR
regime of NIR.

V. ALGORITHMS: MOTION COMPENSATION

A. Computing iPPG signals from video intensities

As blood flows through a skin region, the concentration of
hemoglobin changes over time, changing the amount and color
of light absorbed by the skin. When we record a video of a skin
region, a camera can register those small intensity variations
caused by blood flow, referred to as the iPPG signal.

The quantization noise of the camera sensor, vn(t), can
be reduced by spatial averaging of groups of pixels, which
is a commonly used pre-processing step for extracting iPPG
signals from a video recording. Therefore, we obtain the raw
iPPG signals from the video frames by spatially averaging the
pixel intensities within each of N = 48 regions of interest
on the face. We define those N = 48 facial regions by first
detecting 68 facial landmarks using the OpenFace library [41],
then interpolating and extrapolating the detected landmarks to
obtain a total of 145 points that include the forehead region,
as shown in part 1 of Fig. 6. We focus on regions around
the forehead, cheeks, and chin area, because these regions
tend to exhibit stronger iPPG signals [28]. We exclude noisy
regions such as eyes, nose, mouth, the boundary of the face,
and the very top of the forehead that often contains hair. For
every facial region j 2 {1, . . . , N}, the raw iPPG signal pj(t)
obtained from the mean intensities is a one-dimensional time
series signal, where t 2 {1, . . . , T} is the video frame index
within a time window of length T frames. We stack the signals
from all N facial regions into an iPPG matrix P of size T⇥N .
We process the iPPG signals within 10-second sliding time
windows that overlap by 1

3 second (10 frames overlap for
our 30 frames per second (fps) videos). We used a 10-second
window to process the signals, following [28], because it was
short enough to accommodate the heart rate variations, but
long enough to be robust to variations in noise over time.

We normalize each time window’s signals by subtracting
the mean intensity over time of each region’s signals and then
dividing by that mean. We bandpass-filter the signals to restrict
them to the standard cardiac frequency range [42 bpm, 240
bpm] [32].

1) Temporal averaging of facial landmark locations: When
we detect facial landmarks in each frame independently, there
is a high-frequency jitter in the position of the detected
landmarks, even when the face is stationary. This causes the
pixels included in different small facial regions to correspond

Fig. 6. Overview of our proposed AutoSparsePPG algorithm. (1) PPG signals
are computed from each facial region. (2) We suppress noise components
using projections onto the orthogonal complement of the motion noise (H,V)
and the noise from ambient light variations B (computed from background
regions). (3) From the partially denoised iPPG signals Z, we then recover the
quasiperiodic iPPG signal’s sparse frequency spectrum (X).

to slightly different regions on the face for each video frame,
changing the average intensities over time and leading to
small errors that accumulate over time and affect the iPPG
performance. We found that when there is large motion and
lighting variations, tracking algorithms tend to make errors that
compound over time, causing the estimated positions of the
facial landmarks to drift away from the correct facial locations.
Instead, we estimate the position of each facial landmark in
frame t by averaging the detected positions of the landmark
from frame t� 5 to t+ 5.

2) Motion robustness using median of regions: For addi-
tional robustness to small variations in facial regions’ positions
over time, we grouped the N = 48 small regions (called mean
regions, because the signal for each small region is the mean
over all of its pixels) into five larger regions with a spatial
median, as shown on the right in part 1 of Fig. 6. We call the
five larger regions median regions, because the signal for each
larger region is obtained by computing for each time step the
median across the signals from the small regions that make
up the large region. As we detail in Supplementary Materials,
using the five large median regions improves performance by
as much 9% compared to only using the 48 mean regions.

3) Pre-processing by discarding noisy facial regions: Some
of the facial regions may be severely corrupted by noise for a
long time during driving (e.g., due to occlusions or shadows),
or they may simply not contain physiologically strong iPPG
(e.g., due to hair) [28]. In that case, the iPPG signals cannot
be recovered from these regions, and including them in our
data would corrupt the final heart rate estimates.

We assume that iPPG signals are weak and slowly varying
intensity variations, so any regions that have very large energy
within a short time window should be removed as likely
containing noise. We remove regions with `2 norms exceeding
the threshold of median(||Pt||2)+ 1

2�(||Pt||2), where � is the
standard deviation, computed over all five facial regions for
each considered time window. The `2 norm is computed over
time, and the standard deviation is computed over the five
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spatial regions.

B. Reducing noise using orthogonal projections
Different facial regions may be contaminated differently

by noise caused by changes in ambient illumination, motion
alignment errors, and facial expressions, so the noise may
be high-dimensional. However, blood flows through all facial
regions with approximately the same temporal profile during
the cardiac cycle, so the underlying iPPG signal should be
low-rank across facial regions [42]. To suppress noise that is
corrupting the iPPG signal, we orthogonally project (OP) the
noisy iPPG signal P onto the noise subspace Q, then subtract
this projected signal from P. This is equivalent to projecting
the noisy iPPG signal onto the orthogonal complement of the
noise subspace.

We approximate the motion noise by summarizing the
motion of the face with two time-varying 5-dimensional (5D)
signals: a 5D horizontal motion signal H, and a 5D vertical
motion signal V. We also compute a 5D time-varying back-
ground illumination signal B, to approximate the noise caused
by time-varying illumination at various locations.

To extract the 5D horizontal motion signal H, we first
measure the horizontal motion of each of the N = 48 small
facial regions by spatially averaging the positions of the four
corners of the region in each frame. We then reduce those 48
dimensions into five dimensions, one for each large region, by
computing the median of the motion signals across all of the
small regions that belong to that large region. The sequence
of these 5D signals across all time steps in the 10-second time
window is the T ⇥5 matrix H. The 5D vertical motion signal
V is computed similarly.

