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Abstract
This paper proposes a novel algorithm for detecting trade activities suspected to be illegit-
imate across day-ahead and real-time energy markets. Illegitimate trades bring severe risks
to the financial health of energy markets and the operation stability of power grids. It is
of critical importance for the operators to identify such activities in a sound and timely
manner. The proposed algorithm firstly generates a set of legitimate trade feature samples
using historical trade profiles of energy markets based on the comparison of day-ahead and
real-time trade profiles and related environmental impacts. Then a set of illegitimate trade
feature samples are created using a Genetic-algorithms based negative selection procedure
based on those legitimate trade feature samples. The created illegitimate samples are further
labeled with specific illegitimate trade types by comparing with pre-defined typical trade
feature samples for each illegitimate trade type. After that, deep learning is employed to
learn the relationship between the trade features and associated legitimacy labels from the
sets of legitimate and illegitimate trade feature samples, and predict the legitimacy status for
incoming trade profiles according to corresponding trade features. The effectiveness of the
proposed algorithm has been demonstrated using sample trade profiles obtained from New
England ISO
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Abstract—This paper proposes a novel algorithm for detecting 
trade activities suspected to be illegitimate across day-ahead and 
real-time energy markets. Illegitimate trades bring severe risks 
to the financial health of energy markets and the operation 
stability of power grids. It is of critical importance for the 
operators to identify such activities in a sound and timely 
manner. The proposed algorithm firstly generates a set of 
legitimate trade feature samples using historical trade profiles 
of energy markets based on the comparison of day-ahead and 
real-time trade profiles and related environmental impacts. 
Then a set of illegitimate trade feature samples are created using 
a Genetic-algorithms based negative selection procedure based 
on those legitimate trade feature samples. The created 
illegitimate samples are further labeled with specific illegitimate 
trade types by comparing with pre-defined typical trade feature 
samples for each illegitimate trade type. After that, deep 
learning is employed to learn the relationship between the trade 
features and associated legitimacy labels from the sets of 
legitimate and illegitimate trade feature samples, and predict 
the legitimacy status for incoming trade profiles according to 
corresponding trade features. The effectiveness of the proposed 
algorithm has been demonstrated using sample trade profiles 
obtained from New England ISO. 

Keywords— anomaly detection, electricity energy markets, 
genetic algorithms, illegitimate trade, negative selection 

I. INTRODUCTION 
Deregulated energy markets were created to harness the 

powers of competition in promoting efficient markets and 
competitive prices for energy consumers. The design and 
operation of these markets is complex and susceptible to 
participant conduct that can threaten their efficiency and 
integrity [1]. Market operators are responsible for protecting 
the efficiency and integrity of the markets by monitoring, 
investigating and enforcing compliance with the various rules 
prohibiting such conduct. The types of such conduct generally 
can be divided into two basic categories, market power and 
market manipulation. 

There are many works existing on identification and 
mitigation of market powers [2]-[5], but insufficient efforts on 
detection of market manipulation [6]. In light of this, this 
paper has focused on the detection of illegitimate trading, i.e. 
market manipulative behaviors across day-ahead and real-
time energy markets. The detection is based on the 
comparison of scheduled day-ahead trading profiles with 
executed rea-time trading profiles and considering the impacts 
of weather and other environmental factors. 

The energy trading activities between day-ahead and real-
time markets may be deviated to some extent, but inherent 
energy usage patterns should be closely matched each other to 
avoid significant operation cost increase in power grid, and 
unfair economy benefits to market participants. 

The electricity energy markets collect a large amount of 
data from market participants at different time scales, but are 
lack of legitimacy information about those trading activities. 
Illegitimate trade can be defined as a pattern in the trade 
activities that does not conform to the expected legitimate 
trading behaviour. Generally speaking, illegitimate trading 
events occur relatively infrequently. However, when they do 
occur, their consequences can be quite dramatic and quite 
often in a negative sense.  

In this paper, a novel detection method is proposed to 
detect the illegitimate trading activities across day-ahead 
energy market and real-time energy market. The used data for 
trade legitimacy identification include the cleared energy bids 
for each day-ahead bidding intervals, and the executed energy 
bids for each real-time bidding intervals for a given trader, or 
a group of traders. The deep learning approach is used to label 
the given trading activities as legitimate, or illegitimate with 
specific types based on a set of feature attributes. The 
illegitimate trading can be classified into different types, such 
as peak hour manipulation, valley hour manipulation, and 
others. Each trade set is evaluated using multiple feature 
attributes, including peak shortage, valley excess, capacity 
fitting, up-ramp shortage, down-ramp shortage, ramping 
fitting, correlation between markets, and environmental 
impact by comparing the cleared day-ahead data, and real-
time usage data, and evaluating the environmental conditions.  

