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Abstract—We propose a model predictive control (MPC)
policy for simultaneous station keeping, attitude control, and
momentum management of a low-thrust nadir-pointing geosta-
tionary satellite equipped with reaction wheels and on-off electric
thrusters mounted on boom assemblies. Attitude control is
performed using an inner-loop SO(3)-based control law with the
reaction wheels, while the outer-loop MPC policy maintains the
satellite within a narrow station keeping window and performs
momentum management using electric thrusters. For reducing
propellant consumption, our MPC uses two different prediction
horizons: a short horizon for the states associated with the orbit’s
inclination and a longer horizon for all other states. Furthermore,
to handle the on-off nature of the thruster while retaining low
computational burden, we develop a strategy for quantizing the
continuous thrust command, which also allows for trading off
the number thrust pulses and fuel consumption. We validate
the controller in a closed-loop simulation with the high-precision
orbit propagation provided by the Systems Tool Kit (STK), and
assess the robustness to model uncertainty and measurement
noise.

I. INTRODUCTION

Satellites in geostationary Earth orbit (GEO) have tradition-
ally used chemical propulsion for station keeping maneuvers.
Due to long GEO satellite lifetimes of twelve to fifteen years,
electric propulsion [1–3], a more fuel efficient alternative to
chemical propulsion, has recently become widely deployed
on modern satellites [4]. Electric thrusters have significantly
higher specific impulse than conventional chemical thrusters,
meaning that they generate force more efficiently with respect
to propellant mass, and can therefore be used to increase
spacecraft longevity, and/or increase payloads, and/or decrease
the cost of orbital insertion [5]. Conversely, high-efficiency
electric thrusters produce only a fraction of the thrust of
chemical propulsion systems. For station keeping applications
in GEO, the magnitude of the thrust capabilities of the electric
propulsion system are approximately the same magnitude
as the perturbation forces acting on the satellite [6]. Thus,
near-continuous operation of the electric propulsion system
is required to counteract orbital perturbation-induced drift,
posing new control challenges in their application. Whereas
conventional chemical thrusters may be fired open-loop once
every two weeks to compensate for GEO satellite drift [7], the
near-continuous operation of electric thrusters suggests the use
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of closed-loop feedback control. As a result, a number of novel
autonomous feedback control strategies for electric propulsion
have been proposed in recent years [8–20].

In addition to station keeping, the lower thrust magnitude of
electric propulsion systems enables their dual use in unloading
momentum stored in a satellite’s reaction wheels. Utilizing the
same set of thrusters for both station keeping and momentum
management eliminates the need for reaction control system
thrusters, simplifying the propulsion design and reducing
satellite weight. When the same set of thrusters are used for
both station keeping and momentum management, they must
be able to impart both forces and torques on the satellite.
However, in many propulsion designs there are not enough
thrusters to generate either pure forces or pure torques. For
example, when considering a realistic thruster arrangement
with gimbaled thrusters located on the satellite’s anti-nadir
face [21–23], any thruster torque simultaneously creates a
net body force. This effect couples the typically decoupled
orbital and attitude dynamics. As with station keeping, conven-
tional momentum unloading is often a manually (open-loop)
controlled operation [24–26]. However, with the additional
difficulties associated with the dynamic coupling induced by
the thrusters and the low thrust magnitude of the propulsion
system, manual operation of both momentum unloading and
station keeping, e.g. [27–31], may no longer be appropriate.,
and advanced control approaches may be necessary.

Model predictive control (MPC) is a receding horizon
control strategy that exploits a prediction model of the system
dynamics in order to attain a trajectory that minimizes a cost
function, possibly accounting for several control objectives,
subject to both state and control constraints over a finite future
prediction horizon [32]. MPC is well suited for simultaneous
station keeping and momentum management as it allows for
fuel-efficiency maximization, has the ability to meet tight SK
window and attitude error requirements, as well as stringent
constraints on available thrust, and has the capacity to coor-
dinate between coupled orbital and attitude control.

In [20] the authors have investigated the potential of using
MPC for station-keeping, attitude control, and momentum
management of electric propulsion GEO satellites. The MPC
prediction model developed is based on the linearization of
the satellite dynamics around their nominal operating con-
dition. Euler angles are used to represent the attitude of
the satellite relative to the nadir-pointing local-vertical, local-
horizontal (LVLH) frame, and the Clohessy-Wiltshire Hill
(CWH) equations are used for the satellite’s position and
velocity relative to a target location in GEO. The MPC policy
enforces constraints relating to the size of the SK window, the
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maximum allowed satellite attitude error, and the limits on
thrust magnitude. To handle perturbation forces, a predicted
disturbance sequence is incorporated into the MPC model
based on analytic expressions for such forces, which increases
the fuel efficiency.

While obtaining positive results in terms of control per-
formance and propellant usage, [20] requires the use of 12
propulsion modulating thrusters that result in high cost and
difficult implementation and packaging. Thus, here we develop
a control architecture for a realistic thruster configuration.
Specifically, we consider only 4 thrusters placed on the anti-
nadir face of the satellite, which is usually free of equipment
and solar panels. The thrusters are gimbaled in order to be able
to produce pure forces, and forces and torques, as necessary
for both station keeping and momentum management. Through
several preliminary investigations, see, e.g., [33], [34] we
selected a configuration where the thrusters are mounted on
a boom assembly similar to [35]. As compared to placing
thrusters directly on the satellite’s anti-nadir face [33], this
configuration achieves larger torque-free angles, i.e., the angles
to thrust through the satellite’s center of mass, which limits
the thrust in the orbit radial direction that is not useful for
control. Furthermore, the boom configuration achieves a wider
thruster range of motion without risk of plume impingement on
North-South mounted solar panels. As “North-South” Station-
Keeping (NSSK), i.e. thrusting in the out-of-plane direction,
is dominant in fuel consumption, these two are expected to
result in improved fuel efficiency.

On the other hand the location, the number, and the on-
off nature of the thrusters provide significant challenges for
the control policy that require several changes from the one
in [20]. First of all, due to the difference in the time scales
between attitude control and station keeping and momentum
management, to robustly achieve all the specifications we
implement an inner-outer control architecture where an inner-
loop SO(3)-based controller regulates the attitude, and the
outer-loop MPC controls the orbit and the momentum stored
in the reaction wheels, also exploiting a closed-loop model
of the attitude dynamics. Second, for reducing delta-v, a fuel
efficiency measure that is independent of satellite mass and
thruster efficiency, we propose a split-horizon MPC policy. In
fact, while [5] claims that for a positional accuracy of 0.05–
0.1 degrees, in the ideal case 41–51 m/s/year will be needed
for NSSK depending on the epoch, the single-horizon MPC
policy in [20] restricted to only 4 nadir-mounted thrusters uses
about 59 m/s/year [34]. As it will be discussed later, the North-
South delta-v decreases with decreasing horizon, and hence the
split-horizon MPC policy uses a shorter prediction horizon for
the states associated with the orbit’s inclination. This result in
a significant improvement of delta-v, close to the ideal case
reported in [5]. Finally, we handle the on-off nature of the
thrusters by developing a quantization scheme that also allows
for calibrating the trade-off between and the thruster cycles,
and hence the useful life of the thrusters, and the delta-v.