To obtain a 5D time-varying signal B that represents the
background ambient light intensity variation, we selected five
regions in the background not containing the face area, shown
in magenta in the center image of part 1 of Fig. 6. We split
each of these five large background regions into small (30⇥30
pixel) regions, spatially average the intensity values within
each small region, and take the median of the resulting nine
values to obtain a single value for the large region. We do
this for each of the five large background regions in each
frame, resulting in a T ⇥ 5 matrix B. Finally, we concatenate
these three noise sources into one noise signal matrix Q =
[H |V |B] of dimensions T ⇥ 15. We orthogonally project
the noisy iPPG signal matrix P onto the noise subspace Q

and subtract that projection from the iPPG signal matrix P,
to obtain the OP-denoised signal Z:

Z = P� QQ
T

QTQ
P. (1)

C. AutoSparsePPG: adaptive sparse spectrum estimation
1) Sparse spectrum estimation: iPPG signals are quasiperi-

odic, which means that they have slowly varying frequency.
Over a short time window, they can be approximated as
periodic signals with a dominant frequency and its harmon-
ics. Thus, we can model the iPPG signals as sparse in the
frequency domain. All facial regions containing iPPG should

have the same sparse frequency spectrum and the same support
of the frequency coefficients, corresponding to the underlying
noise-free heartbeat signal. We model the OP-denoised signal
Z as a sum of two components: the desired iPPG signal
Y, whose frequency spectrum, X, has only a few non-zero
coefficients; and the inlier noise, E, that was not removed by
OP:

Z = Y +E = F
�1

X+E, (2)

where F
�1 is the inverse Fourier transform.

We want the columns of X to be jointly sparse to ensure
that the frequency components are sparse and all regions have
the same support, resulting in entire rows of X being either
zero or non-zero. Conversely, we want to be able to remove
facial regions which are noisy in the whole time window. We
additionally make sure that the energy in the remaining facial
regions is not very large, because the iPPG signals are very
weak signals and large amplitudes likely correspond to noise.
To do so, we force the entire columns to be either zero or non-
zero by formulating this problem following the SparsePPG
approach [1] with a mixed `2,1 norm regularization:

min
X,E

1

2

��Z� F
�1

X�E
��2
F
+ �

�
kXk2,1 + µkETk2,1

�
, (3)

where k · kF denotes the Frobenius norm of a matrix, and the
`2,1 norm of a matrix X is defined as

kXk2,1 =
X

t

sX

j

X(t, j)2.

The `2,1 regularization is applied such that the `2 norm of the
columns of X (facial regions) is followed by an `1 norm along
the rows (frequency coefficients) to ensure sparsity within the
computed column norms. Conversely, the `2 norm of the rows
of E (time dimension) is followed by an `1 norm across the
columns (facial regions) to sum up the row norms and ensure
sparsity across the facial regions.

2) Adaptive regularization parameter selection: The choice
of regularization parameters, � and µ, has a significant impact
on the performance of heart rate estimation. Changing either
of these parameters can lead to as much as a 30% difference
in HR estimation accuracy. Moreover, very different parameter
values are optimal for different videos.

We propose the AutoSparsePPG algorithm, which automat-
ically selects the parameter � adaptively based on the data.
Following the work of Van den Berg et al. for solving sparse
optimization problems with least squares constraints [43], we
can rewrite (3) as:

min
X,E

||Z� F
�1

X�E||2F
subject to kXk2,1 + µkETk2,1 < ⌧,

(4)

where ⌧ is defined as:

⌧ = ⌧0 +
||Z� F

�1
X�E||2F

max([||rX||2,1, µ||rE||2,1])
.

Here, ⌧0 = ||X||2,1 + µ||ET||2,1 for some initial X and E,
and rX and rE are the gradients of ||Z�F

�1
X�E||2F with

respect to X and E, respectively.
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The parameter � is initialized to �0:

�0 =
||Z||Fp

card(X)card(E)

where card is the cardinality (the number of the elements
of the matrix). Then in each iteration, � is updated using
Newton’s root finding method applied to the equation

kXk2,1 + µkETk2,1 = ⌧.

Consequently, we use the following update rule to modifying
� in order to satisfy the ⌧ constraint:

�k+1 = max

✓
0, �k +

kXk+1k2,1 + µkET
k+1k2,1 � ⌧

�(kXk+1k2,0 + µkET
k+1k2,0)

◆
,

where � is a step size parameter, kXk+1k2,0 computes the
number of nonzero column-norms of Xk+1, and X and E

are initialized with zeros. A detailed description of the Au-
toSparsePPG framework is presented in Algorithms 1 and 2.
Algorithm 2 details our algorithm for the proj2,1 step (Step 7)
of Algorithm 1. Please see [43] for details about the conver-
gence and stability of Newton’s root finding method.

Algorithm 1 AutoSparsePPG algorithm for solving (4)
input: Z,X0,E0,↵
set: ⌧0 = kX0k2,1 + µkE0Tk2,1

1: rX0  X
0 � F

�
Z�E

0
�

2: rE0  E
0 +X

0 � Z

3: ⌧  ⌧0 +
||Z�F�1X0�E0||2F

max([||rX0 ||2,1,µ||rE0 ||2,1])

4: for k  1 to K do

5: X̃
k  X

k�1 � ↵rXk�1

6: Ẽ
k  E

k�1 � ↵rEk�1

7: (Xk,Ek) proj2,1(X̃k, Ẽk, ⌧)
8: rXk  X

k � F
�
Z�E

k
�

9: rEk  E
k +X

k � Z

return: X
K ,EK

Algorithm 2 proj2,1 : constrained `2,1 projector

input: X̃, Ẽ, ⌧,↵.
set: � 0,X X̃,E Ẽ

define: R(X,E) := kXk2,1 + µkETk2,1
Compute row and column norms

1: Xr  [kX(1, :)k2, . . . kX(T, :)k2]T
2: Ec  [kE(:, 1)k2, . . . kE(:, J)k2]
3: while R(X,E) > ⌧ do

Apply soft-thresholding
4: X X̃

Xr
�max {Xr � ↵�; 0}

5: E Ẽ
Ec
�max {Ec � µ↵�; 0}

Compute row and column norms
6: Xr  [kX(1, :)k2, . . . kX(T, :)k2]T
7: Ec  [kE(:, 1)k2, . . . kE(:, J)k2]

Update �
8: g  �kXrk0 � µkEck0
9: � max

n
0,�� R(X,E)�⌧

↵g

o

return: X,E

To combine the denoised signals from each facial region, we
take a median in each frequency bin across the regions of X.
A median is more robust to outliers than a mean when some of
the facial regions are corrupted by noise. We found that when
we instead used a mean in each frequency bin, the results
were often erroneous in the presence of noise. The frequency
component for which the power of the frequency spectrum is
maximum is the heart rate output by our algorithm for the
given time window. Part 3 of Fig. 6 illustrates an example of
the sparse frequency spectrum of the underlying iPPG signal
recovered from noisy video data.

