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Early Termination of Convex QP Solvers in Mixed-Integer
Programming for Real-Time Decision Making

Jiaming Liang1, Stefano Di Cairano1 and Rien Quirynen1

Abstract— The branch-and-bound optimization algo-
rithm for mixed-integer model predictive control (MI-MPC)
solves several convex quadratic program relaxations, but
often the solutions are discarded based on already known
integer feasible solutions. This paper presents a projection
and early termination strategy for infeasible interior point
methods to reduce the computational effort of finding a
globally optimal solution for MI-MPC. The method is shown
to be also effective for infeasibility detection of the convex
relaxations. We present numerical simulation results with
a reduction of the total number of solver iterations by 42%
for an MI-MPC example of decision making for automated
driving with obstacle avoidance constraints.

Index Terms— Cyber-physical systems, mixed-integer
programming, optimization algorithms.

I. INTRODUCTION

MODEL predictive control (MPC) is a model-based
control approach which allows to handle performance

optimization and constraints by design [1]. This framework
can be further extended to hybrid dynamical systems [2] that
include both continuous and discrete decision variables, pro-
viding a powerful control design for a large class of problems,
e.g., switched dynamical systems [3], discrete or quantized
actuation [4], logic rules and temporal logic specifications [5].
The resulting optimization problems are non-convex because
they contain variables that only take integer values. For a
linear-quadratic objective, (piecewise) linear dynamics and
linear constraints, the optimization problem can be formulated
as a mixed-integer quadratic program (MIQP).

In this work, we aim at solving MIQPs of the form:

min
X,U

N∑
k=0

1

2

[
xk
uk

]>
Hk

[
xk
uk

]
+

[
xk
uk

]> [
qk
rk

]
(1a)

s.t. x0 = x̂0, (1b)

xk+1 =
[
Ak Bk

] [xk
uk

]
+ ak, k ∈ ZN−1

0 , (1c)

¯
yk ≤

[
Ck Dk

] [xk
uk

]
≤ ȳk, k ∈ ZN0 , (1d)

uk,j ∈ Z, j ∈ Ik, k ∈ ZN0 , (1e)

where the notation Zba denotes the range of integers a, a +
1, . . . , b, and the optimization variables are the state X =
[x>0 , . . . , x

>
N ]> and control trajectory U = [u>0 , . . . , u

>
N ]>.

For simplicity of notation, the set Ik denotes the indices of
the discrete control variables for each step k ∈ ZN0 of the
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prediction horizon. The Hessian matrices in (1a) are assumed
to be positive semi-definite Hk � 0, but not necessarily
positive definite. Unlike standard MPC [1], our MIQP (1)
can include discrete and/or continuous control variables on
the terminal step of the MPC horizon.

MPC for hybrid dynamical systems aims at solving the
MIQP (1) at every sampling time instant. In order to solve
MIQPs to global optimality, most algorithms are based on
a variant of the branch-and-bound (B&B) method [6]. The
B&B strategy has been combined with various methods for
solving the relaxed convex quadratic programs (QPs) in mixed-
integer MPC (MI-MPC), such as dual active-set [7], primal
active-set [8], interior point method (IPM) [9], dual projected
gradient [10], and the alternating direction method of multi-
pliers (ADMM) [11]. An advantage of a dual QP solver is
that a dual feasible starting point for the child problems can
be computed from the dual solution of the parent. This allows
for early termination of the relaxed problem whenever the dual
objective becomes larger than the current upper bound in the
B&B [7], [10], [12].

IPMs are appealing for real-time optimization because they
generally exhibit better worst-case performance than active-
set type methods [13]. An early termination strategy for a dual
feasible IPM is described in [14, Section 5.1]. Instead, here we
focus on an infeasible IPM [15] that does not need a starting
point that is dual feasible, and is applied to solve the convex
relaxations within the B&B method. In general, all iterates of
an infeasible primal-dual IPM are infeasible, although its limit
points are both feasible and optimal [15]. Infeasible IPMs are
appealing in B&B [16] because they can be effectively warm
started, see [17], [18].