Even if some advanced electric propulsion systems can
throttle thrust [36], many electric propulsion systems only
operate at full magnitude, that is, by pulsing on and off,
where here a pulse is to be interpreted as an on-off cycle

of the thruster of any duration, i.e., not an impulse. The
quantization can be incorporated directly within the control
policy [9], which however results in solving mixed-integer lin-
ear programs (MILPs), which are computationally expensive
and difficult to implement in real time, especially onboard of
the satellite. Even if executed on ground stations, MILP solvers
with good performance usually have fairly complicated code,
and hence are hard and time consuming to certify. A more
accessible approach is to compute continuous thrust com-
mands and implement a quantization scheme to transform the
continuous thrust commands into on-off thrust commands [14–
16], [34] with limited impact on the system performance.
Although PWM quantized control policies are capable of
yielding very similar delta-v to non-quantized cases, they
require a large number of on-off thruster pulses, see, e.g., [14–
16], [34]. These approaches often achieve up to 30 pulses
per electric thruster per orbit, which results in approximately
160, 000 on-off pulses per thruster over a typical 15 year
satellite lifespan and that is an order of magnitude more than
what allowed by current technology [37].

Thus, for quantizing the command signal with a number
of cycles that is reasonable for the spacecraft life cycle, we
propose a single-pulse quantization strategy with a feedback
period that may be larger than the controller time step. The
single on-off thrust pulse is selected by solving for the on and
off thrust switching times that minimize the predicted state
error induced by quantization, hence minimizing the deviation
of the quantized policy from the non-quantized MPC policy.

The control architecture proposed in this paper is validated
using Systems Tool Kit (STK)/Astrogatorr, a high-fidelity
orbit propagator in order to validate both our nonlinear model
and the applicability of our MPC design to real-world imple-
mentation. In our simulations, we close the loop between the
MPC policy and the STK/Astrogator propagator where, during
each sampling period, the MPC policy computes the control
commands and sends them to the STK propagator, which uses
them to update the orbital position and returns the new satellite
conditions to the controller for use during the next sampling
period. In parallel, the attitude of the satellite is simulated by
the continuous nonlinear differential equations for the reaction
wheels torques commanded by the inner-loop controller and
gimbaled thrusters torques commanded by MPC.

Following the presentation of some preliminaries and no-
tation in this section, the paper proceeds1 in Section II with
a description of the satellite model considered in this paper.
Section III describes the proposed MPC formulation, including
the form of the inner-loop attitude controller, the closed-
loop linearized satellite model, the split-horizon MPC policy,
and the single-pulse thruster quantization scheme. Results of
simulations performed with STK are presented in Section IV

1The propulsion and control architecture developed in this paper evolved
through several preliminary results [33], [34], [38], [39]. This paper provides
the final implementation that integrates all the effective elements discovered
in such preliminary investigations, while providing a much more detailed
discussion on the split-horizon MPC policy and the single-pulse quantization
scheme, validates the system in simulations with the high-precision orbit
propagation provided by STK, analyzes the effect of variations in several
parameters of the quantization scheme and assess in simulation the robustness
of the MPC policy to model uncertainties and measurement noise.
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and simulations assessing the robustness of the MPC policy to
different types of disturbances and error sources are performed
in Section V-B. Concluding remarks are given in Section VI.

A. Preliminaries and Notation

The following notation is used throughout the paper. A
reference frame Fa is defined by a set of three orthonormal
dextral basis vectors, { a−→

1, a−→
2, a−→

3}. An arbitrary physi-
cal vector, denoted as v−→, is resolved in Fa as va, where
vTa =

[
va1 va2 va3

]
and v−→ = va1 a−→

1 + va2 a−→
2 + va3 a−→

3.
The mapping between a physical vector resolved in different
reference frames is given by the direction cosine matrix
(DCM) Cba ∈ SO(3), where SO(3) = {C ∈ R3×3 |CTC =
1, det(C) = +1} and 1 is the identity matrix. For example,
vb = Cbava, where vb is v−→ resolved in Fb and Cba represents
the attitude of Fb relative to Fa. Principle rotations about
the a−→

i axis by an angle α are denoted as Cba = Ci(α).
The cross, uncross, and anti-symmetric projection operators
used throughout this paper are defined as follows. The cross
operator, (·)× : R3 → so(3), is defined as

a× = −a×
T

=

 0 −a3 a2

a3 0 −a1

−a2 a1 0

 ,
where aT =

[
a1 a2 a3

]
and so(3) = {S ∈ R3×3 |S+ST =

0}. The uncross operator, (·)v : so(3) → R3, is defined as
Av =

[
a1 a2 a3

]T
, where A = a×. The anti-symmetric

projection operator Pa(·) : R3×3 → so(3), is given by
Pa(U) = 1

2

(
U− UT

)
, for all U ∈ R3×3. The physical vector

describing the position of a point p relative to a point q is given
by r−→

pq . Similarly, the angular velocity of Fb relative to Fa
is given by ω−→

ba. In Section V-B, quantities that are uncertain
or feature measurement noise are denoted with a tilde, (e.g.,
ṽa is a noisy measurement of va).

II. PROBLEM STATEMENT AND SPACECRAFT MODEL

Consider the satellite shown in Fig. 2, which consists of a
rigid bus equipped with three axisymmetric reaction wheels
and four electric thrusters mounted on gimbaled booms. The
satellite is nominally in a circular GEO orbit.

A. Control Objectives

The control objectives considered in this work are to 1)
minimize fuel consumption and 2) reduce the number of on-
off thruster pulses, while ensuring that

a) the satellite is maintained within the prescribed station-
keeping window,

b) a nadir-pointing attitude is maintained within a prescribed
tolerance,

c) angular momentum stored in the reaction wheels is un-
loaded, and

d) the limitations of the thrusters (e.g., thrust magnitude,
boom gimbal angle limits, power limitations) are enforced.

B. Satellite Model

The Earth-centered inertial (ECI) frame is defined as Fg .
The reference frame Fp is aligned with the spacecraft bus,
where nominally p−→

1 points towards the Earth and p−→
2 points

North. The angular velocity of Fp relative to Fg is ω−→
pg and

the DCM describing the attitude of the spacecraft (i.e., Fp)
relative to Fg is Cpg . The center of mass of the spacecraft is
denoted by point c in Fig. 2(a). The position of the spacecraft
center of mass relative to a point w at the center of the Earth
is given by r−→

cw. The equations of motion of the satellite are

r̈cwg = −µ rcwg∥∥rcwg
∥∥3 + apg +

1

mB
CT
pgfthrust

p , (1a)

JBcp ω̇
pg
p = −ωpg×p

(
JBcp ω

pg
p + Jsν

)
− Jsη + τ pp + τ thrust

p ,
(1b)

Ċpg = −ωpg×p Cpg, (1c)

ν̇ = η, (1d)

where mB is the mass of the spacecraft, JBcp is the moment
of inertia of the spacecraft relative to point c and resolved in
Fp, νT =

[
ν1 ν2 ν3

]
are the reaction wheel angular rates,

η is the angular acceleration of the reaction wheels, Js is the
moment of inertia of the reaction wheel array, fthrust

p is the force
produced by the thrusters, τ thrust

p is the torque produced by the
thrusters. The term apg represents the external perturbations on
the satellite. For satellites in GEO, the main perturbations are
solar and lunar gravitational attraction, which induce a drift
in orbital inclination; solar radiation pressure (SRP), which
affects orbit eccentricity; and the anisotropic geopotential, that
is, Earth’s non-spherical gravitational field, which induces in-
orbital-plane longitudinal drift [31],[40, Ch. 7]. Analytic ex-
pressions for these are given in [20, Eq. (10)]. Figure 1 shows
an annual time history of the disturbance force components
for a 4000kg satellite in GEO. The term τ pp represents the
SRP perturbation torque, which assumes total absorption, and
is given by [41, p. 229].