Considering that there are rarely labelled illegitimate data 
available, and the boundary between legitimate and 
illegitimate behaviour is often not precise due to legitimate 
behaviour keeping evolving with time, the proposed algorithm 
solely depends on historical legitimate trading sets to build 
illegitimate detection model. For each data set of legitimate 
trading, we have determining a set of feature attributes to 
represent its legitimate status. Then, using a Genetic-
algorithms based negative selection approach, a set of 
illegitimate trade feature samples are generated based on the 
determined set of legitimate trade features. The generated 
illegitimate trade feature samples are further assigned a 
specific label for different illegitimate status by comparing 
with pre-defined typical trade feature samples for each 
illegitimate trade type. The typical illegitimate trade feature 
samples can be determined based on corresponding set of day-
ahead and real-time trading profiles generated by simulating a 
specific illegitimate trade type. The legitimate trade feature 
sets and labeled illegitimate trade feature sets constitute the 
training data sets for the deep learning model. 

The proposed algorithm treats the illegitimate trade 
detection as a multi-class classification problem and modeled 
through a forward neural network with multiple hidden layers. 



 

 

The inputs and outputs are set as feature attributes and 
legitimate status of samples. For a new trade set, based on the 
corresponding feature attributes for the new sample, then the 
legitimate status for the given trade can be determined 
accordingly.  

The proposed algorithm has been tested using historical 
trade profiles for a load zone at Northeast Massachusetts and 
Boston area and historical weather observations at Boston 
weather station. The original trade profile are obtained from 
New England ISO, and modified to represent illegitimate 
trade scenarios for facilitating algorithm testing. The trade 
profiles are represented as cleared day-ahead hourly demands, 
and executed real time 5-minute demands. The weather 
information includes hourly dry-bulb and dewpoint 
temperature observations. The trade activities and weather 
conditions for three months of 2019 are used, in which the data 
sets of July and August of 2019 are used to train the 
illegitimate trade detection model, and the ones in September 
of 2019 are used for testing the performance of the model. We 
have modeled four different illegitimate trade behaviors, 
including peak hour manipulation, valley hour manipulation, 
up-ramping period manipulation, and down-ramping period 
manipulation. The test results on the sample trade profiles 
have showed that the proposed algorithm can correctly 
identify the legitimacy of trade activities, and assign 
corresponding  legitimacy label with accuracies of 95.50% 
and 94.63%, respectively. 

II. CHARACTERISTIC MEASURES FOR ILLEGITIMATE 
TRADES 

We define eight different measures to characterize the 
features of trade profiles for identifying illegitimate trades, in 
which 7 of them are determined based on the comparison of 
cleared day-ahead bids and executed real-time bids or real-
time bids to be executed, and the other is used to represent 
environmental impacts for preventing misplacing 
environment-induced demand deviations as manipulative 
behaviors. For each trade set, we can correspondingly 
determine a set of features. Based on those features, we can 
determine whether the trade activity is legitimate or not, and 
if it is illegitimate, what type of illegitimate it belongs to.  

It is noted that the formulas for trade feature calculation 
might be slight difference between ones for a power producer 
and for a power consumer. The bided powers used in the 
formulas refer to the purchased or purchasing amount of 
powers for a power consumer, and the sold or selling amount 
of powers for a power producer. The formulas are given for 
any trader or trader group in the markets. The trader can be a 
single power producer, or a group of power producer such as 
virtual power plants (VPPs). The trader can also be a single 
power consumer, or a group of power consumers, such as load 
serving entities (LSEs).   

Assumed that each day-ahead time interval includes 𝑁! 
real-time time intervals, each day-ahead cycle includes 𝑁" 
day-ahead time intervals, and the monitoring window used by 
the operators includes W  day-ahead time intervals. The 
average actual real-time energy bid for a given day-ahead time 
interval ℎ, 𝑃%"#$ can be determined as: 

𝑃%"#$ =
%
&!
∑ 𝑃'#$'∈)(")                                      (1) 

where 𝑃'#$ is the actual real-time bid for a real-time interval 
𝑚, 𝑀(ℎ) is the set of real-time intervals within the given day-
ahead interval ℎ. For each day-ahead time interval ℎ within 
the monitoring window, the average real-time energy bid 𝑃%"#$ 
is compared with the cleared day-ahead energy bid 𝑃",-  to 

evaluate the impacts of power deviations across different 
markets on the system capacity and response speed 
requirements. The monitoring window includes W day-ahead 
intervals retrieved from the study day-ahead interval. 