This paper proposes a first early termination strategy for an
infeasible IPM to solve each convex QP relaxation in the B&B
method, without the assumption of strict positive definiteness
of the Hessian in (1) and without the need to compute a
dual feasible starting point. We developed a computationally
efficient projection to compute a dual feasible solution guess
for early termination before the optimum of the QP is found.
We additionally show that our early termination strategy is
effective for infeasibility detection for the convex relaxations
in the B&B method.

The paper is organized as follows. Section II summarizes
background materials on optimization and B&B methods. Sec-
tion III presents our projection and early termination strategy
for primal-dual IPMs, and the effectiveness for infeasibility
detection is motivated in Section IV. Section V presents
numerical results for an MI-MPC example of automated
driving using the active-set based IPM (ASIPM) method with



warm starting in [18]. The conclusions are summarized in
Section VI.

II. PROBLEM FORMULATION

We reformulate the MIQP in (1) in the compact notation

min
z

1

2
z>H z + h>z (2a)

s.t. C z ≤ c, F z = f, (2b)
zj ∈ Z, j ∈ I, (2c)

where z includes all primal optimization variables and the
set I indexes the integer variables. For many practical MPC
formulations, the objective can directly be written as

1

2
z>H z + h>z =

1

2
x>Qx + h>xx + h>y y, (3)

where H � 0 and Q � 0, by partitioning z into x and
y, entering in the linear-quadratic and linear-only terms,
respectively. The objective of any MIQP (2) can always be
reformulated as in (3) by a change of variables, e.g., based on
the eigenvalue decomposition for the Hessian matrix H � 0.

A. Branch-and-bound Optimization

The standard B&B algorithm [6] sequentially creates parti-
tions for the search space of the original mixed-integer pro-
gram and compute bounds for those partitions. Each integer-
feasible solution provides a global upper bound to the op-
timum. Local lower bounds can be computed from convex
relaxations of the MIQP for a particular partition or node of
the B&B tree. The B&B effectiveness stems from pruning
certain partitions or nodes whenever the local lower bound
exceeds the current global upper bound.

The B&B partitions are constructed through branching, and
selecting an appropriate integer variable for branching is a key
B&B step, e.g., studied extensively in [19]. Another ingredient
is the pre-solve routine to construct tighter convex relaxations
leading to less branching, see the overview in [20]. For
lowering the upper bound, heuristics are often used to compute
integer-feasibile solutions, e.g., by a feasibility pump [21] or
warm starting [22]. The B&B method used in this paper for
numerical tests is similar to [8] and exploits domain propa-
gation in the pre-solve routine, reliability branching based on
pseudo-cost, and warm starting.

B. Convex QP Relaxations

We focus on the efficient solution of convex QP relaxations
in a B&B optimization method. For a particular node of the
B&B tree, a convex QP is obtained by relaxing the integer
equality constraint in (2c) as

¯
zj ≤ zj ≤ z̄j , j ∈ Ĩ, (4)

where the index set Ĩ denotes each integer variable that has not
been fixed due to branching, or due to the pre-solve routine, in
the current node of the B&B tree. The values

¯
zj and z̄j denote

the lower and upper bound values for each integer variable
j ∈ Ĩ, respectively. As discussed in [20], fixed variables, i.e.,

¯
zj = z̄j , and redundant constraints should be removed from
each convex QP for efficiency.

We do not need to solve a convex subproblem if
1) the convex QP relaxation is infeasible,
2) the optimal solution is detected to have an objective value

that exceeds the current global upper bound.
In both cases, the node, and hence the corresponding subtree,
can be pruned from the B&B tree to find the optimal solution.
A considerable computational effort can be avoided if the
above scenarios are detected early, i.e., more quickly than
the solving time of the convex QP relaxations. In the present
paper, we propose a tailored early termination strategy for
infeasible primal-dual IPMs to handle both cases and to reduce
the computational effort of the B&B method without affecting
the quality of the optimal solution.