Fig. 1. Annual disturbance force components

The thruster configuration is illustrated in Fig. 2, where
four electric thrusters are mounted on two boom-thruster
assemblies, one of which nominally points North, while the
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Fig. 2. Schematic of (a) the spacecraft including three axisymmetric reaction
wheels and four electric thrusters, and (b) the North-facing boom-thruster
assembly.

other nominally points South. A detailed view of the North-
facing boom-thruster assembly is provided in Fig. 2(b). Each
assembly has two fixed gimbal angles, ᾱa and β̄a, a ∈ {n, s},
as well as an actuated gimbal angle γa, a ∈ {n, s}. The
subscripts n and s refer to the gimbal angles associated with
the North-facing assembly and the South-facing assembly,
respectively. The position of the actuated gimbal of thruster i
relative to the spacecraft center of mass is r−→

qic. The thrusters
are canted by fixed angles δi, i = 1, 2, 3, 4, such that for
a nominal gimbal angle γ̄a, a ∈ {n, s}, each thruster fires
through the center of mass of the spacecraft. The force vector
produced by thruster i is f−→

i, and can be resolved in Fp as

fip = −f iCT
ipC2(γa)13, (2)

where f i =
∣∣∣ f−→i

∣∣∣ is the thrust magnitude, 13 =
[
0 0 1

]T
,

Cip = CiaCap, Cia = C1(δi)C2(β̄i)C3(ᾱa), Cnp = C3(π),
and Csp = C1(π)C3(π). The torque generated by the thruster
on the spacecraft is given by

τ ip = rqic
×

p fip. (3)

The net force and torque applied to the spacecraft by the four
thrusters can be written as

fthrust
p =

4∑
i=1

Bfi ui, (4)

and

τ thrust
p =

4∑
i=1

rqic
×

p Bτi ui, (5)

δrh3

δrh2

2r̄
ta
n
(λ

la
t
)

2r̄ tan(λlong)

h
−!

2

h
−!

3

c

Fig. 3. Illustration of the station keeping window described by
−r̄ tan(λlong) ≤ δrh2 ≤ r̄ tan(λlong) and −r̄ tan(λlat) ≤ δrh3 ≤
r̄ tan(λlat), with the view looking in the − h−→

1 direction towards Earth. The
point c denotes the spacecraft’s center of mass.

with uT
i =

[
sin(γa)f i cos(γa)f i

]
and constant matrices

Bfi = CT
ip

−1 0
0 0
0 −1

 , Bτi = rqic
×

p Bfi .

C. Station Keeping Window

For the purposes of station keeping and for linearizing the
spacecraft’s equations of motion, it is useful to express the
spacecraft’s position relative to the desired nominal circular
GEO orbit. To this end, Hill’s frame, denoted by Fh, is defined
by basis vectors h−→

1 aligned with the orbital radius and h−→
3

orthogonal to the orbital plane. The position of the spacecraft
center of mass relative to a point w at the center of the Earth,
resolved in Fh is given by rcwh . Defining the satellite’s nominal
position in a circular orbit resolved in Fg as r̄g , yields the
position error of the spacecraft

δrh =
[
δrh1 δrh2 δrh3

]T
= rcwh − Chg r̄g. (6)

The station keeping window is given by [7, Ch. 5]

−r̄ tan(λlong) ≤ δrh2 ≤ r̄ tan(λlong),
−r̄ tan(λlat) ≤ δrh3 ≤ r̄ tan(λlat),

(7)

where r̄ = ‖r̄g‖, and λlong and λlat are the maximum deviations
in longitude and latitude, respectively, that define the station
keeping window. An illustration of the station keeping window
is shown in Fig. 3. Although no single component of δrh
exactly captures the inclination i of the satellite’s orbit relative
to the desired geostationary orbit, for small deviations from the
center of the station keeping window, the coordinate δrh3 is
a good surrogate for the inclination. The inclination of the
orbit can be approximated as sin(i) ≈ δrh3/ ‖δrh‖. For small
inclination angles, which is the case here since the station
keeping window is small compared to the geostationary orbit
radius, this becomes i ≈ δrh3/ ‖δrh‖. This approximation
is relevant in the split-horizon MPC policy presented in
Section III-D, where the states δrcwh3 and δṙcwh3 use a different
prediction horizon than the rest of the system states.

III. MPC FORMULATION

Next, we describe the control architecture that includes
an inner-loop controller commanding the reaction wheels to
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Orbital Dynamics

Simulated

Spacecraft Dynamics

Fig. 4. Block diagram of the proposed control architecture, including the simulation model used in Section IV for assessing the closed-loop performance.

control the attitude, a split horizon MPC policy that com-
mands the thrusters to perform station keeping and momentum
management based on the prediction model of the satellite in
closed-loop with the inner-loop controller, and a quantization
scheme that controls the on-off behavior of the thrusters based
on the commands issued by MPC and the limitations of the
propulsion system.

A. Inner-Loop Attitude Controller

The reaction wheels are directly actuated by the spacecraft
attitude controller, which is seen as an inner-loop controller
by the MPC policy. The disturbance torque is modeled as
described by the LTI system

ẋdist = Adistxdist,
τ pp = Cdistxdist.

(8)

and estimated by the observer

˙̂xdist = Adistx̂dist + Bdistudist, τ̂ pp = Cdistx̂dist,

udist = ωpdp + K1S, S = −Pa (Cpd)
v
,

(9)

where τ̂ pp is the estimate of τ pp , K1 = KT
1 > 0, Bdist =

P−1
distC

T
dist is designed such that (Adist,Bdist,Cdist) is positive

real, and Pdist = PT
dist > 0 satisfies the Lyapunov equation

AT
distPdist + PdistAdist = −Qdist, Qdist = QT

dist ≥ 0. The attitude
controller is [42]

µ1 = ωpg
×

p

(
JBcp ω

pg
p + Jsν

)
− JBcp

(
K1Ṡ + ωpd×p ωpgp

)
,

µ2 = −τ̂ pp , (10)

µ3 = −Kν

(
ωpdp + K1S

)
−KpS,

where Kν = KT
ν > 0, Kp = KT

p > 0, and the attitude control
input is η = −J−1

s (µ1 + µ2 + µ3). See Figure 4 for a block
diagram of the control architecture and how the inner-loop
controller interfaces with the spacecraft dynamics and other
components of the MPC policy.

B. Closed-Loop Linearized Model

The MPC policy prediction model is obtained by lineariz-
ing the spacecraft dynamics in closed-loop with the attitude
controller about a nominal circular orbit with mean motion n,
nadir-pointing attitude, zero reaction wheel speeds, and zero

observer states. The closed-loop linearized equations of motion
are

δr̈h = −2ω̄×p δṙh −Ωδrh + aph +
1

mB
CT
dhfthrust

p ,

δθ̇ = −ω×0 δθ + δω,

δω̇ =
((

K1 − ω̄×p
)
ω̄×p + JBc

−1

p

(
Kνω̄

×
p −K

))
δθ

+
(
−K1 + ω̄×p − JBc

−1

p Kν

)
δω

− JBc
−1

p Cdistx̃dist + τ thrust
p ,

ν̇ = −J−1
s

(
JBcp

(
K1 − ω̄×p

)
ω̄×p + Kνω̄

×
p −K

)
δθ

−J−1
s

(
JBcp

(
−K1 + ω̄×p

)
−Kν + ω̄×p JBcp

−
(
JBcp ω̄p

)× )
δω − J−1

s ω̄
×
p Jsν + J−1

s Cdistx̃dist,

˙̃xdist = Adistx̃dist + Bdistδω + Bdist
(
K1 − ω̄×p

)
δθ,

(11)

where ω̄T
p =

[
0 0 n

]
, Cpd = CpgCT

dg is the attitude error
between Cpg and the desired nadir-pointing orientation Cdg ,
Cpg is parameterized by a 3 − 2 − 1 Euler angle sequence
with angles δθT =

[
δφ δθ δψ

]
, K = KνK1 + Kp, and

Ω = diag{−3n2, 0, n2}. The closed-loop linearized model is
written in state-space form as

ẋ = Ax + Bu + Bww, (12)

where xT =
[
δrT δṙT δθT δωT νT x̃Tdist

]
, uT =[

uT
1 uT

2 uT
3 uT

4

]
, and wT =

[
ap

T

h 0 0 0 0 0
]
. The

relationship between u and the terms fthrust
p and τ thrust

p is given
in (4) and (5). The discrete-time form of the closed-loop
linearized model (12) with time step ∆t is

xk+1 = Adxk + Bduk + Bw,dwk. (13)

Equation (13) is used along a prediction horizon k = 1, . . . , N .
During the prediction horizon, the disturbances wk, k =
1, . . . , N can be approximated as the disturbances associated
with the satellite at its desired position, since the satellite
will be kept very close to the desired position during correct
operation.