The first characteristic measure is a peak shortage 
attribute, 𝐴"

./012!"345  which is used to measure the power 
mismatch between average actual real-time bid and cleared 
day-ahead bid during a peak period over the monitoring 
window. The peak shortage attribute is normalized with the 
maximum day-ahead bid over the past day-ahead cycle. The 
peak shortage attribute for a given day-ahead interval ℎ , 
𝐴"
./012!"345 is defined as the ratio of the accumulated power 

deviation ∆𝑃"2""
#$2,-  for all common day-ahead intervals 

between the peak period and the monitoring window, over 
maximal day-ahead bid among the past day-ahead cycle, 𝑃"

,-
: 

𝐴!
"#$%&'!()* =

∑ ,-./0-./'12(4!"!#
$% &5&'()46!$%)89:;<𝟎,∆4!"!#

*+"$%@,"-
!#.𝟎

4!
$%   (2) 

where 𝑠𝑔𝑛(∙) is a sign function, [0.5 + 0.5𝑠𝑔𝑛(𝑥)] equals 1 
and not 0 only when 𝑥 is greater than 0. 𝛼./01 is a peak scale 
factor which is greater than 1.0. 𝑃%",- and 𝑃"

,-
 are the average 

and maximal day-ahead bids within the past day-ahead cycle 
retrieved from the study interval ℎ, and defined as: 

𝑃%",- =
%
&#
∑ 𝑃"2""

,-&#2%
""6𝟎                            (3) 

𝑃"
,-
= max

""6{𝟎,𝟏,⋯,&#2𝟏}
𝑃"2""
,-                       (4) 

∆𝑃"2""
#$2,-  is the power deviation defined as the difference 

between cleared day-ahead bid and average real-time bid for 
a power producer as shown (5a), or the difference between 
average real-time bid and cleared day-ahead bid for a power 
consumer as shown in (5b): 

∆𝑃"2""
#$2,- = 𝑃"2""

,- − 𝑃%"2""
#$                           (5a) 

∆𝑃"2""
#$2,- = 𝑃%"2""

#$ − 𝑃"2""
,-                           (5b) 

The peak period for the study day-ahead interval ℎ is defined 
as the set of day-ahead time intervals that the cleared day-
ahead bid is greater than the average day-ahead bid, 𝑃%",- times 
the peak scale factor 𝛼./01.  

The second characteristic measure is a valley excess 
attribute, 𝐴"

=0>>/?_/AB/!!  which is used to measure the 
difference between cleared day-ahead and average actual real-
time bid during valley period over the monitoring window. 
The valley excess attribute is normalized with the maximum 
day-ahead bid over past day-ahead cycle. The valley excess 
attribute for a given day-ahead interval, 𝐴"

=0>>/?2/AB/!! is 
defined as the ratio of the accumulated power deviations 
between day-ahead and real-time, (−∆𝑃"2""

#$2,-)  for all 
common day-ahead intervals between the valley period and 
the monitoring window, over maximal day-ahead bid within 
the past day-ahead cycle: 

𝐴!
A$BB#C&#DE#'' =

∑ ,-./0-./'12(46!$%/50(11'2&4!"!#
$% )89:;<𝟎,&∆4!"!#

*+"$%@3"-
!#.𝟎

4!
$%      

(6) 
The valley period for the study day-ahead interval ℎ is defined 
as the set of day-ahead time intervals that the cleared day-
ahead bid is less than the average day-ahead bid, 𝑃%",- divided 
by a valley scale factor 𝛼=0>>/? . The valley scale factor is 
greater than 1.0.  

The third characteristic measure is a capacity matching 
attribute, 𝐴"

CDEDCFGH_IDGCJFKL  which is used to measure the 
capacity difference between cleared day-ahead and average 
actual real-time bid over past day-ahead cycle. The capacity 
matching attribute is normalized with the maximum cleared 



 

 

day-ahead bid over the past day-ahead cycle retrieved from 
the study day-ahead interval. The capacity matching attribute 
for a given day-ahead interval is defined as the ratio of the 
square root of averaged squared deviations between average 
real-time bid and cleared day-ahead bid for all day-ahead 
intervals of past day-ahead cycle, over maximal day-ahead bid 
within the past day-ahead cycle retrieved from the study 
interval: 

𝐴"
CDEDCFGH_IDGCJFKL =

M $
%#

∑ O∆Q#&#"
'(&)*R

𝟐%#&$
#",𝟎

Q#
)*            (7) 

The fourth characteristic measure is an up-ramping 
shortage attribute, 𝐴"

S.40'._!"345  is used to measure the 
difference between ramp-up rates for cleared day-ahead and 
average actual real-time bid during ramping up intervals over 
the monitoring window. The up-ramping shortage attribute for 
a given day-ahead interval, 𝐴"

S.40'._!"345  is defined as the 
ratio of the accumulated incremental power deviation, 
∆T𝑃"2""

