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Abstract
We present three different approaches to apply deep learning to inverse design for nanopho-
tonic devices. The forward and inverse regression models use device parameters as inputs and
device responses as outputs, and vice versa. The generative model to create a series of im-
proved designs. We demonstrate them to design nanophotonic power splitters with multiple
splitting ratios.
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Abstract: We present three different approaches to apply deep learning to inverse design
for nanophotonic devices. The forward and inverse regression models use device parameters
as inputs and device responses as outputs, and vice versa. The generative model to create
a series of improved designs. We demonstrate them to design nanophotonic power splitters
with multiple splitting ratios. © 2020 The Author(s)

1. Introduction

Application of neural networks (NNs) to improve the automation of photonic device design has recently drawn
increased attention. In this paper, we show three major categories. First, we show an example of a deep neu-
ral network (DNN) used as a forward regression model. A NN based forward modeling in conjunction with an
optimization method has been used for designing nanophotonic power splitters [1,2], nanophotonic mode convert-
ers [3], and optical attenuators [4]. Second, we show an inverse regression model [2,5] for designing nanophotonic
power splitters [2, 5]. Next, we show an example of a DNN used as a generative model, which produces a set of
new designs which can satisfy the target performance better. Generative models have been recently used for de-
signing materials [6] and plasmonic devices [7,8]. Here, we introduce a novel conditional variational autoencoder
(CVAE) [9] combined with an adversarial network [10]. This is applied to a multi-level nanostructured device
design, which can be a more complex optimization problem compared to a binary nanostructured device design,
and can benefit from more sophisticated design algorithms.

2. Forward and Inverse Regression Models
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Fig. 1: Nanophotonic power splitter.
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Fig. 2: DNNs for forward and inverse regression modeling [5]

.
The target device for our design/optimization is shown in Fig. 1, where 220nm-thick, 2.25µm wide square

silicon-on-insulator (SOI) is used as the power splitter where 77.4 nm-diameter holes with 111.8 nm spacing are
arranged to split and guide the light. Fig. 2 shows the concept of the regression model, where the network takes
device topology design as input and spectral response of the metadevice as label or vice versa. In the first example,
we use a DNN in the forward design model. Since the nanophotonic and photonic crystal design are analogous to
image processing and recognition problems, we use convolutional neural networks (CNN) to improve the forward
prediction accuracy [11].

Fig. 3 shows a comparison of a standard direct binary search (DBS) and DNN-assisted DBS. The latter com-
pares 400 possible positions to flip using DNN before conducting each 3D finite-difference time-domain (FDTD)
simulation. Here, we plotted a metric defined as



Fig. 3: Metric as a function of the number of 3D
FDTD runs, for the conventional DBS and the
DNN-DBS methods. Three different initial condi-
tions are used [2].

Fig. 4: Demonstration of inverse design for a power
splitter with a splitting ratio of 0.27. Each marker
denote the total transmittance is plotted against the
splitting ratio. The red line denotes the target split-
ting ratio of 0.27 [2].

Metric= [|T1−T ?
1 |2 + |T2−T ?

2 |2 +α×R2], (1)

where T1 and T2 are the lowest transmitted power within the spectral range of 1300 nm and 1800 nm. T ?
1 = 0.27

and T ?
2 = 0.73 are used as an example target. We chose α = 10 as a weighting factor to suppress reflection. The

training data do not include any devices with the splitting ratio between 0.23 and 0.33, where the splitting ratio is
defined as T1/(T1 +T2). It can be seen that DNN-assisted DBS optimizes the device structure much faster than the
conventional DBS, especially at the early part of the optimization.

Alternatively, a DNN can be used in the inverse regression mode as shown in the bottom of Fig. 2 [5]. Here,
we train the DNN using spectral responses as inputs, and device topology as outputs. Then a series of slightly
different target spectral responses are given as inputs, and we obtain a set of improved results. This process can be
repeated including the improved designs in the training data as shown in Fig. 4 [2].

3. Generative Deep Learning Model

In order to generate a series of improved designs from existing sub-optimal designs, we constructed a new gener-
ative deep learning model based on a CVAE [7,9] and an adversarial block [8,10] as shown in Fig. 5 [12,13]. The
device structure is similar to the one described in Section 2, We first use a variational autoencoder and convolu-
tional layers to encode the original 20×20 data (HV: hole vector) to 60 latent variables which are the mean (µ)
and co-variance (σ) of the normal distribution. Then we concatenate the transmission information to the latent
variables and pass into the decoder. The purpose of the adversarial block is to make the encoder only extract the
pattern information rather than the performance information. The generated pattern gives the Bernoulli’s distribu-
tion at each location point and different hole sizes are used to represent such probability of the appearance of
etched holes at certain locations.

To measure the performance of the generated devices, we use the following figure of merit (FOM):

FOM= 1−10×
[∫ b

a
|T1(λ )−T ?

1 (λ )|2dλ +
∫ b

a
|T2(λ )−T ?

2 (λ )|2dλ +
∫ b

a
α×R2(λ )dλ

]
, (2)

where T1(λ ), T2(λ ), R(λ ), and [·]? denote transmissions of output ports 1 and 2, reflection at input port at certain
wavelengths, and corresponding target values, respectively. Here, we used a wavelength range of a = 1250 nm
and b = 1800 nm. Figure 6 shows the FOM of the generated devices as a function of the splitting ratio. Each star
indicates generated data using the CVAE model, while open circles show data using the Adversarial-VAE model.
Each color represents different target splitting ratio. The results show that for each targeting splitting ratio, the
A-CVAE model generates improved FOM. The generated patterns, beam propagation, T1, T2, and T1 +T2 spectra
are shown in Fig. 7.
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Fig. 5: CVAE structure with an adversarial block. Device struc-
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data are supplied as both latent condition and input condi-
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Fig. 6: FOM versus splitting ratio. Each color
corresponds to different target splitting ra-
tios [13].
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Fig. 7: (from left to right) The hole-in-Si-slab pattern generated from the adversarial CVAE model, transverse
electric field (or intensity) profile, the FDTD simulated transmission spectra of the two output ports (T1 and T2)
and reflection (R), and the total transmission spectra. Results for power splitting ratios of 5:5, 6:4, and 7:3 from
top to bottom [13].
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