D. Fusion of time windows
The human heart rate varies slowly over time, so the iPPG

signals from multiple facial regions can be approximated to be
a stationary process within a short time window. By using the
information from previous time windows, we can improve the
iPPG denoising and remove a lot of abrupt changes caused
by noise. We process the iPPG signals using sliding time
windows. For each time window, the signal to be processed is a
weighted average of two sources: the previous time window’s
already processed and denoised data, and the current time
window’s noisy data that has not yet been processed.

This weighted average is defined as follows:

P = ↵
⇥
Po
Pn

⇤
+ (1� ↵)

h
eYo
Pn

i
. (5)

Here,
⇥
Po
Pn

⇤
represents the unprocessed, noisy data from the

current time window. Po denotes the data from the portion
of the current time window that overlaps with the previous
(old) time window, while Pn denotes the data from the new
portion of the current time window (the portion that does not
overlap with the previous time window). Note that the old
data, Po, were already processed (denoised) in the previous
time step; the processed, denoised version of Po (which was
output at the previous time step) is denoted eYo. The parameter
↵ controls how much we weigh the previous window’s results.
The smaller the value of ↵, the more we take into account the
previous time window’s estimate.

As part of the pre-processing within each time window,
we may have rejected a different number of facial regions,
resulting in different dimensions of the input iPPG signals
in the consecutive time windows. Therefore, after processing
each time window, we first recompose the signal in the missing
regions by linearly interpolating from neighboring regions in
order to use the described weighted time window fusion.
We selected all optimization coefficients that gave the best
performance on our data by using a leave-one-subject-out
cross-validation.

VI. MR-NIRP CAR DATASET

In this section we present the experimental conditions and
the setup used to collect our new dataset, the MERL-Rice
Near-Infrared Pulse (MR-NIRP) Car Dataset.

A. Data collection conditions
To decouple the effects of motion and ambient light varia-

tions on the quality of the iPPG signals, we recorded videos in
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Fig. 7. Sample video frames from our new MR-NIRP Car Dataset, in NIR (left image of each pair) and RGB (right image of each pair).

the car in two different driving conditions: inside the garage,
and driving in the city. Inside the garage, the engine was
running but the car was parked. During the driving scenario,
we drove around the block in the city, where we often had
to stop at traffic lights. Sudden stopping, accelerating, and
turning introduced additional motion artifacts, making it more
difficult to recover iPPG signals than it would be while driving
at a constant speed on a highway. In each of the two driving
conditions, we recorded data with two different head motion
conditions. In the first (minimal head motion), we asked the
participants to sit as still as possible. In the second (additional
head motion), we asked the participants to talk naturally and
to look through the windshield and in the side and rear-view
mirrors to simulate the amount of motion that would be present
during natural driving.

We collected data on 18 healthy subjects2 aged 25–60 years
with varying skin tones. One of the subjects was recorded
twice during driving, once during the day and once at night.
Therefore there are 19 recordings with city driving, and 18
recordings for condition in the garage. Of the 18 subjects,
two subjects were female, and five subjects had facial hair.
We recorded four videos at night and 14 during the day. Of
those 14 videos, eight were recorded in sunny weather and six
in overcast conditions. Examples of captured images in NIR
and RGB are shown in Fig. 7. None of our participants wore
glasses during the data collection. However, the presence of
glasses should not significantly affect the performance of any
algorithms evaluated on our dataset since the eye region is
excluded, as shown in Fig. 6 part 1. All of the NIR recordings
were included, but we had to exclude the RGB recordings of
two subjects during city driving and one subject in the garage
because the video frames were so dark that facial landmarks
were not detected. We had the subjects sit in the passenger seat
(the subjects did not control the car) during recording, for two
reasons: for safety; and to reduce the amount of hand motion
in order to avoid corrupting the pulse oximeter signals. This
was important, because we found that even small involuntary
motions of the hand significantly affected the recorded pulse
oximeter (ground truth) signals.

B. Experimental setup
We mounted the NIR (Point Grey Grasshopper GS3-U3-

41C6NIR-C) and the RGB (FLIR Grasshopper3 GS3-PGE-
23S6C-C) cameras next to each other on the dashboard in

2The study was approved by MERL’s Institutional Review Board, and all
participants signed an informed consent form for the use and public release
of their data.

front of the subject. The lenses we used had a focal length
of 8 mm for the NIR camera and 4.5 mm for the RGB
camera. The NIR camera was fitted with a 940 nm hard-coated
optical density bandpass filter from Edmund Optics with a 10
nm passband. We also compared the performance with a 975
nm bandpass filter with a 50 nm passband and “dark frame
subtraction” to further reduce ambient light, however we found
there was not a significant improvement in the results (see the
Supplementary Materials). We used four Bosch EX12LED-
3BD-9W illuminators, two on each side of the subject’s face.
Each illuminator was fitted with a 95-degree diffuser in the
vertical direction and an 80-degree diffuser in the horizontal
direction, to broaden the beam of light and to make sure
that the illumination of the face was relatively uniform. We
used ambient illumination for the RGB camera. We obtained a
ground-truth PPG waveform using a CMS 50D+ finger pulse
oximeter recorded at 60 fps.