#$2,-  for all common day-ahead intervals between the 
up-ramping period and the monitoring window, over maximal 
day-ahead bid within the past day-ahead cycle: 

𝐴!
G")$H"_'!()* =

∑ ,-./0-./'12(4!"!#
$% &4!"!#"-

$% )89:;<𝟎,∆44!"!#
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               (8) 
The incremental power deviation ∆T𝑃"2""

#$2,-is defined as the 
difference between incremental power change of cleared day-
ahead bid and incremental power change of average real-time 
bid for a power producer as shown in (9a), and as ones the 
difference between incremental power change of average real-
time bid and incremental power change of cleared day-ahead 
bid for a power consumer as shown in (9b): 
∆T𝑃"2""

#$2,- = (𝑃"2""
,- − 𝑃"2""2%

,- )−(𝑃%"2""
#$ + 𝑃%"2""2%

#$ )  (9a) 
∆T𝑃"2""

#$2,- = (𝑃%"2""
#$ − 𝑃%"2""2%

#$ ) − (𝑃"2""
,- + 𝑃"2""2%

,- )(9b) 
The up-ramping period for the study day-ahead interval ℎ is 
defined as the set of day-ahead time intervals that the cleared 
day-ahead bid at a given day-ahead interval is greater than 
ones at previous day-ahead interval.  

The fifth characteristic measure is a down-ramping 
shortage attribute, 𝐴"

UV40'._!"345 which is used to measure the 
difference between ramp-down rates for cleared day-ahead 
and average actual real-time bid during ramping down 
intervals over the monitoring window. The down-ramping 
shortage attribute for a given day-ahead interval, 
𝐴"
UV40'._!"345  is defined as the ratio of the accumulated 

decremental power deviation, (−∆T𝑃"2""
#$2,-) for all common 

day-ahead intervals between the down-ramping period and the 
monitoring window, over maximal day-ahead bid within the 
past day-ahead cycle retrieved from the study interval: 

𝐴!
J2)$H"_'!()* =

∑ ,-./0-./'12(4!"!#"-
$% &4!"!#

$% )89:;<𝟎,&∆44!"!#
*+"$%@3"-

!#.𝟎

4!
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         (10) 
The down-ramping period for the study day-ahead interval ℎ 
is defined as the set of day-ahead time intervals that the 
cleared day-ahead bid at a given day-ahead interval is lower 
than ones at previous day-ahead interval.. 

The sixth characteristic measure is a ramping matching 
attribute, 𝑨"

40'._'05B"WVX  which is used to measure the 
difference between ramping rates of cleared day-ahead and 
average actual real-time bid over past day-ahead cycle. The 
ramping matching attribute is normalized with the maximum 
day-ahead bid over a period of past day-ahead cycle. The 
ramping matching attribute for a given day-ahead interval is 

defined as the ratio of the square root of averaged squared 
incremental power deviations between average real-time bid 
and cleared day-ahead bid for all day-ahead intervals of past 
day-ahead cycle over maximal day-ahead bid within the past 
day-ahead cycle retrieved from the study interval, according 
to:  

𝐴"
YDIE_IDGCJFKL =

M $
%#

∑ O∆.Q#&#"
'(&)*R

𝟐%#&$
#",𝟎

Q#
)*        (11) 

The seventh characteristic measure is a cross-market 
correlation attribute, 𝑨"B344/>05W3V which is used to measure the 
correlation between cleared day-ahead bid and average actual 
real-time bid over past day-ahead cycle, according to:  

𝐴KE())#B$*L(2 =
M!∑ 46!"!#

*+ 4!"!#
$%5!"-

!#.𝟎 &∑ 46!"!#
*+5!"-

!#.𝟎
∑ 4!"!#

$%5!"-
!#.𝟎

NOM!∑ P46!"!#
*+ Q𝟐5!"-

!#.𝟎 &<∑ 46!"!#
*+5!"-

!#.𝟎
@
𝟐
ROM! ∑ P4!"!#

$% Q
𝟐5!"-

!#.𝟎 &<∑ 4!"!#
$%5!"-

!#.𝟎
@
𝟐
R

  

(12) 
This attribute can also be defined and used for measuring 

the correlation of activities between different market 
participants based on cleared day-ahead and/or actual average 
real-time bid over past day-ahead cycle.  