C. Dual QP Problem Formulation
We consider the primal convex QP of the form

min
x,y

φ(x,y) :=
1

2
x>Qx + h>xx + h>y y (5a)

s.t. Gxx +Gyy ≤ g, (5b)
Fxx + Fyy = f, (5c)

where Q � 0 in the primal objective φ(x,y), and the
inequality constraints (5b) include both the original inequal-
ities from (2b) and the convex relaxations (4) of the integer
constraints. We additionally use the compact notation z :=
[x>y>]>, G := [Gx|Gy], F := [Fx|Fy], h := [h>xh

>
y ]> and

H :=

[
Q 0
0 0

]
. The dual QP of (5) reads as

max
µ,λ

ψ(µ, λ) := −1

2
‖ĥ(µ, λ)‖2Q−1 −

[
g
f

]> [
µ
λ

]
(6a)

s.t. G>y µ+ F>y λ = −hy, (6b)

µ ≥ 0, (6c)

where λ and µ denote the Lagrange multipliers for the equality
and inequality constraints, respectively, and

ĥ(µ, λ) := hx +G>xµ+ F>x λ, (7)

for simplifying the dual objective function ψ(µ, λ) in (6a).

D. Primal-dual Interior Point Method
A primal-dual IPM uses a Newton-type method to solve a

sequence of relaxed Karush-Kuhn-Tucker (KKT) conditions
for the convex QP in (5). An iteration of the IPM usually
solves the reduced linear systemH F> G>

F 0 0
G 0 −W k

∆zk

∆λk

∆µk

 = −

rkzrkλ
r̄kµ

 , (8)

where W k = diag
(
wk
)
� 0 and wki = ski /µ

k
i > 0. The right-

hand side in (8) denotes the residual value for the optimality
conditions and reads as

rkz = Hzk + F>λk +G>µk + h,

rkλ = Fzk − f, rkµ = Gzk − g + sk,

rks = MkSk1− τk1, r̄kµ = rkµ −Mk−1

rks ,

(9)



based on the barrier parameter τk → 0 for k → ∞, where
Mk = diag

(
µk
)
, Sk = diag

(
sk
)

and the slack variables
are updated as ∆sk = −(W k∆µk + Mk−1

rks ). We consider
an infeasible primal-dual IPM for which the starting point{(

z0, µ0, λ0, s0
)}

may not be primal and/or dual feasible,
but the slack variables and Lagrange multipliers are positive
at each iteration, i.e., sk ≥ 0 and µk ≥ 0. See [15] for
details on properties and implementation of primal-dual IPMs.
For the numerical tests in this paper, we use the active-set
based inexact Newton implementation (ASIPM) [18], which
allows for reduced computations, warm starting and improved
numerical conditioning.

III. EARLY TERMINATION OF PRIMAL-DUAL
INTERIOR POINT METHODS

Due to duality properties, see, e.g., [23], for a dual feasible
point (µ, λ) that satisfies (6b)-(6c) and a primal feasible point
(x,y) that satisfies (5b)-(5c)

ψ(µ, λ) ≤ ψ? ≤ φ? ≤ φ(x,y), (10)

where φ? and ψ? are the primal and dual optima, respectively.
Based on (10), we propose an approach to find a dual feasible
point that allows for early termination when ψ(µ, λ) > UB for
the current upper bound (UB) to the optimum of the MIQP.

A. Projection Strategy for Dual Feasibility

A dual feasible solution, i.e., (µk, λk) satisfying (6b)-(6c)
is required in order to perform early termination based on the
duality result in (10). Since an infeasible IPM generally does
not compute a solution that satisfies the equality constraint
in (6b) until convergence, we propose a projection step to
compute new values (µ+, λ+) = (µk + ∆µ, λk + ∆λ)
satisfying (6b) and (6c). A standard minimum-norm projection
would compute (∆µ,∆λ) as

min
∆λ,∆µ

1

2
‖∆λ‖2 +

1

2
‖∆µ‖2

s.t. F>y ∆λ+G>y ∆µ = −rky,
(11)

where rky := F>y λ
k + G>y µ

k + hy . Instead, here we propose
to perform the projection to a dual feasible point by solving
the optimization problem