We recorded 10-bit raw images with 640⇥ 640 resolution
at 30 fps, with no gamma correction and with fixed exposure
that was set at the beginning of the video capture to make sure
the face was well lit. When the images were well exposed, we
always set the gain to zero, and when it was very dark, we
increased the gain until the face region was sufficiently bright.
All the recordings captured inside the garage were 2 minutes
long; the recordings captured during driving ranged from 2–5
minutes in duration, depending on how long it took us to drive
around the block.

VII. RESULTS

A. Compared benchmark algorithms
We compared the performance of our proposed Au-

toSparsePPG algorithm to five state-of-the-art iPPG methods:
SparsePPG [1], DistancePPG [28], ICA [14], CHROM [31]
and POS [32] (detailed in the Supplementary Materials).
Since ICA, CHROM, and POS require multiple camera chan-
nels, they cannot be applied to NIR recordings. To evaluate
the single-channel (monochromatic) methods AutoSparsePPG,
SparsePPG, and DistancePPG on the RGB recordings, we
used only the green channel. Comparisons of variations of
AutoSparsePPG, including the use of 48 mean facial regions
rather than 5 median facial regions, are in the Supplementary
Material. We evaluated all compared methods on the same
videos, using the same pre-processing and the same time
window parameters as our proposed method.

To evaluate the performance of the compared algorithms, we
use two error measures: (i) root mean squared error (RMSE)
computed between the ground truth and estimated heart rate
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TABLE II
HR ESTIMATION ERRORS ON MR-NIRP CAR DATASET (“MINIMAL” HEAD MOTION)

Driving Day Driving Night Driving All Garage

NIR RGB NIR RGB NIR RGB NIR RGB

PTE6 [%] (higher is better)

AutoSparsePPG 60.0 ± 6.0 33.1 ± 3.2 64.7 ± 12.0 19.7 ± 7.7 61.0 ± 5.2 31.5 ± 3.1 81.9 ± 5.9 91.1 ± 1.9

SparsePPG [1] 18.3 ± 4.2 22.1 ± 3.6 14.1 ± 2.4 17.2 ± 6.3 17.4 ± 3.4 21.5 ± 3.2 35.6 ± 6.8 53.6 ± 9.7
DistancePPG [28] 25.5 ± 2.8 18 ± 2.6 21.2 ± 2.5 14.1 ± 6.9 24.6 ± 2.3 17.6 ± 2.4 37.4 ± 4.0 74.7 ± 5.5
ICA [14] N/A 57.3 ± 3.6 N/A 32.8 ± 1.8 N/A 54.4 ± 3.8 N/A 83.3 ± 5.4
CHROM [31] N/A 54.2 ± 4 N/A 30.2 ± 0.6 N/A 51.4 ± 4 N/A 82.6 ± 4.9
POS [32] N/A 23.7 ± 6.1 N/A 13.4 ± 13.4 N/A 22.5 ± 5.5 N/A 52.9 ± 11.3

RMSE [bpm] (lower is better)

AutoSparsePPG 11.8 ± 2.0 > 15 bpm 11.2 ± 4.4 > 15 bpm 11.6 ± 1.8 > 15 bpm 5.1 ± 1.4 2.9 ± 0.4

SparsePPG [1] > 15 bpm > 15 bpm > 15 bpm > 15 bpm > 15 bpm > 15 bpm > 15 bpm > 15 bpm
DistancePPG [28] > 15 bpm > 15 bpm > 15 bpm > 15 bpm > 15 bpm > 15 bpm > 15 bpm 8.2 ± 1.8
ICA [14] N/A 9.7 ± 1.2 N/A 12.9 ± 1.3 N/A 10.1 ± 1.1 N/A 5.3 ± 1.6
CHROM [31] N/A > 15 bpm N/A > 15 bpm N/A > 15 bpm N/A 10.5 ± 3.6
POS [32] N/A > 15 bpm N/A > 15 bpm N/A > 15 bpm N/A > 15 bpm

TABLE III
HR ESTIMATION ERRORS ON MR-NIRP INDOOR DATASET [1]

Stationary Motion

PTE6 [%] (higher is better)

NIR RGB NIR RGB
AutoSparsePPG 93.8 ± 2.3 93.7 ± 2.4 61.6 ± 8.4 70.6 ± 8.2
SparsePPG [1] 69.5 ± 16.7 89.9 ± 10.1 41.7 ± 15.0 79.8 ± 5.4
DistancePPG [28] 72.5 ± 6.6 91.0 ± 4.7 38.0 ± 4.1 57.0 ± 8.4
ICA [14] N/A 98.3 ± 1.0 N/A 88.6 ± 3.5
CHROM [31] N/A 98.0 ± 1.1 N/A 90.5 ± 3.8

POS [32] N/A 97.4 ± 1.8 N/A 89.1 ± 5.5
RMSE [bpm] (lower is better)

NIR RGB NIR RGB
AutoSparsePPG 2.0 ± 0.5 1.9 ± 0.5 12.7 ± 2.6 11.0 ± 3.8
SparsePPG [1] 22.5 ± 12.3 8.2 ± 7.7 24.0 ± 10.4 5.3 ± 2.1
DistancePPG [28] 8.5 ± 2 2.6 ± 1.1 18.5 ± 3.2 16.0 ± 3.7
ICA [14] N/A 0.8 ± 0.2 N/A 2.5 ± 0.7

CHROM [31] N/A 0.8 ± 0.2 N/A 3.2 ± 1.1
POS [32] N/A 3.0 ± 2.2 N/A 4.9 ± 2.6

(HR) over all ten-second time windows, and (ii) percentage
of the time that the HR error is less than 6 bpm (PTE6). We
chose an error threshold of 6 bpm because it is the expected
frequency resolution on a ten-second window. Unlike RMSE,
which can be strongly impacted by large outliers (e.g., an
estimated heart rate that is extremely incorrect for a short
period of time), PTE6 can be thought of as roughly measuring
the percent of time that the estimated heart rate is correct vs.
incorrect.