The eighth characteristic measure is an environmental 
impact attribute, 𝐴"

/V=2W'.0B5  which is used to measure the 
impacts of severe weather, holiday and special events,  
equipment forced and scheduled outages on the mismatches 
between the cleared day-ahead and actual average real-time 
bid over past day-ahead cycle. For a power consumer, 
𝐴"
/V=2W'.0B5  can be determined based on the weather 

information, such as temperature-humidity-index: 
𝐴"
/V=2W'.0B5 = 𝐴J

U5?./𝐴"5"W                     (13) 
where 𝐴J

U5?./  is the scale factor defined for holidays and 
special events, 𝐴"5"W is an attribute representing the impacts of 
severe weather and defined as: 

𝐴"5"W =
Z $
/∑ $[\] #&#"

./&$
#",𝟎

ID^
#",{𝟎,𝟏,⋯,%#&𝟏}

$[\] #&#"
                     (14) 

𝑇𝐻𝐼B " is a temperature-humidity index (THI) to account for the 
combined effects of environmental temperature and relative 
humidity. For a power producer, 𝐴"

/V=2W'.0B5  can be 
determined based on the fuel availability 𝐴J

_S/> and equipment 
availably 𝐴J

/`SW. as: 
𝐴"
/V=2W'.0B5 = 𝐴J

/`SW.𝐴J
_S/>                      (15) 

𝐴J
_S/>  may be weather related, and  𝐴J

/`SW.  depends on 
equipment scheduled outage and random faults. The attribute 
𝐴"
/V=2W'.0B5 can also be set by operator manually to include 

any impacts that not defined here. 
III. ILLEGITIMATE TRADE FEATURE SAMPLE GENERATION 

AND ILLEGITIMATE TYPE LABELING 
According to the trade features defined in above section, 

we can create a set of legitimate trade feature samples using 
historical trade profiles. Based on those legitimate feature 
samples, we can generate a set of illegitimate trade feature 
samples using a negative selection procedure, and assign a 
specific illegitimate trade type for each illegitimate trade 
feature sample using an illegitimate trade type labeling 
procedure discussed in this section. In this paper, a genetic 
algorithms-based negative selection procedure [7] is 
employed. 



 

 

The genetic algorithms-based negative selection procedure 
for generating illegitimate trade feature samples includes the 
following steps: 
• Step 1: define the representative legitimate feature trade 

samples based on historical trading profiles obtained 
from day-ahead and real-time markets.  

• Step 2: initialize a population of illegitimate trade feature 
samples using negative selection procedure.  

• Step 3: create new population of illegitimate trade 
feature samples using the genetic algorithms.  

• Step 4: combine the illegitimate trade feature samples 
from both Step 2 and Step 3 together, and retain the ones 
with top fitness to keep the population size fixed in each 
generation.  

• Step 5: repeat Step 3 to Step 4 until the minimal radius 
of illegitimate trade feature samples is less than a preset 
threshold. 

Step 1 of above procedure first calculates the trade feature 
attributes for each legitimate trade set using formulas in 
Section II, then convert each feature from floating number 
into integer ones to enable using integer number based 
genetic algorithms for fast computation. For any j-th feature 
attribute 𝐴"

a , it is converted into an integer value between 1 
and bound integer number 𝐵a, 𝐴D"

a , according to: 

𝐴D"
a = int H

O-#
52-#

5 Rb5cd-#
5
2-#

5 e

-#
5
2-#

5 I                   (16) 

𝐴"
a
 and 𝐴"

a  are the possible maximum and minimum values of 
𝐴"
a . After that a set of representative legitimate feature trade 

samples can be defined. Suppose there are 𝑁  legitimate 
feature samples available 𝐱Wf(𝑖 = 1,2,⋯ ,𝑁) , with centers 
𝐎Wf , and radiuses rWf . 𝐎Wf  is defined by set of scaled integer 
trade features, 𝐎Wf = [𝐴W%f , 𝐴WTf , ⋯ , 𝐴Wgf ] . If the number of 
available trade profiles is limited, we can directly use each 
trade profile to define one legitimate sample by setting its 
center using associated trade features of the trade profile, and 
its radius using a pre-set threshold. If the number of available 
trade profiles is sufficient enough, we can use k-means 
clustering method to partition available trade profiles into	𝑁 
clusters and use trade features of each cluster to define one 
legitimate sample and set its center and radius based on the 
statistics of trade features of all trade profiles in the cluster. 

In Step 2, the candidate illegitimate trade feature samples 
are randomly generated, and compared with the legitimate 
trade feature sample set generated in Step 1. Only those 
samples that do not match any element of the legitimate 
sample set are retained. Assumed there are 𝑀  illegitimate 
samples 𝐱Wh(𝑖 = 1,2,⋯ ,𝑀)  to be generated, with centers 
𝐎Wh, and radiuses rWh, and the center 𝐎Wh is defined by set of 
scaled integer trade features, 𝐎Wh = [𝐴W%h, 𝐴WTh, ⋯ , 𝐴Wgh] , and 
𝐴Wah(𝑗 = 1,2,⋯ , 𝐿)  is set randomly among 1 and the integer 
bound number for the j-th feature, 𝐵a .The radius of 
illegitimate sample 𝑖, 	rWh is defined based on its Euclidean 
distance to nearest legitimate sample 𝑘, according to: 

rWh = V𝐎1f −𝐎WhVg. − r1
f                 (17) 

𝐎1f and r1f are the center and radius of its nearest legitimate 
sample 𝑘, i.e.  