C. MPC Input and State Constraints

The magnitude of the force produced by each thruster must
satisfy

∥∥fip
∥∥

2
≤ fmax, where fmax is the maximum allowable
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thrust. To reduce the computational burden, the quadratic
constraint is conservatively approximated by linear constraint∥∥fip
∥∥
∞ ≤

fmax√
2

. Furthermore, the thrusters must fire away from
the spacecraft bus, which is enforced by the constraint fii ≤ 0.
Thus, we impose the input constraints

umin ≤ u ≤ umax, umax =
fmax√

2
[1 . . . 1]T, umin = 0. (14)

There is an additional physical constraint that the gimbal angle
γn must be identical for the pair of inputs u1 and u2 at any
time instant, since they share this angle. The same is true for γs
with the pair of inputs u3 and u4. Based on our preliminary
studies, this constraint is ignored in the MPC policy and is
addressed in the quantization scheme in Section III-E.

The prescribed station keeping window and the maximum
allowable attitude error are enforced as state constraints. Since
the closed-loop linearized orbital dynamics equation of motion
is given in Hill’s frame, the station keeping window constraint
is formulated as

δr̄min ≤ δr̄ ≤ δr̄max, δθmin ≤ δθ ≤ δθmax. (15)

where δr̄min = −δr̄max, δr̄max = [∞ r̄ tan(λlong) r̄ tan(λlat)]
T,

and δθmin = −δθmax.

D. Split-Horizon MPC Policy

The split-horizon MPC policy is

u(t) = κMPC(x(t)) = u∗0|t (16)

where u∗k|t, k = 0, . . . N2 − 1 are the optimal control inputs
computed by solving,

min
Ut

xT
N1|tP1xN1|t +

N1−1∑
k=0

(
xTk|tQxk|t + uT

k|tRuk|t
)

+ xTN2|tP2xN2|t +

N2−1∑
k=N1

(
xTk|tQ2xk|t + uT

k|tRuk|t
)

s.t. xk+1|t = Adxk|t + Bduk|t + Bw,dwk|t,
x0|t = x(t), wk|t = ŵt(t+ k),

xmin ≤ xk|t ≤ xmax, 0 ≤ k ≤ N1,

xmin,2 ≤ xk|t ≤ xmax,2, N1 < k ≤ N2,

umin ≤ uk|t ≤ umax, (17)

where N1 is the prediction horizon of the states δrcwh3 and
δṙcwh3 , N2 is the prediction horizon of the remaining states,
Ut = {u0|t, . . . ,uN2−1|t}, Q = QT ≥ 0 and R = RT > 0 are
constant state and control weighting matrices, and ŵi(j) is the
open-loop predicted disturbance column matrix at time j based
on data at time i. The matrix Q2 is the same as Q, except the
rows and columns associated with the states δrcwh3 and δṙcwh3

are set to zero. The matrices P1 and P2 are constructed from
the matrix P = PT > 0, which is the solution to the discrete-
time algebraic Riccati equation. The matrix P1 contains the
rows and columns of P associated with the states δrcwh3 and
δṙcwh3 and zeros the others, while P2 does the opposite, so that
P1 + P2 = P. This is possible since P is block-diagonal under
a coordinate transformation that reorders the states such that
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Fig. 5. Plots of annual ∆v with a point-mass satellite and a ±0.01◦ station
keeping window for varying (a) N1 = N2 and (b) N1 with N2 = 15 hours.

δrcwh3 and δṙcwh3 are at the end of the state column matrix. The
state constraints xmin and xmax are based on the station keeping
and attitude constraints. The bounds xmin,2, xmax,2 are identical
to xmin, xmax, but the out-of-plane bounds

δrTmin =
[
−∞ −r̄ tan(λlong) −∞

]
,

δrTmax =
[
∞ r̄ tan(λlong) ∞

]
,

are relaxed. The control input sequence is u(t + j) = u∗j|t,
j = 0, . . . , Nfb − 1, where U∗t is the minimizer of (17), and
Nfb is the number of time steps between control updates.

The development of a split-horizon MPC policy is motivated
by a study on the effect of the prediction horizon on the yearly
∆v required to keep a point-mass satellite equipped with 12
electric thrusters and orbital dynamics described by (1) within
a ±0.01◦ station keeping window. A plot of the yearly ∆v for
a non-split prediction horizon (N1 = N2) ranging from 5 hours
to 40 hours is shown in Fig. 5(a), where ∆t = 1 hour. The
total ∆v clearly increases with decreasing horizon, however,
it is observed that the North-South (N-S) component of ∆v
decreases with decreasing horizon. This decrease in N-S ∆v
is masked in the total ∆v by a larger increase in East-
West (E-W) ∆v with decreasing horizon. The split-horizon
MPC policy was developed to address this counterintuitive
behavior to retain the best performance in each component
of the station keeping problem. The plot of Fig. 5(b) is very
similar to the plot of Fig. 5(a), but only the prediction horizon
N1 is varied while N2 = 15 hours is held constant. This
plot shows that both the total ∆v and the N-S ∆v decrease
with decreasing N1 under 12 hours. The total ∆v and the
N-S ∆v also decrease with increasing N1 over 12 hours,
however such decrease is minimal unless N1 is larger than
several days. Indeed, the optimal ∆v performance could be
achieved by performing predictions using the full nonlinear
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model over an infinite horizon, but the resulting policy would
be too computationally demanding, especially for on-board
implementation. On the other hand, we can achieve suitable
performance with a short prediction horizon over the linear
dynamics (13) while remaining computationally feasible.

It is postulated that the decrease in ∆v observed for shorter
N1 is due to the choice of coordinates used to represent
the satellite’s orbital dynamics, which only provide for an
approximation of the orbital inclination. When the prediction
model has some inaccuracies, a longer prediction horizon,
which relies more on such model, may delay the control action
until the satellite approaches the edges of the station keeping
window, away from the orbital nodes, where propulsion is
less efficient. Instead, a shorter prediction horizon relies less
on the prediction model, yielding a more aggressive control
action when the satellite crosses the orbital nodes, which is
also more fuel efficient.

Using orbital elements for prediction would allow for di-
rectly representing the orbit’s inclination, at the price of solv-
ing nonlinear optimization problems, and hence increasing,
possibly excessively, the computational burden. Investigating
a choice of coordinates such that the inclination can be directly
represented without increasing excessively the computational
burden may be the subject of future research.