B. MR-NIRP Car Dataset
The results on our new MR-NIRP Car dataset for the mini-

mal head motion condition are summarized in Table II. There
were often large and sudden movements of the head caused by
the motion of the car, even though the participant was trying to
sit still. When RMSE errors were larger than 15 bpm, we have
replaced those results with RMSE “> 15 bpm” to indicate
that heart rate was estimated incorrectly and that the iPPG
signal was not recovered well. Our proposed AutoSparsePPG
method significantly outperforms all state-of-the-art methods
on NIR videos. On RGB videos, AutoSparsePPG outperforms
the state-of-the-art single-channel methods (SparsePPG and
DistancePPG) both while driving and while parked in the
garage. On RGB videos, AutoSparsePPG (which uses only the

green camera channel) outperforms even the methods that use
three camera channels (ICA, CHROM, and POS) while parked
in the garage, but it does not do as well as them while driving.
This is because driving induces significant head motion, which
three-channel methods are better able to suppress. Due to the
large amount of head motion in this condition, methods that
use three camera channels often perform better than the single-
channel methods on RGB videos.

Despite having only one channel, our NIR method performs
slightly better (has higher PTE6) than the best 3-channel RGB
method during daytime driving, and performs much better than
the best RGB method during night driving. In summary, we
achieve the following improvements with our proposed NIR
hardware and AutoSparsePPG algorithm:

• Despite the head motion that is present during driving,
our NIR setup with our AutoSparsePPG algorithm outper-
forms the state-of-the-art RGB algorithms in all driving
conditions, achieving higher PTE6 by 6.6% on average
(Driving All conditions).

• During daytime driving, our system slightly outperforms
the best RGB method, with PTE6 higher by 2.7% (Driv-
ing Day).

• Our NIR method achieves the most significant improve-
ments over RGB methods during night driving when it is
dark, increasing PTE6 by 31.9% (Driving Night).

• Our proposed NIR setup and AutoSparsePPG algorithm
are robust in all lighting conditions and partially robust to
motion, whereas RGB methods fail when the illumination
is too low (Driving Night).

While parked in the garage, there was enough light for RGB
methods and not much lighting variation; hence, accuracy
is high for both NIR and RGB (PTE6 > 80%). However,
our NIR method performs a bit worse than RGB in this
setting, probably because the iPPG signal is stronger in visible
frequencies than in NIR.

The videos collected with additional head motion during
driving in fact had very large motion caused by the subject
looking around and talking combined with motion due to the
car accelerating, stopping, starting, and turning. Consequently,
most methods performed very poorly on these driving videos
in both NIR and RGB (with PTE6 < 30% for most methods).
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These results are summarized in Table I of the Supplementary
Material.

C. MR-NIRP Indoor Dataset
We additionally compared the performance of Au-

toSparsePPG to several state-of-the-art methods on the pub-
licly available MERL-Rice Near-Infrared Pulse (MR-NIRP)
Indoor Dataset [1], which has simultaneous RGB and NIR
recordings captured in an indoor setting and was the only
publicly available dataset that had narrow-band NIR videos
with motion. Since before this paper there were no publicly
available driving datasets with ground truth physiological
signals, MR-NIRP Indoor is the most similar existing dataset
to our new MR-NIRP Car dataset. The MR-NIRP Indoor
dataset contains videos recorded of subjects seated in a lab
performing two tasks: a stationary task and a motion task.
In the stationary task, subjects were asked to sit still for 3
minutes. In the motion task, subjects were asked to count out
loud from zero to ten and perform random slight head motion.

On NIR videos, our proposed AutoSparsePPG outperformed
all other methods in both the stationary and motion tasks
(Table III). The results of AutoSparsePPG on stationary NIR
videos are close to the performance of the best RGB methods
on stationary RGB videos, demonstrating that NIR recordings
can be nearly as robust as RGB when the motion is not very
large. Most methods performed very well on the stationary
task in RGB recordings because the data are clean and there
are not many sources of noise. In the presence of motion, the
three-channel methods ICA and CHROM performed best on
RGB videos. Finally, the results of AutoSparsePPG on NIR
videos are similar to its results on RGB videos (especially in
the stationary task), demonstrating that our proposed algorithm
is able to achieve robustness to motion and noise even in the
more noisy NIR videos.

VIII. DISCUSSION

Our experiments demonstrate that by using narrow-band
NIR light sources and filter, our proposed AutoSparsePPG
algorithm achieves good heart rate estimation performance that
is robust to ambient light variations and low light settings,
when there is not too much motion. In the presence of
significant motion, however, multi-channel RGB methods are
more robust. On the other hand, while three-channel RGB
methods can be motion robust, they are easily corrupted by
ambient light variations. Furthermore, since we cannot shine
visible light on a person’s face without causing discomfort and
dangerous driving conditions, it is not feasible to use RGB in
low light settings.

One way to achieve robustness to both ambient light and
motion might be to use multiple NIR cameras to enable linear
combinations of multiple NIR channels, similar to algorithms
designed for RGB recordings (e.g., ICA, CHROM, POS).
Alternatively, RGB and NIR cameras could be used jointly, to
leverage RGB motion robustness when the lighting variations
are not large, and to leverage the robustness of NIR to
uncontrolled lighting when the ambient light is varying or
is too dark for RGB. In both of these cases, using multiple

NIR cameras can be expensive, and errors in registering
images from multiple cameras may also adversely affect iPPG
signals. Therefore, the most promising future avenue may be
to use a single NIR camera but to develop more motion-robust
algorithms.

On average, there is 7.5 to 10 BPM difference in average
HR between drowsy and alert states [9], [44], so HR error less
than that may be required for driving applications. We achieve
the required accuracy when the car is parked, and we are close
during driving but the accuracy needs to be improved by 3–4
BPM. Clinically approved gold standard contact devices have
RMSE errors in average HR on the order of 3 bpm. State-
of-the-art camera-based methods use an already relaxed error
standard of 6 bpm. However, in a very challenging driving
scenario a larger average RMSE might be acceptable if time
windows that have large errors can be detected and ignored.
We do not expect any method to work all the time in a very
challenging driving scenario, but if we could identify time
windows that have unreliable HR estimates, then the system
making decisions based on these measurements could discount
them.

