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Abstract
As an essential component of many missioncritical equipment, mechanical bearings need to
be monitored to identify any traces of abnormal conditions. Most of the latest data-driven
methods applied to bearing anomaly detection are trained using a large amount of fault
data collected a priori. However, in many practical applications, it may be unsafe and time-
consuming to collect enough data samples for each fault category, which brings challenges to
training a robust classifier. This paper proposes a few-shot learning framework for bearing
anomaly detection based on model-agnostic meta-learning (MAML), which aims to train an
effective fault classifier using very limited data. In addition, it can use training data and
learn to more effectively identify new fault conditions. A case study on the generalization
of new artificial faults shows that this method can achieve up to 25% overall accuracy when
compared to a benchmark study based on the Siamese network. Finally, the generalization
ability of MAML is also competitive when compared with some state-of-the-art few-shot
learning methods in terms of identifying realistic bearing damages using a sufficient amount
of training data from artificial damages.
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Abstract—As an essential component of many mission-
critical equipment, mechanical bearings need to be monitored
to identify any traces of abnormal conditions. Most of
the latest data-driven methods applied to bearing anomaly
detection are trained using a large amount of fault data
collected a priori. However, in many practical applications,
it may be unsafe and time-consuming to collect enough data
samples for each fault category, which brings challenges to
training a robust classifier. This paper proposes a few-shot
learning framework for bearing anomaly detection based
on model-agnostic meta-learning (MAML), which aims to
train an effective fault classifier using very limited data.
In addition, it can use training data and learn to more
effectively identify new fault conditions. A case study on the
generalization of new artificial faults shows that this method
can achieve up to 25% overall accuracy when compared to
a benchmark study based on the Siamese network. Finally,
the generalization ability of MAML is also competitive
when compared with some state-of-the-art few-shot learning
methods in terms of identifying realistic bearing damages
using a sufficient amount of training data from artificial
damages.

Index Terms—Bearings, anomaly detection, few-shot, lim-
ited data, model-agnostic, meta-learning.

I. INTRODUCTION

Many data-driven and AI-based technologies have been

applied to enhance the accuracy and reliability of bearing

anomaly detection [1]–[3], but most of them require a large

amount of training data such as vibration [4]–[6], acoustic

[7], [8], and motor current [9], [10] signals. In practical

applications, however, it is usually impossible to obtain

enough data samples to train a robust classifier that can

identify each type of failure [5]. One of the reasons is

most bearing degradation would evolve slowly over time, a

process that takes months or even years, making it difficult

to collect sufficient data in the faulty state [11], [12].

In addition, certain safety-critical applications may not

be allowed to run into faulty states [5], so collecting a

sufficient amount of data in each bearing failure situation

can be expensive, unsafe, and often impractical. This will

inevitably lead to data imbalance problems [12]. All these

limitations on bearing anomaly detection in the real world

require the use of more effective algorithms that can use

limited data to train bearing fault classifiers with good

generalization capabilities.

To achieve this goal, one method is to use the limited

data available in each category to perform data augmen-

tation, such as Generative Adversarial Networks (GAN)

[12], [13]. However, the quality of the generated data

deserves further study. As reported in [12], the “quality

of generated spectrum samples” of GAN is “isn’t good

enough to provide auxiliary information.” Additionally,

another promising method to alleviate the problem of

limited data is to apply the few-shot learning method. This

method has been successfully applied to a variety of tasks,

including few-shot image recognition, autonomous agent

path planning, and more recently in anomaly detection [5],

[6], [14], [15]. Few-shot learning evaluates the model’s

generalization capability to classes not previously seen in

the training process, given only a few samples of each new

class [14]. Therefore, few-shot learning methods are very

suitable for solving data imbalance issues, since we can

train a model that generalizes to the imbalanced class.

Among the existing work of applying few-shot learning

methods to bearing fault diagnosis [5], [6], [14], Ref.

