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Abstract

Various adversarial audio attacks have recently been developed
to fool automatic speech recognition (ASR) systems. We here
propose a defense against such attacks based on the uncertainty
introduced by dropout in neural networks. We show that our
defense is able to detect attacks created through optimized per-
turbations and frequency masking on a state-of-the-art end-to-
end ASR system. Furthermore, the defense can be made robust
against attacks that are immune to noise reduction. We test our
defense on Mozilla’s CommonVoice dataset, the UrbanSound
dataset, and an excerpt of the LibriSpeech dataset, showing that
it achieves high detection accuracy in a wide range of scenarios.
Index Terms: Automatic speech recognition, adversarial ma-
chine learning, audio attack, dropout, uncertainty distribution,
noise reduction

1. Introduction

An adversarial example is an input to a neural network designed
by an adversary to produce an incorrect or malicious output [1].
Early work on adversarial machine learning has shown that a
small and imperceptible optimized perturbation to an image can
cause misclassification by neural networks [2]. The field has
further expanded to tasks such as image segmentation [3], rein-
forcement learning [4], and reading comprehension [5].

Recently, there has been growing interest in creating adver-
sarial audio examples for automatic speech recognition (ASR)
systems. Carlini and Wagner [6] showed that an audio sample
can be perturbed slightly to cause mistranscription by an ASR
engine. Building on this model, Qin et al. [7] and Schoénherr
et al. [8,9] created nearly imperceptible audio attacks by lever-
aging the principle of auditory masking [10]. There have also
been attempts to create attacks embedded in ultrasound frequen-
cies [11] as well as phonetically constrained attacks [12].

Adversarial machine learning exploits a vulnerability of
neural network models but also provides an avenue for mak-
ing models more robust and formulating defenses against such
attacks. There has been a significant effort in understanding
the underlying mechanism of adversarial attacks to formulate
effective defenses against attacks [13, 14], however such work
has largely focused on domains other than audio.

In this paper, we propose a defense against adversarial au-
dio attacks based on dropout. Dropout [15] is heavily used as
an effective regularizer for neural network training, particularly
in ASR systems. There have been successful attempts at using
dropout as a defense in the image domain [16]. We here inves-
tigate whether similar principles can be applied to ASR, where
varying sequence lengths pose an additional challenge. While
the analysis of discrepancies in dropout outputs has been in-
vestigated to model uncertainty in ASR hypotheses [17], to our
knowledge this is its first use as a defense against audio attacks.

This work was performed while T. Jayashankar was an intern and
P. Moulin on sabbatical at MERL.

2. End-to-end automatic speech recognition

Many recent ASR systems obtaining state-of-the-art results are
based on end-to-end architectures [18]. In contrast with conven-
tional hybrid ASR systems, which consist in multiple complex
modules such as acoustic, lexicon, and language models, end-
to-end systems typically use a single deep network trained to
directly map an input audio sample to a sequence of words or
characters, alleviating the need for expert knowledge to build
competitive systems.

The most popular end-to-end ASR approaches are connec-
tionist temporal classification (CTC) [19, 20], attention [21],
CTCl/attention [22], RNN-T [23], and the Transformer [24,25].
Since these models are differentiable, they can be trained with
backpropagation, which is appealing due to the ease with which
the model parameters can be updated by employing the chain
rule of differentiation. However, this can also be a weakness,
because an adversary may craft an adversarial input to fool a
model into producing a wrong or a malicious output by back-
propagating through it in order to minimize an error loss be-
tween the output of the model and the desired output.

In this paper, we focus on a CTC based architecture, as
implemented in Mozilla’s DeepSpeech system [20]. That sys-
tem has been used in past work on adversarial audio attacks [6]
and is publicly available, making it a convenient subject for our
study. However, the methods we detail can be applied to models
based on other end-to-end architectures as well.

3. Dropout

Dropout [15] is a regularization technique used to make neural
networks robust to different inputs. Dropout deactivates a cer-
tain number of neurons in a layer, i.e., the weights correspond-
ing to the neurons are set to zero. In each training iteration,
a layer with dropout rate p drops neurons uniformly at random
with probability p. During inference, dropout is typically turned
off, and the learned weight matrices are scaled by p so that the
expected value of an activation is the same as during training.
Intuitively, dropout enables the neural network to learn various
internal representations for the same input and output pair.