E. Thruster Quantization

The low-thrust electric thrusters considered for this space-
craft are operated with on-off pulses. The control input gen-
erated by the MPC policy described in Section III-D is a
continuous thrust value for each thruster, which cannot be
used directly with on-off thrusters, or in the propulsion system
assembly shown in Fig. 2, the latter due to not enforcing the
constraint on the joint angles γn, γs on the different booms.
As such, the control input must be quantized to on-off pulses
that satisfy the physical constraints of the thrusters and the
propulsion system assembly. In our initial investigation [34]
we developed a PWM quantization scheme with a fixed
frequency of five on-off pulses per time step with varying
pulse widths, such that the average thrust matched the constant
thrust of the MPC control input over each time step. The PWM
scheme works well, but leads to a large number of on-off
pulses, on the order of 30 pulses per thruster per orbit. Such
number of pulses results in more than 160, 000 pulses within
a 15 year lifetime of the satellite, which may be too much
for many existing electric propulsion thrusters [37]. Thus, to
reduce the number of on-off pulses, a single pulse quantization
scheme over a feedback period is proposed in this section.

As shown in Fig. 6, consider the quantization of a piece-
wise constant control input sequence, umpc, over a time step
beginning at time t0 and ending at time tf = t0 + Nfb∆t,
where Nfb ∈ Z+ is the number of discretization time steps in
a feedback period, and only a single pulse of magnitude fmax
is applied at the ith thruster starting at time t1,i and ending at
time t2,i, and t0 ≤ t1,i < t2,i ≤ tf . The thruster on and off
times are solved to minimize the predicted state error due to
quantization at the end of the feedback period.

t1 t2t0 tf

umax
umpc

uquant

Fig. 6. Single quantized on-off thrust pulse (uquant) over one feedback period
with three discrete time steps (Nfb = 3) for a given thruster.

The predicted states of the system at time tf based on the
quantized thrust inputs are given by

xquant(tf ) = eANfb∆tx(t0) +

4∑
i=1

eA(tf−t2,i)Bd,i(t1,i, t2,i)umax,i,

(18)

where

umax,i =

{
fmax

ūmpc,t0,i

‖ūmpc,j|t0,i‖ ‖ūmpc,t0,i‖ ≥ Nfbε

0 ‖ūmpc,t0,i‖ < Nfbε
,

ūmpc,t0,i =

Nfb−1∑
j=0

umpc,j|t0,i,

uT
mpc,j|t0 =

[
uT

mpc,j|t0,1 uT
mpc,j|t0,2 uT

mpc,j|t0,3 uT
mpc,j|t0,4

]
,

and ε > 0 is the tolerance below which the MPC input
is considered to be zero. The calculation of umax,i involves
averaging the MPC inputs of the ith thruster over the feedback
period, which gives a single gimbal angle for each thruster
within the feedback period.

The predicted states of the system evolution based on the
MPC inputs can be expressed as

xmpc(tf ) = eANfb∆tx(t0) +

∫ tf

t0

eA(tf−τ)Bumpc(τ)dτ

= eANfb∆tx(t0) + CNfb−1umpc,0:Nfb−1|t0 , (19)

where CNfb−1 =
[
ANfb−1

d Bd · · · AdBd Bd
]

is the controllability matrix, Ad = eA∆t is the
discrete-time A matrix calculated with time step ∆t,
Bd =

∫∆t

0
eA(∆t−τ)dτB is the discrete-time B matrix

calculated with time step ∆t, and uT
mpc,0:Nfb−1|t0 =[

uT
mpc,0|t0 · · · uT

mpc,Nfb−2|t0 uT
mpc,Nfb−1|t0

]
. The

error between the two predicted states at tf is given by

e = xmpc(tf )− xquant(tf )

= CNfb−1umpc,0:Nfb−1|t0 (20)

−
4∑
i=1

eA(tf−t2,i)Bd,i(t1,i, t2,i)umax,i.

The switching times for each thruster must satisfy t0 ≤ t1,i <
t2,i ≤ tf , i = 1, 2, 3, 4. Additionally, there is a requirement
that not more than one thruster on the North or South-facing
boom-thruster assembly should fire at any given time, which
is further motivated by the fact that these thrusters share the
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gimbal angle γa, a ∈ {n, s}, and hence their directions cannot
be independently controlled. This results in a constraint on
the switching times of the thrusters to enforce that they never
overlap. As the firing order of the thrusters may have an impact
on the predicted state error, different orders of thruster firings
are considered: 1 before 2 and 3 before 4 (Mode 1), as well
as 2 before 1 and 4 before 3 (Mode 2). Defining the design
variable

tT =
[
t1,1 t2,1 t1,2 t2,2 t1,3 t2,3 t1,4 t2,4

]
,

the thruster switching constraints can be written
as At,it ≤ bt,i, i = 1, 2, where bT

t,i =[
0 0 0 0 −t0 tf −t0 tf 0 0

]
,

At,i =

[
At

Āt,i

]
, At =


1 −1 0 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 0 1 −1

 ,
and the contents of Āt,i depend on the thruster-firing mode
considered. The matrix At and the first four rows of bt,i
ensure that t1,i ≤ t2,i, while Āt,i and the last six rows of
bt,i determine the thruster firing order. The contents of Āt,i
for Modes 1 and 2, respectively, are

Āt,1 =


−1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 1
0 1 −1 0 0 0 0 0
0 0 0 0 0 1 −1 0

 ,

Āt,2 =


0 0 −1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 1 0 0
−1 0 0 1 0 0 0 0
0 0 0 0 −1 0 0 1

 .
If no thrusters are on during the feedback period, then all

thrust commands are set to zero for the entire period and
no optimization problem is solved. Otherwise, the following
optimization problem is solved.

min
t1,i, t2,i, i=1,2,3,4

eTWe, subject to At,1t ≤ bt,1, (21)

where W = WT ≥ 0 is a weighting matrix. The same opti-
mization problem is then solved with the constraint At,2t ≤
bt,2 instead of At,1t ≤ bt,1. The solution that results in a
smaller cost function value is used as the optimal solution to
the quantization scheme.

The selection of W greatly influences the quantization
results, as it determines which predicted state errors to focus
on minimizing. In practice, it is observed that a suitable value
of W is one that scales the magnitudes of the states to be
roughly the same, thus providing equal importance to the error
in the different states.

IV. SIMULATION RESULTS

In this section, the MPC policy formulated in Section III is
implemented in simulation. A spacecraft orbiting the Earth in a

geostationary orbit is considered, with a mass of 4000 kg, and
reactions wheels each with a mass of 20 kg, a radius of 0.75 m,
and a thickness of 0.2 m. The nominal gimbal angles of the
boom-thruster assemblies are ᾱn = ᾱs = β̄n = β̄s = 0◦ and
γ̄n = γ̄s = 40.14◦. Further details of the physical parameters
relating to the boom-thruster assemblies can be found in [34].

The performance constraints considered in simulation in-
clude a maximum thruster magnitude of 0.1 N, a station
keeping window of ±0.05◦ in both latitude and longitude, and
a maximum allowable attitude error of ±0.02◦ in yaw, pitch,
and roll. Simulations are performed for 425 orbits beginning
at an epoch of Jan. 1, 2000, but only results from the last
365 orbits are presented and used for analysis, in an effort to
remove any transient behavior.

The MPC policy uses a split prediction horizon with N1 =
5 hours, N2 = 20 hours, a discretization time step of ∆t =
1 hour, a feedback period of Nfb = 1 time step, and weighting
matrices of Q = diag{Qr,Qṙ,Qθ,Qω,Qν ,Qx̃dist} and R =
Rthrust + Rtorque, where Qr = 10−9 · diag{0, 1, 1} 1/m2, Qṙ =
0 s2/m2, Qθ = 10−3 · 1 1/rad2, Qω = 10−3 · 1 s2/rad2, Qν =
10−2 · 1 s2/rad2, Qx̃dist = 0, Rthrust = 1010 1/N2, Rtorque =
1010 · LTL, where L = diag{Bτ1 ,Bτ2 ,Bτ3 ,Bτ4}. The inner-loop
attitude controller gains are K1 = 1 · 1 1/s, Kp = 20 · 1 N·m,
Kν = 500 · 1 N·m·s. The observer dynamics of the inner-loop
attitude controller are chosen as Adist = diag{Ādist, Ādist, Ādist}
and Cdist = diag{C̄dist, C̄dist, C̄dist}, where

Ādist =

[
−0.001 −ω2

d

1 −0.001

]
,

ωd = 2π rad/day, and C̄dist =
[
1 0

]
. The observer matrix

B̄dist is given by B̄dist = P−1
distC̄

T
dist, where Pdist = PT

dist ≥ 0
satisfies the Lyapunov equation ĀT

distPdist + PdistĀdist = −Qdist
with Qdist = 10−3 · 1.