[5] proposed a model based on the Siamese Network,

which demonstrated enhanced fault diagnosis performance

when only 9 training samples were used in each class. In

addition, [14] applied a deep prototypical network-based

method for few-shot bearing fault diagnosis. Although it

showed better performance compared with the supervised

learning method, all of the bearing fault types in the test set

have showed up in the training set, as they are only differed

by their defect diameters and operating speed. In [6], an

auto-encoder and capsule network (CaAE) is proposed for

the same purpose. However, the case studies in [6] are not

formulated in the standard context of few-shot learning, as

all the identified bearing fault categories are already seen

during the training process.

Therefore, to further mitigate the limited data issue

and improve the model’s generalization capability, this

paper seeks to achieve effective anomaly detection using

the minimum amount of data using model-agnostic meta-

learning (MAML) [16]. Beyond just generalizing to new

tasks more effectively, MAML can also learn the process

of learning itself, or learning to learn. Specifically, MAML

is explicitly designed to train the model’s initial parameters

such that “the model has maximal performance on a new

task after the parameters have been updated through one

or more gradient steps computed with a small amount of

data from that new task” [16].

The rest of the paper is organized as follows. In

Section II, we introduce some background knowledge
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Fig. 1. Flowchart of the meta-training stage of the proposed MAML-based few-shot bearing fault diagnosis.

and underlying principle of MAML. Next, in Section

III, we present the architecture of the proposed MAML-

based few-shot bearing fault diagnostic framework, with

detailed descriptions on establishing the test environment

and model implementation. Section IV presents results

for 3 case studies performed on few-shot bearing fault

diagnosis using both the Case Western Reserve University

(CWRU) bearing dataset [17] and the Paderborn dataset

[18]. Section V concludes the paper by highlighting the

effectiveness of the proposed model in bearing fault diag-

nosis with limited data.

II. PRINCIPLE OF MODEL-AGNOSTIC

META-LEARNING

A. Meta-Learning

Meta-learning algorithms are developed to leverage past

data to learn new tasks more quickly. Not only can they

generalize new tasks more effectively, but they can also

use past experience to learn about the process of learning

itself, or learn to learn. In standard supervised learning,

the goal is to learn a function that will map some input x
(i.e., an image) to the label of that input y, as shown in

(1). In supervised meta-learning, the idea is very similar,

except that now it tries to map the training set Dtrain (with

the corresponding data and labels) and the test input x to

a label, as described in (2). Essentially, the goal of meta-

learning is to train a model that when exposed to a training

set, performs well on a corresponding test set of that task.

Supervised learning: f(x)→ y (1)

Supervised meta-learning: f (Dtrain, x)→ y (2)

The meta-training set Dtrain is typically designed to

contain a collection of little datasets of different categories

[19]. At meta-test time, the goal is to identify new cat-

egories (not previously seen in the training process) of

labels using a limited amount of test data x. The way to

accomplish this goal is to find a model that can accurately

match this function f (Dtrain, x). Besides some successful

deployment of sequence models in this effort such as

recurrent neural networks [19] or temporal convolution

networks [20], a very influential model was proposed by

Finn et al. in [16], which was referred to as model-agnostic

meta learning (MAML).

B. Meta-Agnostic Meta-Learning

The MAML algorithm is model-agnostic. More specif-

ically, it is agnostic both to the architecture of the neural

network and also to the loss function. The backbone of

MAML is to optimize for parameters that adapt quickly

with gradient descent in two loops – an inner loop

and an outer loop, which works well across a range

of different problem settings. All of these features pro-

vide many flexibilities for MAML, making it applicable

to both reinforcement learning problems that maximize

the expected cumulative reward function, and supervised

learning problems that minimize a certain loss function

(cross-entropy, mean-squared, etc.).