Adversaries typically exploit loopholes within a network by
crafting an input perturbation such that small finely-tuned dif-
ferences accumulate within the network to eventually result in a
malicious output. Since these adversarial attacks are often cre-
ated based on knowledge of the underlying architecture of the
model, we hope to disarm such attacks by perturbing that archi-
tecture via a random process like dropout.

4. Adversarial attacks on ASR systems

In this section, we present the various adversarial audio attacks
that we use in our experiments. We first introduce the Carlini
& Wagner attack (CW attack) as it forms the foundation for the
other attacks that we consider.



4.1. Carlini & Wagner Attack

Given an original waveform x, Carlini and Wagner [6] propose
to construct a waveform ' = x + § such that z and x’ sound
nearly the same but are transcribed differently by an ASR en-
gine. The perturbation ¢ is optimized such that the perturbed
waveform x + ¢ is transcribed as a specific alternate (typically
malicious) target sentence ¢ with the least distortion, by mini-
mizing a recognition loss function £(x + 4, t) (here, a CTC loss)
under the constraint that the peak energy of the perturbation be
at least 7 dB smaller than that of the original waveform:

méiné(m +4,t) s.t. dB(d) < dB(z) — 7, (D

where dB(z) = 20 max; log(|z;|). Because ¢ is differentiable,
backpropagation is easily performed. During optimization, the
values of ¢ are limited to avoid clipping, and the threshold 7 is
progressively decreased to strengthen the constraint.

4.2. Dropout Robust Attack

Adversarial examples generated by the CW attack are optimized
to be transcribed as certain target sentences at test time, with the
model in inference mode, and they are thus typically optimized
through the model with dropout turned off. A key insight is
that if inference is performed with dropout turned on, adversar-
ial examples tend to be transcribed as incorrect or garbled sen-
tences, and dropout may thus be used to detect them. But we
may consider a dropout robust (DR) attack including dropout
in the construction of the adversarial example, so that the opti-
mization procedure may have the chance to account for it. Since
the adversarial example should be transcribed as target sentence
t both with and without dropout turned on at inference time, the
loss in (1) is replaced by a multi-task loss formulated as

m(sinﬁ(:c—i—&, t)+ Blppp (x4, ) s.t. dB(6) <dB(z) — 7, (2)

where £p,, (x + 9, t) is the same loss as £ except that dropout is
turned on with a rate ppr, and S is a weight (we used 5 = 1).
Dropout is applied to all layers except the LSTM layers.

4.3. Noise Reduction Robust (NRR) Attack

Many audio systems perform pre-processing steps involving de-
noising to clean the input audio signal. We observed that de-
noising could partially and often completely eliminate the per-
turbation in the CW adversarial samples. Thus, denoising could
act in itself as an effective defense for the vanilla CW attack.
To make the attack more robust, we trained the adversary
to transcribe as the target sentence ¢ with and without a pre-
processing denoising stage by backpropagating through spectral
subtraction [26], which was chosen for its simplicity:

méin L(z+0,t)+Blss(x+9,t) s.t. dB(6) <dB(z) — 7, (3)

where fss(x + 6, t) is the same loss as £ except that the network
processes the perturbed input after spectral subtraction denois-
ing. We also tried to make this attack robust to dropout as above,
but the optimization failed to converge in a reasonable time, il-
lustrating the difficulty to find a solution under such constraints.

We did not experiment with neural network denoising algo-
rithms as these could themselves be susceptible to adversarial
attacks through similar optimization procedures.

4.4. Imperceptible Audio Attack

Recently, Qin et al. [7] devised a new attack on ASR systems
based on frequency masking, the phenomenon whereby a softer

sound (the maskee) is rendered inaudible by a louder sound
(the masker) [10]. The vanilla CW attack is modified to en-
force that the power spectral density ps of the perturbation in
the short-time Fourier transform (STFT) domain must fall be-
low the masking threshold 6., of the original audio sample. The
complete optimization problem is formulated as
L5
min é(z +6,t) + a > max{ps(k) — 0.(k),0}, (@)
k=0
where a controls the relative importance of the term making the
perturbation imperceptible, and N is the STFT window size.
After first optimizing with o = 0 to find a perturbed sample
transcribing as ¢, « is slowly increased to gradually satisfy the
imperceptibility constraint by fine-tuning the perturbation.