min
∆x,∆λ,∆µ

1

2
‖∆x‖2Q +

1

2
‖∆λ‖2εdual

+
1

2
‖∆µ‖2Wk

s.t.
[
Q
0

]
∆x + F>∆λ+G>∆µ = −

[
0
rky

]
,

(12)

where W k = diag
(
wk
)

and wki =
ski
µk
i

> 0.
There are three advantages from the projection (12) over the

projection (11). Neither (12) nor (11) directly enforce the posi-
tivity constraints µk+∆µ > 0, which would require solving an
inequality constrained QP. However, a first advantage of (12) is
that, since wki =

ski
µk
i

> 0, the term ‖∆µ‖2Wk =
∑
i

(
ski
µk
i

∆µ2
i

)
in the objective of (12) penalizes the step ∆µi to remain small
when ski

µk
i

is relatively large, i.e., when µki > 0 is close to
zero. This makes it more likely to satisfy µki + ∆µi > 0

without forcing the update step to be always small, since the
step is forced to be smaller when approaching the positivity
constraint. Second, the solution (∆µ,∆λ) to the optimization
problem (12) is equivalent to solving the symmetric systemH F> G>

F −εdualI 0
G 0 −W k

∆z
∆λ
∆µ

 = −


[

0
rky

]
0
0

 , (13)

which corresponds to an IPM iteration similar to (8) with
only differences being the right-hand side and the augmented
Lagrangian type regularization εdual > 0 as in [18]. A
derivation of the equivalence between (12) and (13) can be
found in Proposition 3.1, here below. The latter means that the
same matrix factorization procedure from [18] can be reused
for our projection step (13) as follows(

H +
1

εdual
F>F +G>W k−1

G

)
∆z = −

[
0
rky

]
, (14)

such that ∆λ = 1
εdual

F∆z and ∆µ = W k−1

G∆z. Third, the
projection (13) aims at retaining the IPM progress towards
optimum, since the projection step does not increase the
residual value for the remaining optimality conditions in (9),
due to the zero elements in the right-hand side of (13).

Proposition 3.1: The solution to the linear system in (13)
forms a solution to the optimization problem in (12).

Proof: Let us write down the KKT optimality conditions
for the equality constrained QP in (12) as follows

Q
[
Q 0

]
εdualI F

W k G[
Q
0

]
F> G> 0




∆x
∆λ
∆µ[
ν1

ν2

]
 = −


0
0
0[
0
rky

]
 ,

(15)

where ν :=

[
ν1

ν2

]
denotes the Lagrange multipliers for the

equality constraints in (12). Due to Q � 0, Eq. (15) shows
that ν1 = −∆x can be eliminated and, after rearranging the
equations and variables, results in

[
Q 0
0 0

]
F> G>

−F εdualI
−G W k



[

∆x
−ν2

]
∆λ
∆µ

 = −


[

0
rky

]
0
0

 . (16)

A solution to (16) provides a solution to (13) by the change
of variables ν2 = −∆y, which concludes the proof.

B. Early Termination Strategy

Based on the projection step in (13), we detail our proposed
early termination strategy in Algorithm 1. As discussed in
the next subsection, one dual objective evaluation is com-
putationally cheaper than a projection on a dual feasible
point. Therefore, Algorithm 1 performs the projection in (13)
if and only if the dual objective ψ(µk, λk) is larger than
the current UB (line 5). Since in this paper for numerical
tests we use the ASIPM method [18], we note that multiple
evaluations, reusing the same matrix factorization, of the



projection step in (13) may be needed to ensure dual feasibility
‖F>y λ + G>y µ + hy‖ < tol when using the inexact Newton
implementation of [18].

Algorithm 1 Early termination for IPM in B&B method.