Simulation of the orbital dynamics is preformed using
Systems Tool Kit (STK)/Astrogator, a high-fidelity orbit prop-
agator developed by Analytical Graphics, Inc., while the
attitude dynamics are simulated using the nonlinear model
in (1b), (1c), and (1d) in continuous time using a high precision
ODE integrator2. A block diagram of the simulation setup in
closed loop with the MPC policy is provided in Fig. 4.

A simulation is first performed with a non-quantized ver-
sion of the proposed MPC policy (i.e., the quantization of
Section III-E is omitted), which yields a ∆v of 64.9 m/s.
Because there is no constraint on the thrusters firing simultane-
ously, there are instances in simulation where different gimbal
angles are used for the two North or South facing thrusters,
which is physically unrealizable. This issue is resolved by the
quantization scheme proposed in Section III-E.

A second simulation is performed with the quantized MPC
policy of Section III with identical control parameters as
the previous simulation and the weighting matrix W =
diag{Wr,Wṙ,Wθ,Wω,Wν ,Wx̃dist}, where Wr = 10−10 ·

2Currently, it is not possible to perform major changes in the attitude control
code of STK and the attitude control module cannot be used by the general
public due to Export Control limitations. Thus, we simulate the attitude in
parallel by a high precisions ODE integrator. Overall, given that the attitude
is kept in a tight range around the equilibrium, the continuous time nonlinear
ODE is precise enough for its simulation.
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Fig. 7. One year simulation using the quantized MPC policy of Section III with (a) station keeping window, (b) spacecraft attitude error, (c) reaction wheel
speeds, (d) thrust forces over the last 5 orbits, (e) accumulation of ∆v for each thruster, and (f) gimbal angles over the last 5 orbits.

(a) (b)

Fig. 8. Images from the STK simulation taken on (a) May 12, 2000 (orbit 72) and (b) July 30, 2000 (orbit 151). The red square represents the station keeping
window, the green trail shows the satellite position over the last 5 orbits, and the size of the satellite is not to scale for illustrative purposes.
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diag{1, 1, 103} 1/m2, Wṙ = 106 ·1 s2/m2, Wθ = 104 ·1 1/rad2,
Wω = 10−1 ·1 s2/rad2, Wν = 10·1 s2/rad2, and Wx̃dist = 10·1.
The results of this simulation are included in Fig. 7, where a
∆v of 66.8 m/s is achieved with an average of 2.98 pulses per
thruster per orbit. Figs. 7(a), 7(b), 7(c) show that constraints
are satisfied throughout the simulation. The quantized nature
of the thrust inputs is observed in Fig. 7(d). Images from the
STK simulation taken at two difference times are provided in
Fig. 8 to illustrate how the satellite moves within the station
keeping window.

As mentioned earlier, the idealized ∆v for NSSK depends
on the epoch and station keeping window size, requiring
approximately 41–51 m/s/year [5]. Allowing an additional 5%
∆v for “East-West" Station-Keeping (EWSK) and momentum
management and translating the idealized range to account
for the nominal cant angle of the thruster boom assemblies by
dividing it by cos(40.14◦), we arrive at an expected total ∆v
consumption of 56–70 m/s/year. We find our result of 66.8
m/s (and 2.98 pulses per thruster per orbit) to be squarely
within that range, indicating that we are as close to the
ideal as possible despite adding additional limitations due to
quantization. The fuel consumption with the quantized MPC
policy is significantly lower than the previous result for the
same satellite configuration in [34], which required an annual
∆v of 79.8 m/s (and ∼30 pulses per thruster per orbit). This
savings is predominantly due to the novel split-horizon MPC
policy. Table I summarizes and compares the ∆v values and
features of the results obtained in this work to that of the
idealized case and our prior work, highlighting whether the
∆v result accounts for EWSK, the thruster geometry of Sec.
II, and quantized thrust values.

TABLE I
∆v SUMMARY FOR THE MPC POLICIES IN THIS WORK COMPARED TO

THOSE OF THE IDEALIZED CASE AND PRIOR WORK

EWSK Sec. II
Geometry On-Off ∆v

(m/s)

Ideal [5] N N N 41–51

Ref. [20] N N N 59

Policy III-D
applied to [20] N N N 46

Ideal [5] accounting
for Sec. II geometry Y Y N 56–70

Policy III-D Y Y N 64.9

Ref. [34] Y Y Y 79.8

Policy III-E Y Y Y 66.8

It is worth noting in Fig. 7(c) that the reaction wheel speed
ν3 deviates from the equilibrium point ν3 = 0 rad/s used
in the linearization of the MPC prediction model in (11),
eventually reaching a steady-state value of 100 rad/s. The MPC
prediction model could be improved by periodically updating
the linearization about a new equilibrium point with a non-
zero value of ν3, i.e., updating Ad in the prediction model at

each time step. For reducing computational burden and code
complecity, the MPC prediction model used in this paper relies
on a linearization about ν3 = 0 rad/s and does not recompute
the matrix Ad as ν3 deviates from 0 rad/s.

V. QUANTIZATION SCHEME AND ROBUSTNESS
ASSESSMENT

This section presents in-depth numerical analyses of the
parameters used in the single-pulse quantization scheme of
Section III-E and the robustness of the proposed MPC policy
to realistic model uncertainties and measurement noise. Due to
the large number of data points tested, numerical simulations
are not performed with STK, but instead with the nonlinear
spacecraft dynamic model presented in (1), which was been
validated using STK in [20]. Acceleration perturbations due to
Earth’s oblateness, solar and lunar gravitational attraction, and
solar radiation pressure are included in the simulation based
on the numerical values in [43]. Solar radiation pressure is
also considered in the calculation of a disturbance torque, and
is calculated as done in [44, p. 229], with a mean surface
area of 200 m2, surface reflectance of 0.6, solar facing area
of Sfacing = 37.5 m2, and a solar radiation constant of
Csrp = 4.5× 10−6 N/m2. The results presented in this section
are given as a percent increase or decrease in performance of
∆v or pulses/thruster/orbit.

A. Analysis of Quantization Scheme

The selection of the parameters used in the single-pulse
quantization scheme of Section III-E is discussed and analyzed
numerically in simulation. The quantization parameters con-
sidered in this analysis include the thrust cutoff value (ε), the
number of time steps between feedback (Nfb), the weighting
matrix used in the quantization objective function (W), and
adding an additional constraint preventing the overlapping of
any thruster pulses.