4.5. Urban Sound Attack

We also apply the vanilla CW attack to audio recordings of ev-
ery day noises such as construction sounds, cars honking, and
leaves rustling. The aim of this experiment is two-fold: 1) Can
the vanilla CW attack be applied to general sounds? 2) Can our
defense detect attacks concealed in such audio recordings?

4.6. Universal Perturbation Attack

Finally, we study adversarial examples generated by a model
based on universal adversarial perturbations [27]. A universal
perturbation is a single perturbation which when added to differ-
ent input audio samples causes a mistranscription by the ASR
engine. Unlike the perturbations considered so far, universal
perturbations are not targeted attacks, i.e., the transcription pro-
duced is not fixed. Moreover, in most cases, the transcription is
not a meaningful sentence.

5. Proposed Defense
5.1. Dropout defense in the image domain

Feinman et al. [16] showed that dropout can be used to build
an uncertainty estimator in neural networks for image classifi-
cation. Specifically, dropout in neural networks mimics a deep
Gaussian process and hence Bayesian estimates can be inferred.
In their experiments, they subject an input image to [ realiza-
tions of dropout during inference. The intuition is that the real-
izations obtained from an adversarial example will show more
variation than those obtained from an original example. Let us
denote by y(z, W) € R® the output probability vector of an
image classification network with parameters W for an input
image x, where C denotes the number of classes. Each real-
ization of dropout results in a new set of network parameters
W“), i =1,..., 1. The output for realization ¢ is denoted as

yi = y(z, WD), )

The uncertainty U(x) of the network with respect to input x is
defined as the trace of the covariance matrix of the realizations,
or equivalently as the average Euclidean distance between the
realizations and their mean § = + 3°7_ v

I
>y —all*. ©)
t=1

A simple threshold-based classifier using the scalar U () as in-
put can now be designed to classify original and adversarial
samples, as the uncertainty of adversarial samples is expected
to be higher than that of original samples on average.

U(z) =

~Il =



5.2. Extending the notion of uncertainty

Before we move to the audio domain, let us first introduce a
generalization to the notion of uncertainty used in Feinman et
al. [16], which will be useful later on. Instead of a single num-
ber, we would like to extract richer features for classification.
We assume we have a set {yz‘}le of I points in some space
X, obtained as realizations of a neural network output with
dropout. We also assume that we have some function d measur-
ing a notion of distance between two points in X, as well as a
mechanism to obtain a point ¢ from the set { yi}le encompass-
ing some notion of average with respect to these points. In the
image classification case above, the space X is the Euclidean
space R, the function d is the squared Euclidean distance, and
¢ is obtained as the mean of the points in {y;}7_;. Based on
these components, we can define the uncertainty distribution

P(2) = > Liagun=2}, 2 € R, ©)

from which we can extract features to be used by a classifier.
For instance, in the image case, the uncertainty U (z) of Eq. (6)
is none other than the second moment of IP.

5.3. Designing a notion of uncertainty for ASR

The defense devised by Feinman cannot be directly applied to
the ASR case. Indeed, contrary to image classification where
the network output is a vector of class probability predictions
with fixed length, the corresponding output of an ASR system,
in the case of CTC, is a sequence of such posterior probabili-
ties, whose length depends on the input length. The problem is
even more complex for decoder-based models, where the length
of that sequence also depends on the internal processing of the
network, as the decoder determines itself the output length.

A direct extension of Feinman’s defense to the ASR case
could be to consider the sequence of CTC posterior probabili-
ties for an input z as a large vector used as the realization y;,
and to compute the uncertainty as in Eq. (6), normalizing by the
input length. We consider this our baseline defense. We can
further generalize this defense by considering the uncertainty
distribution PP™® obtained using Eq. (7) in this context, and de-
riving features from it for a classifier.

For greater generalizability to various architectures and to
reduce the dependence on the audio input length, we consider
designing a defense based not on the sequence of CTC posterior
probabilities but on the final output character sequence, which
stems from all components of the network, including a potential
language model. The final character sequence length for a given
input may however vary depending on the internal processing
of the network. Transcriptions for different dropout realizations
may thus be of different lengths. Furthermore, while probability
vectors can be considered within a Euclidean space, this is not
possible for character sequences.