1: Input: Warm start
{(

z0, µ0, λ0, s0
)}

, tol, and UB.
2: while max{τk, ‖rk‖} > tol do
3: if ψ(µk, λk) > UB & dual feasible then
4: break while loop. . Early termination
5: else if ψ(µk, λk) > UB then
6: Compute projection step (∆µ,∆λ) in (13).
7: µ← µk + ∆µ, λ← λk + ∆λ, and
8: ry ← F>y λ+G>y µ+ hy .
9: if µ > 0 & ‖ry‖ < tol then

10: µk ← µ, λk ← λ, rky ← ry , and
11: dual feasible ← 1.
12: if ψ(µk, λk) > UB then
13: break while loop. . Early termination
14: end if
15: end if
16: end if
17: Perform an IPM iteration (8), e.g., see [18].
18: end while

C. Computational Complexity

The proposed early termination strategy requires two com-
putational steps, i.e., the projection and the dual objective
evaluation, which are typically not needed in a standard IPM.
Considering the optimal control structured program (1), the
evaluation of the dual objective value (6a) requires

N(n2 + 2nm+ 2n p), (17)

operations to compute L−1
(
G>xµ+ F>x λ

)
based on a block-

diagonal Cholesky factorization Q = LL>, in which n, m and
p are the number of variables x, the number of equality and
inequality constraints per control interval, respectively.

Based on (13), we can perform one projection step at the
computational cost of one IPM iteration. This allows the reuse
of the corresponding matrix factorization in the subsequent
IPM iteration if the projection is not successful. Based on
the particular ASIPM implementation, as proposed recently
in [18], one iteration requires a block-tridiagonal Cholesky
factorization for the matrix in (14), for which the dominant
terms in the computational cost are

N

(
7

3
n3

x + 4n2
xnu + 2nxn

2
u +

1

3
n3

u

)
, (18)

where nx and nu denote the number of state and control
variables per interval in (1), respectively. Then, the linear
system in (13) can be solved by

N
(
6n2

x + 8nxnu + 2n2
u + 2(nx + nu)(m+ p)

)
, (19)

operations for the resulting block-structured forward and back-
ward substitution. Since n ≤ (nx + nu), and often n �
(nx+nu) due to many auxiliary variables in hybrid systems [2]

for which the Hessian contribution is zero, the cost for a
dual objective evaluation (17) is considerably smaller than the
projection cost (19), as anticipated.

IV. PRIMAL INFEASIBILITY DETECTION
We first present a certificate of primal infeasibility and then

justify why our proposed early termination strategy can be
also effective for primal infeasibility detection. We confine
ourselves to the compact form of the QP relaxation in Eq. (5)
and a primal-dual IPM described in Section II-D.

A. Certificate of Primal Infeasibility
Let the primal problem (5) with strict inequalities,

Gz < g, Fz = f, (20)

be infeasible. Using Farkas’ lemma [15], we can derive the
following certificate of strict infeasibility for (20),

G>µ̃+ F>λ̃ = 0, g>µ̃+ f>λ̃ < 0, µ̃ > 0. (21)

Eq. (20) is strictly infeasible if and only if there exists a
pair (µ̃, λ̃) satisfying (21). If (µ̂, λ̂) is a dual feasible solution
satisfying (6b) and (6c), then (µ, λ) = (µ̂+ αµ̃, λ̂+ αλ̃) also
satisfies (6b) and (6c) for α > 0, and the dual objective in (6a)
→∞ as α→∞, i.e., the dual problem is unbounded.

B. Early Termination for Infeasible QPs
As discussed in detail in [24], the standard iterates of an

IPM can be used to generate certificates of infeasibility (21).
Intuitively, since the dual objective is unbounded in case of
primal infeasibility, we can terminate the solver whenever the
dual objective of a dual feasible solution is “large enough”.
We motivate why our proposed early termination strategy is
effective for infeasibility detection and, given a tight UB from
the B&B optimization method, it may lead to termination
before a certificate of infeasibility is found.

Proposition 4.3 will prove that the dual objective ψ(µk, λk)
for the primal-dual IPM iterates is unbounded in the limit.
Before, we need to prove two technical lemmas.