1) Thrust Cutoff Value (ε): The thrust cutoff value, ε,
determines the smallest thrust magnitude to quantize as an
on-off thruster pulse, whereas every thrust smaller than ε is
simply ignored. A lower bound on ε may be determined by
the specifications of the thruster, as on-off electric thrusters
often have a minimum pulse width. However, using the lowest
possible value of ε may not yield the best ∆v performance
and/or a reasonable number of thruster pulses. Simulations
are performed with cutoff values in the range 0.001 mN
≤ ε ≤ 1 mN to quantify the effect of varying ε on perfor-
mance, and the results are presented in Fig. 9. Fig. 9 shows
that the relationships between ε and the performance indices
∆v and the number of on-off pulses per thruster per orbit is
non-trivial. A small value of ε can yield reasonable ∆v, but
results in many thruster pulses (e.g., a 5.6% increase in ∆v
and 452% increase in the number of pulses/thruster/orbit with
ε = 0.001 mN compared to the baseline of ε = 0.01 mN). A
small value of ε also helps reduce the effect of quantization
on momentum management. For example, Fig. 10 shows that
with ε = 0.001 mN the reaction wheel speeds are much
more similar to the reaction wheel speeds without quantization
than with ε = 0.01 mN, and momentum management is
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Fig. 9. Effect of varying ε in quantization scheme.
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Fig. 10. STK simulation results: reaction wheel speeds with (a) non-quantized
split-horizon MPC policy and (b) quantized split-horizon MPC policy with
ε = 0.001 mN.

clearly occurring. A large value of ε will typically result
in a relatively lower number of thruster pulses, but a large
∆v (e.g., a 27.2% increase in ∆v and 110% increase in the
number of pulses/thruster/orbit with ε = 1 mN compared to the
baseline of ε = 0.01 mN). The choice of ε ultimately depends
on the problem at hand, and is shown to be an important
tuning parameter in obtaining optimal performance. In our
simulations, the optimum is achieved by an intermediate value
(ε = 0.01 mN).

2) Number of Time Steps Between Feedback (Nfb): A
feature of the proposed quantization scheme is that a single
pulse can be generated for a feedback period that spans
more than one discrete time step. The number of time steps
between feedback periods is determined by the positive integer
parameter Nfb. It is observed in simulation that there is an
upper bound on Nfb determined by the controller parameters,
beyond which the error induced by quantization becomes too
large to satisfy state constraints. For the controller parameters
used in Section IV with a split horizon of N1 = 5 hours
and N2 = 20 hours, only Nfb = 1 is feasible. Therefore, to
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Fig. 11. Effect of varying Nfb in quantization scheme.

TABLE II
EFFECT OF VARYING W IN QUANTIZATION SCHEME

% ∆v % Pulses
W2 14.6 97.4

W3 1.5 36.7

illustrate the effect of Nfb on performance, simulations are
performed with a non-split horizon of N1 = N2 = 20 hours
with Nfb = 1, Nfb = 2, and Nfb = 3. The results in Fig. 11
demonstrate how using Nfb = 2 reduces the number of pulses
by 54.4%, but increases ∆v by 1.1% compared to Nfb = 1.
The selection of Nfb = 3 yields a more significant increase
of 16.0% in ∆v and a less significant decrease of 48.5%
in the number of thruster pulses compared to Nfb = 1. As
demonstrated, tuning Nfb typically allows for a tradeoff in
∆v and the number of thruster pulses, but this tuning may be
restricted depending on the problem at hand.

3) Weighting Matrix (W): The selection of the weighting
matrix used to formulate the objective function in the quanti-
zation scheme has a significant influence on the quantization
results, as the value of W dictates which state errors to focus
on minimizing during quantization. Three different choices of
W are examined in this section: W1 is the same as W used in
Section IV, W2 = W1/2

1 , and W3 = 1. Results of W2 and W3

relative to W1 are given in Table II, where both W2 and W3

increase ∆v and the number of thruster pulses. Based on the
authors’ experience, it is beneficial to use a weighting matrix
that normalize all of the states to roughly the same order of
magnitude, which is how W1 was chosen.

4) Overlapping of Pulses: In some circumstances, most
likely due to power limitations [17], it may be required that
no thrusters fire simultaneously. An additional constraint can
be placed on the thruster pulse times to ensure that no thruster
pulses overlap. In this case, three thruster-firing-order modes
are considered: 1− 2− 3− 4 (Mode 1), 2− 1− 4− 3 (Mode
2), and 3 − 4 − 1 − 2 (Mode 3). More modes would be
required if all possible permutations of the firing order were
considered, but typically only two thrusters fire within a given
time step (excluding the combinations 1-3 and 2-4), so this
is unnecessary. The constraints are written as At,it ≤ bt,i,
i = 1, 2, 3, where bT

t,i =
[
0 0 0 0 −t0 tf 0 0 0

]
,

AT
t,i =

[
AT
t ĀT

t,i

]
, At is defined in Section III-E, and the
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TABLE III
MEASUREMENT NOISE ROBUSTNESS ASSESSMENT RESULTS

Meas. Sensor Bias Standard Deviation % ∆v % Pulses
Baseline – – – 0 0

r̃cwg GPS bri = 0 m σri = 10 m 22.6 77.9

r̃cwg GPS with KF bri = 0 m σri = 10 m 1.81 24

r̃cwg TLE bri = 50 m σri = 500 m 71 66.3
˙̃rcwg GPS with KF bṙi = 0 m/s σṙi = 0.1 m/s 1.8 4.9

r̃cwg and ˙̃rcwg GPS with KF bri = 0 m, bṙi = 0 m/s σri = 10 m, σṙi = 0.1 m/s 21.9 94.8

δθ̃ Star Tracker bθ = 3× 10−5 deg σθ = 3× 10−3 deg 2 4.5

ω̃pgp High-Acc. Gyro bωi = 1× 10−9 rad/s σωi = 1× 10−10 rad/s 12.1 26.6

ω̃pgp Low-Acc. Gyro bωi
= 5× 10−3 rad/s σωi

= 2× 10−7 rad/s 25.5 124.3

ν̃ Tachometer bνi = 0.06 rad/s σνi = 1.6 rad/s 5.9 40

contents of Āt,i depend on the thruster-firing mode considered.
The matrix At and the first four rows of bt,i ensure that
t1,i ≤ t2,i, while Āt,i and the last six rows of bt,i determine
the thruster firing order. The contents of Āt,i for Modes 1, 2,
and 3, respectively, are

Āt,1 =


−1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 1 −1 0 0 0 0 0
0 0 0 1 −1 0 0 0
0 0 0 0 0 1 −1 0

 ,

Āt,2 =


0 0 −1 0 0 0 0 0
0 0 0 0 0 1 0 0
−1 0 0 1 0 0 0 0
0 1 0 0 0 0 −1 0
0 0 0 0 −1 0 0 1

 ,

Āt,3 =


0 0 0 0 −1 0 0 0
0 0 0 1 0 0 0 0
0 1 −1 0 0 0 0 0
−1 0 0 0 0 0 0 1
0 0 0 0 0 1 −1 0

 .
The procedure to solve for the optimal switching times t1,i,
t2,i, i = 1, 2, 3, 4, is similar to the procedure outlined in
Section III-E, but instead solutions for the three thruster-firing-
order modes are found. The solution that yields the lowest cost
function value is chosen as the optimal set of switching times.

A simulation is performed using these additional constraints
to ensure that no thruster pulses overlap, which increases
∆v by 18.5% and increases pulses/thruster/orbit by 105.6%.
Enforcing these constraints at all times clearly degrades the
performance. However, it is interesting that the proposed
control policy can handle this situation, as the power limitation
may be due to unforseen circumstances, such as a special fault
recovery mode. In such a situation, the quantization constraints
in Section III-E can be implemented for most of the orbit and
the constraints outlined in this section can be implemented
during the intervals in which there is a limitation on power.
Thus, the simulation shows that our control strategy is capable

of handling situations with limited power, although, with an
increase in fuel consumption.

B. Robustness Assessment

In this section, the robustness of the proposed MPC policy is
analyzed and tested subject to various forms of measurement
noise and uncertainty in the thruster and the spacecraft models.