To define an uncertainty distribution following Section 5.2,
we thus need to use a (non-Euclidean) distance metric d that
can be calculated between character sequences with potentially
different lengths. We use the Levenshtein distance, also known
as the edit distance, as d. Because there is no notion of average
in the non-Euclidean space X of character sequences with the
edit distance, we use the medoid of the I different output tran-
scriptions y; as our “mean” §. The medoid 4 of a set {y;}1_,
is defined as an element of the set whose average distance to all
other elements for a distance d is the smallest:

g= argmin > d(y,y). ®)

ye{y1,.ur} 5

Now that all required notions have been defined, we can define
the uncertainty distribution PS"™ of an audio input 2 following
Eq. (7), where {y1,...,yr} are I character sequences output
by the ASR engine for different dropout realizations. Note that,
as the distances are integers, this distribution is a histogram.

5.4. Adversarial ASR Sample Classification

We can now classify an input audio sample x as adversarial or
not by using a binary classifier taking as input some features
derived from the distribution P2 or P, In our experiments,
we consider the following classifiers: a decision stump trained
on the second moment of the distribution (DS), simply com-
paring that moment to a threshold; a support vector machine
(SVM) trained on the first four moments of the distribution
(SVM-4); for P9 we also consider an SVM trained on the
complete distribution (SVM-F), as we can obtain a fixed-length
input vector by considering (P (0), ..., PP (C)), with C
set to 19 (no distances larger than 18 were observed on our
data); as SVM-F cannot be used for PP, we replace it with
a decision tree trained on the first four moments of the distribu-
tion (DecTree). We use a linear SVM in our experiments; other
SVM variants did not provide better results. Note that the DS
classifier for P2 corresponds to the most direct extension of
Feinman et al.’s defense to ASR, as mentioned in Section 5.3.

6. Experiments and Results

We implement our attacks and test our defenses on the Mozilla
DeepSpeech [20] ASR engine. DeepSpeech is based on a bi-
directional RNN network trained with CTC loss. The model’s
default dropout rate is p = 0.05 during training. The adver-
sarial samples are targeted to transcribe as “okay google unlock
phone and delete files”. In our defense, we use I = 50 realiza-
tions of dropout to compute the uncertainty of an audio sample.
Results are reported in terms of defense accuracy in Table 1 and
area under the ROC curve (AUC) in Table 2.

6.1. Choosing a defense dropout rate p

We first experimented with varying dropout rates to detect the
CW attack samples. While there is little difference between the
histograms of original and adversarial samples for p <0.04, we
can notice significant differences for p >0.05. Figure 1a shows
the mean uncertainty distribution I, [IP$"] on all original train-
ing samples, and Fig. 1b that on all CW adversarial samples
while using a defense dropout rate of 0.05 (CW p=0.05).

As discussed in Section 4.2, an adversary may know the
defense dropout rate and try training through dropout to break
the defense. We observed that as the dropout rate ppr used dur-
ing adversarial training increases above the default dropout rate
pe = 0.05, there is a sharp decrease in the forgery success rate
of the attack, i.e., the adversarial sample did not get transcribed
as the desired target sentence. An adversary attempting to fool
our defense by training through different dropout rates will have
a very low forgery success rate for ppr above 0.05 and an at-
tack will be nearly impossible for ppr = 0.1. Hence, we use a
dropout rate p = 0.1 in our defense for all future experiments,
and ppr = 0.05 in creating our dropout robust attacks.

6.2. Results on various attacks

We trained all classifiers for defense against the DR attack, as
it is likely to be the most difficult to detect, and test those mod-
els on all attacks (except UrbanSound as it is a separate task).
We use a 70-30 train-test split on 500 random samples from
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Figure 1: Mean uncertainty distribution . [IP$""| of distances
to medoid for original audio samples and adversarial audio
samples from different attacks, computed as the empirical mean
of the distributions over all samples in the training set. The
defense dropout rate is denoted by p.

the CommonVoice dataset, where each of the original samples
is used to generate corresponding adversarial samples for each
attack. The average duration of each audio sample is about 5 s.

CW and DR attacks: The mean uncertainty distributions
IE,[P$] for CW and DR with p = 0.1 are shown in Figs. lc
and 1d. We see in Tables 1 and 2 that using a defense dropout
rate of 0.1 in conjunction with an SVM trained on the first four
moments of the character-sequence-based uncertainty distribu-
tion (P - SVM-4) led to the best results on these attacks.

Noise reduction robust (NRR) attack: We observed that
the NRR attacks were indeed robust to denoising techniques,
and despite having been optimized through a spectral subtrac-
tion algorithm, our adversarial examples were also fairly robust
to other noise reduction algorithms such as the 1ogmmse algo-
rithm [28]. From Table 1, we see that the accuracy results for
P¢h on NRR and DR are similar, which may be explained by
the fact that they are both designed to be robust to perturbations.