IX. CONCLUSION

The presented work is the first detailed study of the sources
of noise for iPPG during driving. We have identified and
analyzed the unique challenges for iPPG technology posed by
a realistic driving scenario, and we presented hardware and
algorithmic solutions to these challenges. First, we showed
that the variations in uncontrolled ambient light affecting RGB
recordings during driving can be significantly reduced with a
narrow-band NIR hardware set up.

Second, we showed that a degree of motion robustness can
be achieved in monochrome NIR recordings with the proposed
AutoSparsePPG algorithm, despite the significantly lower
SNR of iPPG signals in NIR compared to the visible range.
AutoSparsePPG outperformed the state-of-the-art methods that
do not require multiple camera channels. While the proposed
NIR set up can reduce a lot of light variations, it is not as
motion robust as methods that leverage multiple RGB chan-
nels. However, while methods using multiple camera channels
(e.g., ICA) and RGB recordings sometimes performed better
in presence of motion, our proposed AutoSparsePPG with the
NIR set up was the only method that performed consistently
well in all conditions—in presence of both lighting variations
(e.g., night and day) and moderate motion (such as that caused
by driving).

Third, we are releasing the first publicly available driving
dataset with simultaneous video and pulse oximeter record-
ings, both to allow for a fair comparison of future methods to
our work and to enable further studies of how different sources
of noise affect iPPG during driving.

While our proposed system achieves state-of-the-art perfor-
mance in estimating vital signs during driving, the proposed
system still struggles in presence of large motion. More im-
provements may be needed before the system can be deployed
in a real driver monitoring system.
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I. EYE SAFETY CALCULATIONS

To ensure that our NIR system is within the eye safety
standards, we conducted careful computations, according to
the OSRAM eye safety note [6].

A. Cornea safety
Cornea burn hazard is concerned with the total amount of

light per unit area reaching the eye at a given distance from the
light source. We conducted the computations at a distance of
3 inches as the worst-case scenario distance from the lights to
the face of the subject in the car. The maximum safe irradiance
for the cornea is 100 Wm�2 for an area of 1 m2. We convert
this limit by taking into account the surface area of the light
meter sensor. The diameter of the sensor was 9.5 mm and
the area of the sensor is approximately (0.5 ⇤ 9.5 mm)2 * ⇡ =
7⇤10�5 m2. Therefore, the maximum safe total irradiance that
can reach the pupil is 7 mW. We measured the total irradiance
of all the LEDs together at a distance of 3 inches from the
light meter sensor to be 2.38 mW, which is significantly below
the safety limit of 7 mW.

B. Retina safety
The retinal thermal hazard is additionally concerned with

how narrow the beam of the light is. For example, narrow-
beam lasers are more dangerous for the retina than broad-beam
LEDs.

We measure the maximum radiance that is safe for the retina
using the following equation:

LIR =
Ie ⇤R(�)

( l+w
2 )2 ⇤ # LEDs

. (1)

Here, Ie is the radiant intensity per solid angle in mW
sr�1. R(�) is a wavelength-dependent burn hazard weighing
function. For the 900–950 nm wavelength range it is 0.3–0.4,
so we use R(�) = 0.4 as the worst-case scenario. Here, l
and w are the length and width of the light source in mm,
respectively. Each of the LEDs used in our illuminators was
1 mm ⇥ 1 mm. The maximum radiant intensity is computed
for an individual LED, therefore, we divide the total measured
radiant intensity by the total number of the LEDs used (4 in
each illuminator).

To compute the solid angle, given the area of our light meter
sensor (A) and the distance between the light source and the
light meter (d), we use the following equation:

⌦ =
A

d2
=

(7 ⇤ 10�5 m2)

0.076 m
The radiant intensity Ie is 2.38 mW

0.012 sr = 198.33 mW sr�1,
where 2.38 mW is the total power of the LEDs. Therefore,
the maximum radiant intensity becomes:

LIR =
198.33mW sr�1 ⇤ 0.4

( 1+1
2 )2 ⇤ 4

= 19.83 mW mm�2 sr�2 (2)

which is significantly below the recommended retina safety
limit of 545.5 mW mm�2 sr�2.

II. COMPARED ALGORITHMS

We now provide implementation details of the state-of-the-
art algorithms that we evaluated on our MR-NIRP Car Dataset
to compare against our proposed AutoSparsePPG method.

1) SparsePPG [1] - algorithm using robust principal com-
ponents analysis (RPCA), followed by sparse spectrum
estimation similar to AutoSparsePPG, but using fixed
optimization parameters set a priori. We performed leave-
one-subject-out cross validation to find the best opti-
mization parameters for SparsePPG on MR-NIRP Indoor
dataset: � = 0.5 and r = 25 rank for RPCA if 48
mean regions were used or r = 3 when 5 median
regions were used, � = 0.1 and µ = 0.2 for sparse
spectrum estimation, ↵ = 0.8 for time window fusion.
We used the same parameters for the MR-NIRP Car
dataset because it was very expensive to search over the
parameter space (one of the main shortcomings of the
SparsePPG method, which is no longer a problem with
our proposed AutoSparsePPG method).

2) DistancePPG [2] - algorithm using a weighted average
of different facial regions, where the weights are set
based on the SNR of the signals computed as the ratio of
the area under the curve of the power spectrum around
the maximum frequency peak to the area under the rest
of the spectrum. Regions that have SNR below 0.2,
or absolute amplitude above a fixed threshold, or the
difference in estimated heart rate between the current and
the previous time window larger than 12 bpm are removed
from each time window before averaging. We used the
amplitude threshold set as four times the mean amplitude
of normalized iPPG signals for all videos in each dataset,
computed separately in NIR and RGB.
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TABLE I
HR ESTIMATION ERRORS ON THE MR-NIRP CAR DATASET (ADDITIONAL HEAD MOTION)