1) Measurement Noise: In practice, sensors will be used
to measure the states of the system either directly or indi-
rectly. Each measurement inherently features some level of
noise, which leads to uncertainty in the system states. The
purpose of the measurement noise analysis presented here
is not necessarily to improve the uncertainty in the states
by designing filters or estimators, but to determine whether
the levels of measurement noise that can be tolerated by the
proposed MPC policy are realistic. The measurement noise
considered includes the translational position and velocity
of the spacecraft, the attitude and angular velocity of the
spacecraft, and the angular rates of the spacecraft’s reaction
wheels.

The measurement of the spacecraft’s position is given
by r̃cwg = rcwg + wr, where wr ∼ N (br,Vr), bT

r =[
brx bry brz

]
, and Vr = diag{σ2

rx , σ
2
ry , σ

2
rz}. In this anal-

ysis, two levels of uncertainty are considered: 1) GPS-level
accuracy [45] (bri = 0 m and σri = 10 m, i = x, y, z),
and 2) two-line element (TLE) [46] or ground-based antenna
ranging data [47] (bri = 50 m and σri = 500 m, i = x, y, z).

The measurement of the spacecraft’s velocity is given
by ˙̃rcwg = ṙcwg + wṙ, where wṙ ∼ N (bṙ,Vṙ), bT

ṙ =[
bṙx bṙy bṙz

]
, and Vṙ = diag{σ2

ṙx , σ
2
ṙy , σ

2
ṙz}. For this anal-

ysis, GPS-level accuracy is considered, where bṙi = 0 cm/s
and σṙi = 10 cm/s, i = x, y, z.

The measurement of the spacecraft’s attitude is perturbed
by the DCM C̃, such that C̃pg = C̃Cpg . An axis-angle param-
eterization is used to define C̃ = coswθ1+(1− coswθ) ââT+
sinwθâ×, where wθ ∼ N (bθ, σ

2
θ), â = a/ ‖a‖2, a ∼ N (0, 1).

Measurement noise associated with the use of a star tracker
is considered, where bθ = 3 × 10−5 deg and σθ = 3 ×
10−3 deg [48–50].
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Fig. 12. Thruster magnitude uncertainty robustness assessment results.
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Fig. 13. Thruster delay robustness assessment results.

The measurement of the spacecraft’s angular velocity is
given by ω̃pgp = ωpgp + wω , where wω ∼ N (bω,Vω),
bT
ω =

[
bω1 bω2 bω3

]
, and Vω = diag{σ2

ω1
, σ2
ω2
, σ2
ω3
}.

Measurement noise associated with a high-accuracy rate gyro-
scope [51] (bωi = 1× 10−9 rad/s and σωi = 1× 10−10 rad/s,
i = 1, 2, 3) and a low-accuracy rate gyroscope [52] (bωi =
5 × 10−3 rad/s and σωi

= 2 × 10−7 rad/s, i = 1, 2, 3) are
considered.

The measurement of the spacecraft’s reaction wheel speeds
is given by ν̃ = ν + wν , where wν ∼ N (bν ,Vν),
bT
ν =

[
bν1 bν2 bν3

]
, and Vν = diag{σ2

ν1 , σ
2
ν2 , σ

2
ν3}. Re-

alistic measurement noise from a reaction wheel tachometer
is considered, where bνi = 0.06 rad/s and σνi = 1.6 rad/s,
i = 1, 2, 3 [53].

Results with the various individual measurement noises are
presented in Table III, where it is shown that the MPC policy
is particularly sensitive to translational position and velocity
measurements, but remains robust to realistic measurement
noise when a simple Kalman filter is implemented.

2) Thruster Model Uncertainty: The actual thrusters of
the spacecraft are not ideal, and will contain some amount
of uncertainty. Specifically, uncertainty in the magnitude of
the thrust, time delays in the thruster pulse, and thruster
misalignment are considered in this section.

Uncertainty in the magnitude of the thrust may be due
to a leaking or stuck valve, uncertainty in the thruster con-
troller, etc. Thruster magnitude uncertainty is modeled as
f̃max = fmax + bf . The results of simulations performed with
values −0.16fmax ≤ bf ≤ fmax are presented in Fig. 12,
which show that the MPC policy is robust to a significant
amount of thruster magnitude uncertainty. The MPC policy is

TABLE IV
MASS UNCERTAINTY ROBUSTNESS ASSESSMENT RESULTS

wm (kg) % ∆v % Pulses
−400 1.4 10.1

+400 1.2 17.6

TABLE V
CENTER OF MASS UNCERTAINTY ROBUSTNESS ASSESSMENT RESULTS

rc̃c
T

p (cm) % ∆v % Pulses
[0.5 0 0] 2.6 16.1

[5 0 0] 15 428.5

[0 0.5 0] 0.3 30

[0 5 0] 1.2 19.9

[0 0 0.5] 20.6 91.8

[0 0 5] 25.5 113.1

[−0.5 0 0] 9.4 79.4

[−5 0 0] 8.6 573.8

[0 − 0.5 0] 20.3 95.1

[0 − 5 0] SK constraints violated
[0 0 − 0.5] 13.3 76.4

[0 0 − 5] 17.8 82.4

clearly more robust to perturbations that increase the thruster
magnitude, which is intuitive, as additional unexpected control
authority is available in this case.

Time delays are implemented in simulation as t̃1,i = t1,i+δt
and t̃2,i = t2,i + δt, i = 1, 2, 3, 4, where δt is the time delay,
and t̃1,i and t̃2,i are the delayed “on time” and “off time” of the
thruster pulse, respectively. Results of simulations with time
delay values of 0 ≤ δt ≤ 420 s are presented in Fig. 13, which
illustrate that a time delay of 20 seconds can be tolerated with
less than a 1% increase in ∆v and less than a 16% increase
in the number of thruster pulses, while time delays of up to
2 minutes can be tolerated with less than a 10% increase in
∆v and around 4 pulses/thruster/orbit.

Misalignment of the thrusters is common on satellites due to
the extreme forces and vibrations experienced during launch.
C̃ia = C1(δi)C2(β̃a)C3(α̃a), where α̃a and β̃a are constant
angles that are randomly assigned prior to simulation using
α̃a ∼ N (ᾱa, σ

2
α), β̃a ∼ N (β̄a, σ

2
β). Twelve simulations

are performed with σα = σβ = 0.1 deg, which yields an
average ∆v increase of 7.9% and an average increase in
pulses/thruster/orbit of 74.2%.

3) Model Uncertainty: Another source of uncertainty con-
sidered in this robustness assessment is in the spacecraft’s
mass and center of mass. Simulations are performed with
m̃B = mB + wm, where mB is the nominal spacecraft mass,
m̃B is the uncertain spacecraft mass, and −0.1mB ≤ wm ≤
0.1mB. The center of mass of the spacecraft is also perturbed
as rc̃c

T

p =
[
rc̃cp1 rc̃cp2 rc̃cp3

]
, where −5 cm ≤ rc̃cpi ≤ 5 cm,

i = 1, 2, 3. Results with these perturbations are presented in
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Tables IV and V. The MPC policy is shown to be quite robust
to both types of mass uncertainty, particularly to uncertainty
in the total mass and the location of the center of mass in the
p−→

1 direction.

VI. CONCLUSIONS

The novel split-horizon MPC policy presented in this paper
is shown to be effective in performing simultaneous station
keeping and momentum management of a GEO satellite.
Quantization of the thruster is performed using a single-
pulse quantization method, which reduces the number of
pulses compared to PWM methods and results in control
inputs that are implementable with existing electric propulsion
technology. Robustness assessment studies demonstrated the
performance of the control policy with various forms of
uncertainty and measurement noise, which further validates
the proposed method.
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