V𝐎1f −𝐎WhVg. = min
a∈[%,T,…,&]

V𝐎af −𝐎WhVg.       (18) 

V𝐎1f −𝐎WhVg.  and V𝐎af −𝐎WhVg.  represent the Euclidean 
distances between 𝐎1f  and 𝐎Wh  and 𝐎af  and 𝐎Wh  , 
respectively, as shown below:  

V𝐎1f −𝐎WhVg. = W∑ (𝐴1>f − 𝐴W>h)Tg
>6%          (19) 

V𝐎af −𝐎WhVg. =
W∑ X𝐴a>f − 𝐴W>hY

Tg
>6%          (20) 

If there exists legitimate sample 𝑗  , such that  V𝐎af −
𝐎WhVg. ≤ raf , this illegitimate sample 𝑗  becomes invalid, 
since it indeed overlaps with a legitimate sample 𝑗.  

In Step 3, the generated candidate illegitimate samples in 
Step 2 are further optimized to avoid overlapping with 
legitimate samples and maximize candidate sample coverage 
radius. Doing so, any illegitimate sample 𝑖 generated in this 
way has the maximal possible radius rWh  without any 
overlapping with all the 𝑁 legitimate samples. We first apply 
the crossover operator on the current population to create new 
population, then apply mutation operator to the newly created 
population to add more stochastic variations. Mutation is 
used to introduce variations into the trade feature bit-strings 
through replacing random bits of the bit-strings with their 
complementary values. Crossover is used to merge two bit-
strings to produce new sample containing certain subparts 
from two existing samples. Based on the determined centers 
for new population, we can determine corresponding radiuses 
for those new illegitimate samples by using (17), accordingly. 

In Step 4, only the most fitted illegitimate samples have 
the possibility of survival in the next generation. We define 
the fitness of each illegitimate sample candidate by using its 
radius rWh , as calculated in (17) . That is to say, those 
illegitimate samples with larger valid radiuses have higher 
fitness for evolution in the Genetic Algorithms. When the 
procedure is converged, the integer number represented 
features for each illegitimate feature samples are converted 
back int floating ones, according to: 

𝐴"
a =

d-#
5
2-#

5 e-l#
5cd-#

5 b52-#
5
e

mb52%n
                      (21) 

After a certain number of qualified illegitimate samples are 
generated by such genetic algorithm based negative selection 
procedure, a set of predetermined illegitimate trade labels can 
be assigned to each illegitimate sample, and then those 
samples can be used to detect the legitimacy status for the 
incoming trades.  

The procedure for labeling illegitimate trade type to 
illegitimate feature samples includes the following steps 
• Step 1: generate at least one exemplar trade profile for 

each pre-defined illegitimate trade type through 
simulating the specific trading scenario defined for the 
given illegitimate trade type. 

• Step 2: determine corresponding trade features for each 
exemplar illegitimate trade profiles, and create a set of 
typical illegitimate feature samples with specified 
illegitimate trade type. 

• Step 3: assign the illegitimate type of the nearest typical 
illegitimate feature sample to any generated illegitimate 
trade feature sample as its illegitimate type based on 
Chebyshev distance.  

Assumed there are 𝑇 typical illegitimate feature samples 
available, 𝐱W$h(𝑖 = 1,2,⋯ , 𝑇) with centers 𝐎W$h that defined 
by set of trade features, 𝐎W$h = [𝐴W%$h, 𝐴WT$h, ⋯ , 𝐴Wg$h] . The 
illegitimate sample 𝐱Wh is assigned the illegitimate type of the 
nearest typical illegitimate sample  𝐱1$h measured by 
Chebyshev distance, i.e. 

V𝐎1$h −𝐎WhVg6 = min
a∈[%,T,…,$]

V𝐎a$h −𝐎WhVg6   (22) 



 

 

where  V𝐎1$h −𝐎WhVg6  and V𝐎a$h −𝐎WhVg6  represent the 
Chebyshev distances between 𝐎1$h  and 𝐎Wh  and 𝐎o$h  and 
𝐎Wh , respectively, as shown below:  

V𝐎1$h −𝐎WhVg6 = 𝑚𝑎𝑥
W6%,⋯,g

]𝐴a>$h − 𝐴W>h]         (23) 

V𝐎a$h −𝐎WhVg6 = 𝑚𝑎𝑥
W6%,⋯,g

]𝐴a>$h − 𝐴W>h]         (24) 

IV. ACROSS-MARKET ILLEGITIMATE TRADE DETECTION 
A feedforward neural network (FNN) is used for modeling 

the multiple-class trade classification function. The FNN 
implicitly represent the relationship between the trade types 
and the monitored trade feature attributes determined based 
on the cleared day-ahead bids, the actual real-time bids, and 
environment conditions.  