Performing few-shot classification with MAML requires

two stages – a meta-training stage and a meta-testing

stage. Formally, we consider MAML as a neural network

fθ parameterized by θ, which will be updated to φi

using gradient descent when adapting to a new class i.
During the meta-training stage as shown in Fig. 1, MAML

operates in an inner loop and an outer loop. In the inner

loop, MAML first computes the updated parameter vector

φi for each class i using training data Dtr
i

, and then it

evaluates the loss term on the validation data Dvd
i

sampled

from the same class using the updated model parameters

φi. The evaluated loss for each class i can be written as

L
(

φi,D
vd

i

)

= L
(

θ − α∇θL
(

θ,Dtr

i

)

,Dvd

i

)

(3)

where φi ← θ − α∇θL (θ,D
tr
i
) is the updated model

parameter for class i. For classification tasks on image or

bearing anomaly detection, the loss term is typically the

cross-entropy loss. In the context of bearing fault diagno-

sis, as illustrated in Fig. 1, different classes can represent



different types of bearing defects, such as inner/outer race

defects, ball defects, cage defects, among others.

In the outer loop, MAML aggregates the per-task post-

update losses L
(

φi,D
vd
i

)

and performs a meta-gradient

update on the original model parameter θ as

θ ← θ − β · ∇θ

∑

class i

L
(

φi,D
vd

i

)

(4)

where β is the learning rate of the outer loop. At meta-test

time, MAML is able to compute new model parameters

based on a few samples from unseen classes, and uses the

new model parameters to predict the label of a test sample

from the same unseen class.

In summary, the essential idea of MAML is trying

to find parameters of a neural network that does not

necessarily have the optimal performance for different

classes of data provided at the meta-training stage, but

can quickly adapt to new (unseen) tasks.

C. Meta-Agnostic Meta-Learning with Learnable Inner

Loop Learning Rates

As illustrated in Fig. 1, there is a learning rate lr
in MAML for its inner loop gradient update, which is

assigned as a fixed number α in [16] and is shared among

different classes for all update steps. However, this fixed

and shared inner loop learning rate lr can often affect

MAML’s generalization capability and convergence speed

[21], and the process of tuning this hyper-parameter lr for

a specific dataset can often be costly and computationally

intensive.

Therefore, a variant of MAML is proposed in [21]

to automatically learn the inner loop learning rate lr.

Specifically, it tries to learn different learning rates for

each layer of the neural network and for each step through

back-propagation. By doing this, the learning rate lr
becomes a vector that accounts for different learning rates

for each layer of the neural network. With this learnable

lr approach, elements in the learning rate vector lr can

learn to decrease their values as the training progresses,

which may help promote a faster convergence and alleviate

overfitting. Therefore, the revised form of (3) to compute

the loss term of each class can be written as

L
(

φi,D
vd

i

)

= L
(

θ − lri∇θL
(

θ,Dtr

i

)

,Dvd

i

)

(5)

III. FEW-SHOT BEARING FAULT DIAGNOSTIC

FRAMEWORK BASED ON MAML

A. Proposed Few-Shot Bearing Fault Diagnostic Model

Few-shot classification is considered an instantiation of

meta-learning in the field of supervised learning [22]. The

standard few-shot learning is usually formulated as N -way

K-shot problems, where N is the number of new classes

not seen in the meta-training process, while each class

only has K samples to train from.

The proposed few-shot bearing fault diagnostic model

based on MAML is illustrated in Fig. 2. At meta-training

stage, we’ll first optimize for a parameter set θ of a neural

network along the aggregated gradient descent direction

Fig. 2. Illustration of MAML applied to few-shot learning of bearing
anomaly detection.

of data from different bearing fault scenarios (∇L1, ∇L2,

∇L3, etc.). As discussed in Section II, this parameter set

θ is optimized to achieve quick adaptation to new classes

not previously unseen at the meta-training stage, rather

than achieving the optimal performance on classes it was

directly trained on.

For example, as shown in Fig. 2, we can train the

MAML-based diagnostic model using data from bearing

outer race defects and cage defects at different fault

severity, and generalize it to detect new fault scenarios

such as the ball defect and lubrication failure using a very

small amount of data (e.g., 5 samples). This problem will

be formulated as a 2-way 5-shot few-shot learning setting

that is well-suited for MAML.

With the proposed MAML-based few-shot bearing fault

diagnostic model, it is envisioned that we can mitigate

both data scarcity and data imbalance issues discussed

in [5] by adapting to these classes at the meta-testing

stage, which can yield a satisfactory performance but only

requires a limited amount of data. Additionally, another

appealing application is to recognize naturally evolved

bearing defects using models that are only trained on data

from artificially damaged bearings, since most bearing

failures evolve slowly over time and it might take months

if not years to collect a sufficient amount of data to train

supervised learning-based fault classifiers.