Driving Day Driving Night Driving All Garage
NIR RGB NIR RGB NIR RGB NIR RGB

PTE6 [%] (higher is better)
AutoSparsePPG 24.5 ± 4.2 26.1 ± 4.0 16.7 ± 7.0 10.4 ± 2.7 22.9 ± 3.6 24.2 ± 3.8 21.6 ± 2.9 50.0 ± 4.7
SparsePPG [1] 23.6 ± 5.5 26.6 ± 5.9 8.7 ± 6.3 5.1 ± 2.5 20.5 ± 4.7 24.1 ± 5.5 26.4 ± 4.6 30.0 ± 6.9
DistancePPG [2] 24.5 ± 3.9 17.5 ± 3.8 14.9 ± 3.3 9.0 ± 1.6 22.5 ± 3.2 16.5 ± 3.4 24.1 ± 2.9 41.8 ± 5.6
ICA [3] N/A 45.7 ± 5.0 N/A 12.4 ± 7.5 N/A 41.8 ± 5.2 N/A 60.8 ± 5.7
CHROM [4] N/A 50.6 ± 3.8 N/A 29.7 ± 11.9 N/A 48.1 ± 3.8 N/A 64.1 ± 5.6
POS [5] N/A 22.2 ± 2.3 N/A 12.0 ± 1.6 N/A 21.0 ± 2.2 N/A 26.7 ± 3.2

RMSE [bpm] (lower is better)
AutoSparsePPG > 15 BPM > 15 BPM > 15 BPM > 15 BPM > 15 BPM > 15 BPM > 15 BPM 14.8 ± 1.5
SparsePPG [1] > 15 BPM > 15 BPM > 15 BPM > 15 BPM > 15 BPM > 15 BPM > 15 BPM > 15 BPM
DistancePPG [2] > 15 BPM > 15 BPM > 15 BPM > 15 BPM > 15 BPM > 15 BPM > 15 BPM 14.4 ± 2.2
ICA [3] N/A 12.8 ± 1.7 N/A > 15 BPM N/A 13.7 ± 1.7 N/A 9.8 ± 1.8
CHROM [4] N/A 13.0 ± 1.2 N/A > 15 BPM N/A 13.6 ± 1.2 N/A 10.0 ± 1.9
POS [5] N/A > 15 BPM N/A > 15 BPM N/A > 15 BPM N/A > 15 BPM

TABLE II
HR ESTIMATION ERRORS ON THE MR-NIRP CAR DATASET (MINIMAL HEAD MOTION) WITH AUTOSPARSEPPG VARIATIONS

PTE6 [%] (higher is better) RMSE [bpm] (lower is better)
Driving Garage Driving Garage

NIR RGB NIR RGB NIR RGB NIR RGB
AutoSparsePPG median ROIs + OP 61.0 ± 5.2 31.5 ± 3.1 81.9 ± 5.9 91.1 ± 1.9 11.6 ± 1.8 > 15 BPM 5.1 ± 1.4 2.9 ± 0.4
AutoSparsePPG median ROIs + OP + RPCA 61.5 ± 5.0 30.9 ± 2.9 80.7 ± 5.8 89.9 ± 2.2 11.7 ± 1.7 > 15 BPM 5.8 ± 1.4 3.1 ± 0.5
AutoSparsePPG median ROIs + RPCA 32.9 ± 3.5 27.7 ± 3.4 70.1 ± 5.6 90.3 ± 2.8 > 15 BPM > 15 BPM 7.3 ± 1.38 3.3 ± 0.7
SparsePPG median ROIs + RPCA [1] 11.5 ± 2.9 15.8 ± 2.54 14.4 ± 5.4 70.8 ± 7.3 > 15 BPM > 15 BPM > 15 BPM > 15 BPM
AutoSparsePPG mean ROIs + OP + RPCA 53.9 ± 4.4 26.4 ± 2.9 72.7 ± 5.7 81.0 ± 5.2 > 15 BPM > 15 BPM 8.2 ± 1.6 7.0 ± 2.2
SparsePPG mean ROIs + RPCA [1] 17.4 ± 3.4 21.5 ± 3.2 35.6 ± 6.8 53.6 ± 9.8 > 15 BPM > 15 > 15 BPM > 15 BPM

3) ICA [3] - independent component analysis applied to
the spatially averaged R, G, B channels, followed by
detrending of the signals.

4) CHROM [4] - chrominance features computed from the
spatially averaged R, G, B channels.

5) POS [5] - projection of iPPG signals computed from the
spatially averaged R, G, B channels onto the plane in
color space that is orthogonal to the skin tone.

The open-source implementations of [3], [4], and [5] can
be found in [7].

III. ADDITIONAL RESULTS DURING DRIVING

There were often large and sudden movements of the head
caused by the motion of the car, even when the participant was
trying to sit still (the minimal head motion condition). This
large motion sometimes makes it very challenging to recover
the iPPG signal, especially in single-channel NIR. When this
involuntary head motion due to driving was combined with
head motion caused by the subject looking around and talking
(the additional head motion condition), the total amount
of head motion was quite large. Consequently, all methods
performed comparably poorly with additional head motion,
even in RGB, with PTE6 < 30% for most methods. See
Table I.

IV. AUTOSPARSEPPG VARIATIONS

We compared the performance of SparsePPG [1] and Au-
toSparsePPG under different pre-processing conditions and
different denoising methods in Table II. We compared the per-
formance using iPPG matrices computed with 48 mean facial

regions as used in [1] and five median regions to test how much
robustness is gained by using the median regions. Using the
five larger median regions consistently performed better than
using the 48 smaller mean regions. In order to evaluate how
much improvement was offered by denoising with orthogonal
projections (OP), we also compared the performance of our
proposed method AutoSparsePPG with OP to AutoSparsePPG
with RPCA instead of OP, and AutoSparsePPG with using
RPCA and OP jointly, each followed by sparse spectrum
estimation. We found that further denoising the iPPG signals
with RPCA before applying sparse spectrum estimation often
completely removed the iPPG signal when OP was also used.
To make sure that most of the signal was not removed with
RPCA, we only applied RPCA when the signal norm was
above a fixed threshold of 10�3.