The FNN consists of one input layer, 𝐿 hidden layer, and 
one output layer [8]. It takes the trade type as the outputs, and 
trade feature attributes as inputs. The input layer consists 8 
input units to receive the eight different features for trading 
activities, including peak shortage attribute, valley excess 
attribute, capacity matching attribute, up-ramp shortage 
attribute, down-ramp shortage attribute, ramp matching 
attribute, cross-market correlation attribute, and environment 
impact attribute. The output layer consists a set of output 
units, in which each unit corresponds to one trade type, and 
its output is between 0 and 1. For example, if we consider 1 
legitimate type, 4 different illegitimate types such as peak 
hour manipulation, valley hour manipulation, up-ramping 
period manipulation, and down-ramping period 
manipulation.. Then the output layer has 5 units. The output 
value with the largest value will be taken as the type predicted 
by the model. 

The FNN has multiple hidden layers, and each layer 
contains multiple hidden units.  The hidden layer 𝑙  takes an 
input vector 𝒙5

[>] , and computes a (hidden) output vector 
𝒉5
[>]according to: 

𝒉5
[>] = relud𝑾[>]𝒙5

[>] + 𝑏[>]g                 (25)  
where relu(∙) denotes a rectified linear unit function that is 
applied element-wise, 𝑾[>] is a weight matrix, and 𝑏[>] is a 
bias vector. Note that the output vector of one hidden layer is 
the input vector for the next hidden layer, i.e., 𝒙[>c%] = 𝒉[>], 
except the last hidden layer, the output of which is mapped to 
the output through a nonlinear unit as follows:  

𝒚5 = softmaxX𝑾ℎ[g] + 𝒃Y                        (26) 
where the output of j-th output unit is 𝑦5a =
𝑒𝑾𝒋"[9]c𝒃𝒋 ∑ 𝑒𝑾𝒌"[9]c𝒃𝒌1o  , 𝑾  is a weight matrix related 
output with last hidden layer, and 𝒃 is a bias vector for the 
output layer.  

The multi-layer FNN is trained using Adam optimization 
[9] which is a stochastic gradient descent method that is based 
on adaptive estimation of first-order and second-order 
moments, such that the mean squared error between the 
predicted output 𝒚5 and the true value 𝒅5 is minimized, i.e., 
by minimizing the following loss function, ℓ′:  

ℓ′ = %
'<=∑ ∑ X𝑦5a − 𝑑5aY

T
a

'<=
W6%                 (27) 

where, 𝑚54 is the total number of samples for FNN training. 
After trained using a set of training samples, the multi-layer 
FNN can be used to determine if a trading activity is 
legitimate or belongs to which illegitimate type when the 
associated trade feature attributes are given. 

V. NUMERICAL EXAMPLES 
The proposed algorithm has been tested using a load 

serving entity scenario based on actual trade profiles for a 
load zone at Northeast Massachusetts and Boston area and 

historical weather observations at Boston station. The 
original trade profiles are obtained from New England ISO 
[10], and modified to represent illegitimate trade scenarios 
for facilitating algorithm testing. 

The trade profiles include cleared day ahead hourly 
demands, and executed real time 5-minute demands of the 
load zone, in which day-ahead demands are actual bids, but 
the real-time demands are derived based on actual hourly 
zonal demands and the actual five-minute system demands. 
The weather information [11] includes hourly dry-bulb and 
dewpoint temperature observations. The hourly temperature-
humidity index is used to represent weather condition that 
derived based on hourly dewpoint temperature and dry-bulb 
temperature observed at the weather station. The average THI 
for day-ahead interval ℎ, 𝑇𝐻𝐼B " is defined as: 

𝑇𝐻𝐼B " = 15 + 0.5 ∗ 𝑇%J + 0.3 ∗ 𝐻vJ          (28) 
	𝑇%J  and 𝐻vJ  are the average real time temperature and 
dewpoint for the day-ahead interval ℎ. 

The trade activities and weather conditions for three 
months of 2019 are used, in which the data sets of July and 
August of 2019 are used to train the illegitimate trade 
detection model, and the ones in September of 2019 are used 
for testing the performance of the model. Fig. 1 gives the 
plots of trade profiles and weather observations for July, 
August and September of 2019.  