B. Objectives

In the proposed MAML-based few-shot bearing fault

diagnostic framework, the objective is to validate the per-

formance of MAML on few-shot bearing fault diagnosis

from the following aspects:

1) Training Data Size: Investigate the influence of train-

ing data size on the performance of MAML-based

few-shot bearing fault diagnosis.

2) New Artificially Induced Bearing Failures: Validate

the performance of MAML to predict previously

unseen artificial bearing faults in the laboratory envi-

ronment.

3) New Realistic Bearing Failures with Accelerated Ag-

ing: Explore the generalization capability of MAML



TABLE I
DIFFERENT CATEGORIES OF BEARING FAILURES SELECTED FROM

THE CWRU DATASET

Class Label Fault Location Fault Diameter (mils)

1 Healthy 0

2 Ball 0.007
3 Ball 0.014
4 Ball 0.021

5 Inner Race 0.007
6 Inner Race 0.014
7 Inner Race 0.021

8 Outer Race 0.007
9 Outer Race 0.014

10 Outer Race 0.021

TABLE II
DIFFERENT CATEGORIES OF BEARING FAILURES SELECTED FROM

THE PADERBORN DATASET

Label Fault Location Failure Cause Severity Code

1 Outer Race EDM∗ 1 KA01

2 Outer Race EE‡ 2 KA03

3 Outer Race EE‡ 1 KA05

4 Outer Race Drilling 1 KA07

5 Outer Race Drilling 2 KA08

6 Inner Race EDM 2 KI01

7 Inner Race EE‡ 1 KI03

8 Inner Race EE‡ 2 KI05

9 Healthy N/A 0 K001

10 Outer Race Pitting 1 KA04

11 Inner + Outer Race PD† 1 KB23

12 Inner + Outer Race Pitting 2 KB27

13 Inner Race Pitting 1 KI04

∗EDM: Electrical discharge machining.

‡EE: Electric engraver.

†Plastic deform: Indentations.

to predict real bearing failures with accelerated life-

time tests using data collected from artificially dam-

aged bearings.

Both 1) and 2) have been investigated in [5] using the

Siamese Network-based few-shot learning method on the

CWRU dataset. In order to perform a fair comparison,

we strive to keep the test environment consistent with the

benchmark study by also leveraging the CWRU dataset

and assigning the same fault labels. More details regarding

the CWRU dataset can be found in their website [17].

A list of all 10 fault scenarios are presented in Table

I. Specifically, different classes are identified based on

the location and size of a bearing defect, rather than its

operating speed and loading condition. We also adopt the

same data segmentation method as [5], in which each data

segment is comprised of 2048×2 data points that are sam-

pled at 12 kHz from both accelerometers at the Fan end

and the Load end. After performing the aforementioned

classification and data segmentation strategies, the entire

CWRU dataset is partitioned into 10 classes, with each

class having 1,980 data segments.

To further investigate the generalization capability of

MAML in predicting real bearing failures as described

in 3), we also apply the proposed MAML-based few-shot

learning framework to the Paderborn dataset [18], since the

CWRU dataset only contains artificially induced defects.

The Paderborn dataset includes data of 32 bearings under

test, and among them, 6 are normal ones, 12 are with

artificially induced damages, and 14 are with real damages

caused by accelerated aging tests. There are only inner and

outer raceway defects present for both artificial and real

bearing failures, while damages at the rolling elements

were not observed.

For the Paderborn bearing dataset, we select the same 13

representative classes from the total 32 classes according

to [15], with 1 at the healthy condition, 8 of them

have manually initiated bearing defects, and the rest of

them have real bearing failures resulted from accelerated

lifetime testing. The selected classes have distinct combi-

nations in terms of their fault location, cause of failure,

and fault severity. The threshold values used to determine

different levels of fault severity has been discussed in

detail in [4], where level 1 corresponds to a defect length

smaller than 2 mm, level 2 corresponds to defect lengths

between 2 to 4.5 mm, and level 3 corresponds to 4.5 to

13.5 mm.