Lemma 4.1: The following statements about the IPM iter-
ates (8) hold for k ≥ 0:
a) for some βk ∈ [0, 1], iterates zk and sk satisfy

M

[
zk

sk

]
= βkM

[
z0

s0

]
+ (1− βk)

[
g
f

]
=: rkz,s, (22)

where M :=

[
G I
F 0

]
, and rkz,s is bounded;

b) hk := Hzk +G>µk + F>λk is bounded.
Proof: a) Eq. (22) holds for k = 0 with β0 = 1. Next,

assuming that (22) holds for k ≥ 0, it follows from Eq. (8)
and (9), and ∆sk = −(W k∆µk +Mk−1

rks ) that

M

[
zk+1

sk+1

]
= (1− αk)M

[
zk

sk

]
+ αk

[
g
f

]
, (23)

where (zk+1, sk+1) = (zk + αk∆zk, sk + αk∆sk), and
αk ∈ (0, 1] is the stepsize taken in the IPM. Hence, it follows
from (23) that Eq. (22) holds for k+1 with βk+1 = βk(1−αk).



It follows from its definition in (22) that rkz,s is bounded as a
convex combination of two bounded vectors.

b) This statement follows from similar arguments as for the
derivations in the proof of (a).

It is easy to see from (22) that βk > 0 in case of strict primal
infeasibility. The following lemma confirms this observation
and the boundedness of sk and zk.

Lemma 4.2: If the primal problem (20) is strictly infeasible,
then the following statements hold for k ≥ 0:

a) there exists µ̄ > 0 such that

βk ≥ (1 + µ̄>s0)−1 > 0, µ̄>sk ≤ µ̄>s0; (24)

b) assuming that [G>F>]> has full rank, then the iterates
sk and zk are bounded.
Proof: a) Certificate (21) is equivalent to the existence

of µ̄ and λ̄ satisfying

G>µ̄+ F>λ̄ = 0, g>µ̄+ f>λ̄ = −1, µ̄ > 0. (25)

Following a similar argument as in the proof [24, Prop. 5.1],
i.e., multiplying (22) by [µ̄> λ̄>] from left, and using (25) and
the fact that sk > 0, we have

βk
(
1 + µ̄>s0

)
− 1 = µ̄>sk > 0, (26)

and hence the first inequality in (24) holds. Moreover, the
second inequality in (24) follows from (26) and 0 < βk ≤ 1.

b) Using the second inequality in (24) and µ̄ > 0, sk > 0
and s0 > 0, we know that sk is bounded. From (22), using
Lemma 4.1(a) and sk being bounded, zk is also bounded
because [G>F>]> has full rank.

We can now prove the main result of this section, namely,
if the primal problem is infeasible, the dual objective of the
IPM tends to infinity, which allows for early termination.

Proposition 4.3: If the sequence of IPM iterates{(
zk, µk, λk, sk

)}
satisfy µk

>
sk ≤ µ0>s0 and ‖µk‖ → ∞,

then the dual objective ψ(µk, λk)→∞.
Proof: Lemmas 4.1(b) and 4.2(b) imply that ĥ(µk, λk)

in (7) is bounded. As a result, in order to show that the
dual objective ψ(µk, λk) (see (6a)) is unbounded for the IPM
iterates, it suffices to show

`k := g>µk + f>λk → −∞. (27)

Multiplying (22) by [µk
>
λk
>

] from the left, using the assump-
tion that µk

>
sk ≤ µ0>s0, the definition of `k in (27), and the

identity G>µk+F>λk = hk−Hzk (see Lemma 4.1(b)), after
rearranging the terms, we obtain

(1− βk) `k ≤ tk +
(
µ0 − βkµk

)>
s0, (28)

where tk :=
(
zk − βkz0

)> (
hk −Hzk

)
. Lemmas 4.1(b)

and 4.2(b) imply that tk is bounded. For ‖µk‖ → ∞, since
µk > 0 and s0 > 0, we have µk>s0 → ∞. It follows from
βk > 0 in Lemma 4.2(a) that the right-hand side of (28)
tends to −∞. Finally, since βk < 1 in (22), inequality (28)
implies (27) and concludes the proof.