 
(a). trade profiles 

  
(b). weather observations 

Fig. 1 Trade profiles and weather observations for July, August and September of 
2019. 

The real-time trade profiles for September of 2019 were 
modified to include the simulated illegitimate trading events 
as listed in Table I. 

We have modeled 4 typical illegitimate trade scenarios, 
including anomaly peak (i.e. peak hour manipulation), 
anomaly valley (i.e. valley hour manipulation), anomaly up-



 

 

ramp (i.e. up-ramping period manipulation), and anomaly 
down-ramp (i.e. down-ramping period manipulation). Fig.2 
gives the plots for examples of typical illegitimate trade 
samples. 

Table I. Added simulated illegitimate trading events 
Illegitimate Type Date Period 

Anomaly Peak 9/9/2019 11:00-19:00 
9/18/2019 15:00-20:00 

Anomaly Up-Ramp 9/1/2019 7:00-13:00 
9/21/2019 8:00-14:00 

Anomaly Valley 9/7/2019 1:00-8:00 
9/15/2019 2:00-8:00 

Anomaly Down-Ramp 9/12/2019 18:00-19:00 
9/26/2019 18:00-23:00 

 

(a). Anomaly Peak 
 

(b). Anomaly Valley 

 

(c). Anomaly Up Ramping 
 

(d). Anomaly Down Ramping 

Fig. 2 Examples of typical illegitimate trade samples 

Fig. 3 listed the scatter and pie plots for the statistics of 
generated illegitimate trade feature samples with different 
illegitimate trade types based on trade profiles of July and 
August of 2019. The radius of legitimate feature sample is set 
as 0.06, and the number of illegitimate feature samples is set 
as 100. The length of monitoring window is 6 hours. 

(a). sample distribution 
 

(b). sample statistics  
Fig. 3 The statistics of generated illegitimate trade feature samples 

The multiple-layer forward neural network is used, in which 3 
hidden layers are configured with 32, 64 and 32 units, respectively. 
The output layer contains 5 units with Softmax activation functions.  

The test results for trade legitimacy identification and trade type 
labelling of trading activities are listed in Tables II and III.  

Table II. Overall summary of testing results 
Case Type Total 

counts 
Estimate counts Accuracy 

(%) Legitimate Illegitimate 
All 912 / / 95.50 

Legitimate cases 859 826 33 96.16 
Illegitimate cases 53 8 45 84.91 
Table II lists the statistics of trade legitimacy detection results for 

all hourly intervals in September of 2019. As showed in the table, 
96.16 % of legitimate cases are correctly labeled as legitimate, and 
84.91% of illegitimate cases are correctly identified as illegitimate. 
The overall accuracy for legitimacy identification is 95.50%.  

Table III lists the statistics of detection results for each trade type 
for all hourly intervals in September of 2019. The symbols 
“NM”,”AP”,”AV”,”AU”, and “AD” represent different trade types 
for the trading cases, including legitimate (“NM”), anomaly 
peak(“AP”), anomaly valley(“AV”), anomaly up-ramp (“AU”), and 

anomaly down-ramp (“AD”). Although different type of scenarios 
may have different prediction accuracy, the overall labelling 
accuracy is quite promising, i.e. 94.63%. It is worthy to note that 
this accuracy can be further improved by tuning typical feature 
samples to make them more distinct from each other.  

Table III. Classified summary of testing results 
Case 
Type 

Total 
Counts 

Total 
Fails 

Estimate counts Accuracy 
(%) NM AP AU AV AD 

All 912 49 /     94.63 
NM 859 33 826 7 22 3 1 96.16 
AP 16 4 3 12 1 0 0 75.00 
AU 14 7 2 4 7 0 1 50.00 
AV 15 3 1 0 0 12 2 80.00 
AD  8 2 2 0 0 0 6 75.00 

VI. CONCLUSIONS 
A novel detection algorithm has been proposed for 

detecting trade activities suspected to be illegitimate across 
day-ahead and real-time energy markets.  

Illegitimate trades are detected by using a mathematical 
model relating the trading legitimacy status with a set of trade 
feature attributes which represents the similarity between day 
ahead and real-time demands and the impacts of 
environmental changes. The model is trained using a set of 
legitimate and illegitimate trading feature samples. The 
illegitimate trading feature samples are generated based on 
legitimate feature samples by using a genetic-algorithms 
based negative selection approach, and labeled with specific 
illegitimate types based on predefined typical feature attribute 
samples. The legitimate trading feature samples are 
determined based on actual day-ahead and real-time trade 
profiles. The proposed algorithm solely relies on historical 
trade profiles, and does not require any illegitimate trade data 
available.  

The test results on sample trade profiles obtained from 
New England ISO have proven the effectiveness of the 
proposed algorithm. 
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