A complete list of these selected classes is presented

in TABLE II, and the goal is to successfully identify the

healthy case as well as real bearing failures (categories 8

to 13) using the artificial fault data (categories 1 to 7). The

rest of the data segmentation process is consistent with the

settings in [15].

C. Model Implementations

Our model follows the same architecture as the em-

bedding function used by [16], which has 4 modules

with a 3 × 3 convolutions and 64 filters, followed by

batch normalization, a ReLU nonlinearity, and 2×2 max-

pooling. The bearing vibration signals are sampled with

a dimension of 4096 and converted to 64 × 64, and

the last layer is fed into a softmax. For N -way, K-shot

classification, each gradient is computed using a batch size

of NK examples.

The N -way convolutional were each trained with 1

gradient step and a meta batch-size of 25 tasks. For

MAML with a fixed learning rate, the learning coefficient

is chosen as α = 0.01. For MAML with a learnable inner

loop learning rate lr, the initial value is also kept and 0.4

and it will be optimized with the training step [21]. We

used a meta batch-size of 1 task for both 1-shot and 5-shot

testing. All models were trained for 1500 iterations.

IV. EXPERIMENTAL RESULTS

In this section, we seek to validate the performance

of MAML on few-shot bearing fault diagnosis. As dis-

cussed in Section III, We’ll specifically investigate its

performance with different training data size and different

unseen fault categories using the CWRU dataset. Addition-

ally, we’ll also leverage the Paderborn dataset to predict

naturally evolved bearing failures using data collected



TABLE III
N -WAY K-SHOT CLASSIFICATION RESULTS PREDICTING REALISTIC BEARING DEFECTS (9 TRAINING SAMPLES PER CLASS).

N -way Accuracy
6-way Accuracy 5-way Accuracy 4-way Accuracy

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

MAML (fixed lr) 44.36± 4.02% 47.30± 2.29% 55.51± 3.02% 53.10± 8.4% 74.93± 5.05% 76.79± 3.09%
MAML (learnable lr) 55.21± 3.01% 62.58± 2.78% 73.63± 3.75% 78.15± 2.76% 75.04± 3.51% 84.62± 1.10%

N -way Accuracy
3-way Accuracy 2-way Accuracy 1-way Accuracy

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

MAML (fixed lr) 82.73± 3.12% 85.53± 1.07% 97.68± 2.18% 98.19± 1.98% 98.77± 2.06% 100%
MAML (learnable lr) 88.62± 4.03% 97.90± 1.50% 100% 100% 100% 100%

from artificially damaged bearings. The performance of

the proposed MAML-based few-shot classifier will be

compared with that constructed with the Siamese Network

in [5], and we strive to keep their test scenarios consistent

by leveraging the open-source code provided in [5].

A. Predicting New Artificially Induced Bearing Defects

The experiments performed in this section seeks to

investigate MAML’s performance to predict artificially

induced bearing faults that are not seen at the meta-training

stage. We also extract data from the CWRU dataset to test

1-way to 5-way classifications with 1 and 5 shots. A total

of 10 rounds of experiments are performed to compare

with the benchmark in [5]. Since [5] only provides the

1-way to 3-way results, the 4-way and 5-way results are

also obtained using the open-source code in [5]. We also

followed the order of labels presented in TABLE I, thus a

5-way classification indicates we are deploying data with

class labels 1 to 5 as the meta-training data, and the rest

will serve as the meta-testing data.

By randomly selecting 9 data segments from 1,980

available ones for each class, the complete results on N -

way K-shot classification are presented in TABLE III. It

can be observed that MAML with a fixed lr is able to

achieve 10% to 20% enhancement in average accuracy

when compared to the benchmark Siamese Network, while

MAML with learnable lr is able to achieve even larger

improvements ranging from 20% to 30%. A comparison

study for MAML with fixed and learnable lr is illustrated

in Fig. 3, where the validation accuracy of the learnable

inner update lr consistently outperforms and is more stable

than the fixed lr case after 600 training epochs. This obser-

vation can be interpreted in such a way that the learnable lr
can learn to decrease the learning rates with larger training

epochs and getting closer to the local optimum, which may

help alleviate overfitting and promotes faster and more

stable convergence [21].