V. NUMERICAL EXAMPLE

Next, we provide numerical simulation results to illustrate
the performance of our early termination strategy applied to
the ASIPM QP solver with warm starting [18], as part of the
B&B implementation from [8] in MATLAB.

A. Problem Formulation: Vehicle Decision Making

The numerical example involves an MI-MPC formulation of
a high-level motion planning task for an autonomous vehicle,
including discrete decisions resulting from lane changes, static
and dynamic obstacles. Similar to the problem formulation
in [5], the vehicle motion is modeled in curvilinear coordinates
resulting in affine system dynamics with 3 state variables and
2 control inputs. Additional decision variables are defined to
model lane changes and obstacle avoidance, resulting in an
MIQP formulation of the form in (1) with N = 15 intervals,
nx = 6 state variables and nu = 18 control variables,
including 14 binary decision variables per control interval.
Due to the pre-solve routine based on domain propagation [8],
many of the 224 binary decision variables can be eliminated
in practice.

B. Numerical Simulation Results

The performance of the early termination strategy in Al-
gorithm 1 for this MI-MPC example is presented in Fig. 1,
including the total number of QP calls and solver iterations at
each time step, as well as the reduction of computational effort
in percentage. The x-axis of each subplot is the simulation time
in [0, 170] s, using a sampling period of 2 s. It can be observed
that the reduction in QP iterations is most considerable when
a larger number of QPs need to be solved in the B&B
method to compute the global solution of the MIQP. This
is where it matters the most for real-time applications that
must consider the worst-case execution time. Overall, in this
particular numerical example, early termination reduces 42%
of the total QP iterations.

Fig. 2 presents a detailed comparison between early ter-
minated and fully solved QPs to solve the MIQP at each
time step. Subplot 1 compares the number of early terminated
and fully solved QPs, and shows that early termination of
the IPM happens often. More specifically, about 36% of all
QPs are early terminated in this particular example. Subplot 2
compares the average number of iterations in early terminated
QPs with and without warm starting, and shows that early
termination benefits from warm starting. In fact, the number
of QP iterations is 0 at times 112 − 134 s, i.e., the warm
start leads to immediate termination of the IPM. Subplot 3
presents the average number of iterations in the solved QPs
with and without warm starting. Comparing subplots 2 and 3,
one can observe that early terminated QPs take considerably
less iterations than fully solved QPs.

Table I finally illustrates the performance of our early ter-
mination strategy for infeasibility detection of three infeasible
QPs from the MI-MPC example. We compare the number
of IPM iterations to obtain a certificate of infeasibility (21)
versus the early termination strategy from Algorithm 1, with
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Fig. 1. QP calls and total iterations with and without early termination:
early termination reduces total number of QP iterations by 42%.
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Fig. 2. Early terminated versus fully solved QPs: average number of
QP iterations in both cases, with and without warm starting of ASIPM.

and without warm starting of ASIPM [18]. Table I shows
that early termination requires considerably less IPM iterations
than the computation of a certificate of infeasibility. Note that
early termination does not distinguish between a case of primal
infeasibility or a case where the objective value exceeds the
current UB. In addition, Table I shows that warm starting can
reduce the number of IPM iterations further and it can lead to
immediate termination, i.e., without the need to perform any
IPM iterations.

TABLE I
INFEASIBILITY DETECTION: # OF QP ITERATIONS FOR CERTIFICATE

VERSUS EARLY TERMINATION WITH AND WITHOUT WARM STARTING.

QP # 1 QP # 2 QP # 3

Certificate of primal infeasibility 40 45 38
Early termination: cold started 10 12 10
Early termination: warm started 0 0 11

VI. CONCLUSIONS
We proposed an efficient early termination strategy based

on a projection step tailored to IPMs, in order to reduce the
computational cost within the B&B method in solving MI-
MPC problems. In addition, we proved that our early termi-
nation strategy can be effective for infeasibility detection and

often it terminates the IPM before a certificate of infeasibility
is found. Finally, we illustrated the performance of this early
termination technique based on numerical simulation results
for an MI-MPC example of vehicle decision making.
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