We found that using 5 median regions consistently per-
formed better than using 48 mean regions in the presence
and the absence of motion. Moreover, we found that Au-
toSparsePPG with OP and RPCA used jointly performs sim-
ilarly to AutoSparsePPG with OP without RPCA. Therefore,
we conclude that applying RPCA is not worth the additional
computational complexity, and high accuracy can be achieved
with only OP.

V. HARDWARE VARIATIONS

We now present two hardware additions that we tested
to further reduce the ambient light variations during driving.
First, we compared using bandpass filters with different pass-
band wavelengths to account for blueshift effects. Second, we
used “dark frame subtraction” to further reduce ambient light
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TABLE III
HR ESTIMATION ERRORS ON THE MR-NIRP CAR DATASET (MINIMAL

HEAD MOTION) WITH AUTOSPARSEPPG IN DIFFERENT HARDWARE
SETTINGS.

Driving Garage
PTE6
(%)

RMSE
(bpm)

PTE6
(%)

RMSE
(bpm)

940 ± 5 nm bright 61.0 ± 5.2 11.6 ± 1.8 81.9 ± 5.9 5.1 ± 1.4
940 ± 5 nm subtracted 38.6 ± 5.0 > 15 BPM 78.4 ± 5.3 7.2 ± 2.2
975 ± 25 nm bright 58.2 ± 5.3 > 15 BPM 76.0 ± 6.0 8.6 ± 2.3
975 ± 25 nm subtracted 47.3 ± 5.6 > 15 BPM 73.7 ± 6.4 9.7 ± 3.2

variations. However, these innovations did not yield significant
improvements in our performance over the original hardware
setup presented in [1].

A. Blueshift in optical filters

Optical filters, especially interference filters, are usually
designed for small angles of incidence. When the angle of in-
cidence of the incoming light is increased from zero, there is a
reduction in the path length difference between the transmitted
and the reflected beams, making the destructive interference of
the light waves incident on the filter less effective. This results
in a shift towards shorter transmitted wavelengths, referred
to as blueshift. The larger the angle of incidence, the larger
the blueshift effect: � = �0

q
1� (sin( ✓n

2
)), where � is the

transmitted wavelength, �0 is the incident light wavelength, ✓
is the angle of incidence, and n is the refractive index of the
filter [8]–[11].

In a car environment, it is difficult to control the angle
of incidence of the light reflecting off the face and reaching
the camera. We expect that the range of angles of incidence
with our car setup will be between 0–30 degrees. This could
potentially lead to blueshift and allow wavelengths shorter
than 930 nm to be transmitted, making the 940 nm bandpass
filter inefficient at blocking the ambient light. We analyzed
how much the blueshift might affect our measurements by
recording the sunlight spectrum with a bandpass filter placed
in front of a spectrometer (Ocean Optics USB2000+) and
gradually increasing the angle of the filter with respect to the
spectrometer sensor. As shown in Fig. 1, changing the angle
of the filter by 20 degrees or more shifted the transmitted
wavelength by as much as 30 nm. Therefore, instead of
transmitting light within the expected narrow range of 935–
945 nm as expected, we are instead transmitting light closer
to 910–920 nm, which is no longer ideal for reducing the
sunlight effects. To account for these blueshift effects and to
ensure we can block the light in the < 930 nm range, we
repeated the spectrometer measurements and video recordings
of all subjects with a 975 nm bandpass filter. We used a wider
bandwidth of 50 nm on the 975 nm filter to allow more light,
to improve the iPPG SNR which decreases with increasing
wavelength in NIR. The 975 nm filter could block the ambient
sunlight better at larger angles of incidence. However, we
found that the 975 ± 25 nm filter did not provide improved
performance over the 940±5 nm filter, as shown in Table III,
suggesting that if blueshift was present, its effects on the
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Fig. 1. Spectrometer measurements of blueshift effects with 940 nm and 975
nm filters with varying angles of incidence.

quality of iPPG signals in the presence of varying sunlight
were minimal.

B. Dark frame subtraction
Even with a narrow bandpass filter on the camera, there

may be remaining outside light variations on the face when the
sunlight is very strong. To further reduce these light variations,
we used an approach referred to as ”dark frame subtraction,”
often used for reducing noise in astronomy imaging [12]. The
camera frame capture is synchronized with the light source,
such that only every other frame is illuminated by the LEDs
(“bright frames”). The remaining camera frames are captured
when the LEDs are turned off (“dark frames”) and are only
illuminated by the ambient light. To reduce the ambient light,
the dark frames are subtracted from the adjacent bright frames.
We recorded NIR images at 60 frames per second (fps),
however, if we use only the dark-frame-subtracted frames or
only the bright frames, the recordings are effectively at 30
fps. An example of reducing ambient light with dark frame
subtraction is illustrated in Fig. 2. Notice that in the subtracted
frame, the face mostly illuminated by the LEDs is visible
but the background region illuminated by the ambient light
is removed. Despite reducing the ambient light variations, we
found that dark frame subtraction did not improve the HR
estimation results, as shown in Table III. In the table, “bright”
refers to using only the bright frames (equivalent to using
constant NIR illumination while recording at 30 fps), while
“subtracted” refers to using the 30 fps video obtained by
subtracting each dark frame from the adjacent bright frame.

From the results, it is clear that rather than improving the
algorithm’s performance, using dark frame subtraction did not
help, and it actually reduced the performance significantly
in the driving condition. We now discuss why we believe
dark frame subtraction did not help. Dark frame subtraction
is predicated on the assumption that the ambient light is
approximately constant in the 1/60 second between each bright
frame and the adjacent dark frame. When driving outdoors,
this assumption does not hold, because the ambient lighting
(e.g., lighting on the face when driving through the shadow
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- +
bright frame dark frame subtracted frame

Fig. 2. Illustration of dark frame subtraction: “bright” frames illuminated
with the NIR LEDs are subtracted from “dark frames” captured when the
NIR LEDs were turned off. A large portion of the ambient light is reduced
with dark frame subtraction, as shown inside the red region.

of tree branches or driving past a streetlamp) often changes
quite rapidly.
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