Imperceptible audio attack (IA): The IA attack was origi-
nally implemented to work with attention-based models. We re-
implemented it for the Mozilla DeepSpeech engine with a few
modifications: the learning rate for the initial o = 0 stage was
decreased from 100 to 10, and the learning rate for the o > 0
stages was decreased from 1 to 0.1; furthermore, the loss func-
tion used is CTC instead of cross-entropy loss. The IA attacks
are audibly sharper and cleaner compared to the vanilla CW at-
tack. Their behavior against our defense is however similar to
CW in terms of accuracy. We also implemented the IA attack
on samples from the LibriSpeech [29] dataset to investigate per-
formance on longer utterances than the CommonVoice dataset.
The extra length resulting in longer computation times to cre-
ate adversarial examples, we only evaluated 20 samples. Our
defense was able to detect all samples without error.

Urban sound attack: We were able to successfully apply
the vanilla CW attack to the UrbanSound (US) [30] dataset. Un-
like the previous results, the mean distribution of the original
samples did not resemble Fig. 1a as the input was no longer
speech, but the mean distribution of the adversarial samples did
resemble Fig. 1d despite not being trained through dropout. The
classifier was trained on a similar dataset as that used to train
the DR defense, but based on data from UrbanSound instead of

Table 1: Detection accuracy [%] on various attacks for the dif-
ferent classifiers. p denotes the defense dropout rate.

p=0.05 p=0.1
CW CW DR NRR IA US
DS 717 833 825 755 91.0 90.4

PP | SVM-4 66.7 80.8 68.0 53.3 68.0 64.4
DecTree  65.0 80.8 72.0 70.0 73.3 91.8

DS 723 96.5 81.0 81.0 92.0 79.0
P& | SVM-4 76.7  96.5 88.5 88.5 92.0 93.9
SVM-F 740 858 86.5 87.5 883 83.0

Table 2: AUC score on various attacks for the different classi-
fiers. p denotes the defense dropout rate.

p=0.05 p=0.1
CW CW DR NRR IA US
DS 072 0.85 0.83 0.84 0.82 0.91

PP | SVM-4 0.84 091 0.88 0.89 0.90 0.98
DecTree  0.72  0.85 0.83 0.84 0.82 091

DS 072 0.82 0.81 0.82 0.73 0.86
P& | SVM-4 088 0.92 0.95 093 0.95 0.94
SVM-F 075 091 092 093 094 0.74

CommonVoice. The results are shown in Tables 1 and 2.

Universal Perturbation: The universally perturbed audio
attacks proposed in [27] do not fall under our definition of an
attack as the adversarial example often does not transcribe as a
meaningful sentence and hence has no malicious nature. Nev-
ertheless, our PS"™ - SVM-4 defense trained on the CW attack
data was able to detect the adversarial examples on the authors’
website with 100% accuracy.

Entropy as a measure of uncertainty: After this article
was submitted, concurrent work exploring various options for
detecting audio attacks was released on arXiv [31]. That work
included a method based on dropout and the Feinman-like vari-
ance similar to our PP - DS method, and reported obtain-
ing better results with entropy. In preliminary experiments, we
found that our P - SVM-4 defense performed similarly to or
better than an entropy-based method in terms of accuracy (e.g.,
96.5 % vs 90.5 % on CW, 88.5 % vs 88.0 % on DR), and signif-
icantly better in terms of AUC (e.g., 0.92 vs 0.81 on CW, 0.95
vs 0.88 on DR). The entropy feature may also potentially be
combined with the features derived using our method. A more
thorough comparison will be the object of future work.

7. Conclusion

In this paper, we showed that it is possible to extend the vanilla
CW attack to create adversarial examples robust to dropout and
denoising, and that such attacks can also be embedded within
everyday urban sounds. We developed a defense that can detect
a wide range of attacks on ASR engines by leveraging the uncer-
tainty introduced by dropout. Using simple classifiers, we can
detect adversarial examples with high confidence. Particularly,
training an SVM on the first four moments of the distributions
of distances between character sequences realized with dropout
and their medoid achieves the best results. Finally, our defense
is able to detect adversarial examples obtained with frequency
masking or with a model based on universal perturbations.
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