B. Predicting New Realistic Bearing Defects

This study also goes beyond identifying artificially

induced bearing defects by further exploring the gener-

alization capability of MAML in predicting real bearing
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Fig. 3. Diagram of model-agnostic meta-learning algorithm applied to
few-shot learning of bearing anomaly detection.

failures caused by accelerated lifetime tests, or Artificial-

to-Real. The objective is to use a combination of artifi-

cially damaged bearings and healthy bearings to identify

those with real damages. Due to differences between data

collected from these two scenarios, standard supervised

learning methods can only achieve accuracies lower than

75% [4]. Additionally, these differences will also cause the

transfer learning-based method to experience an obvious

decrease in the average accuracy for Artificial-to-Real

tasks when compared to generalizing to other artificial

tasks [23].

The selected representative classes from the Paderborn

dataset [18] are listed in TABLE II, which is consistent

with the benchmark study that uses standard few-shot

learning techniques [15], including direct training net

(DTN), Unfrozen 1 Fine-tuning Net (U1FN), Unfrozen

2 Fine-tuning Net (U2FN), Unfrozen 3 Fine-tuning Net

(U3FN), Unfrozen 4 Fine-tuning Net (U4FN), and Meta

Relation Net (MRN). The source of meta-training data

will only be the artificially damaged bearings (classes 1

to 8). The benchmark study [15] assumes the availability

of sufficient training samples by using 1000 samples per

class, which is a valid assumption for artificially induced

bearing defects collected in the laboratories. Four case

studies with 1-shot, 3-shot, 5-shot, and 10-shot settings

are conducted using MAML with a learnable lr vector.

The comparison results for identifying 5-way real bear-



TABLE IV
5-WAY K-SHOT CLASSIFICATION RESULTS PREDICTING NEW ARTIFICIAL BEARING DEFECTS.

K-shot Accuracy DTN U1FN U2FN U3FN U4FN MRN MAML

1-shot 91.67% 94.27% 93.86% 91.20% 84.48% 94.10% 84.85± 0.47%
3-shot 93.10% 93.10% 96.61% 92.88% 89.57% 94.85% 93.43± 0.17%
5-shot 93.67% 96.84% 98.36% 94.03% 91.89% 95.69% 95.27± 0.14%
10-shot 95.26% 97.00% 96.82% 92.04% 97.14% 95.69% 97.17± 0.10%

ing defects are presented in TABLE IV, and the results

from few-shot benchmark studies are extracted from [15].

The results show that MAML is able to deliver satisfactory

results at different K-shot tests, and in particular, it can

provide the best accuracy of over 97% for the 10-shot

case. Another advantage of MAML over classical few-shot

learning approaches is the good generalization capability

even when it is trained using a very small number of

training samples, as presented in the earlier study in

TABLE III. This feature will be particularly advantageous

if it is also cost-prohibitive or dangerous to collect a large

amount of meta-training data at different fault conditions,

and we’ll reserve it as a part of future work.

V. CONCLUSION

This paper proposed a few-shot bearing fault diagnostic

framework based on meta-agnostic meta-learning. The

results demonstrate that the MAML-based model greatly

outperforms the benchmark study based on Siamese

Networks when identifying new artificial bearing faults.

Specifically, this advantage can be up to 25% when using

MAML with learnable inner loop learning rates lr.

The CWRU dataset only contains vibration data from

manually initiated bearing defects, which is inconsistent

with the real-world scenario where these defects are

evolved naturally over time. Therefore, we also applied the

proposed method to the Paderborn dataset to explore the

generalization capability of MAML when adapting to real

bearing failures. The results demonstrate that MAML is

able to deliver competitive performance when comparing

with state-of-the-art few-shot learning methods, which of-

fers promising prospects for identifying naturally-evolved

bearing failures using data collected from laboratory tests

with artificially induced faults.
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