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for a quantifiable and sometimes negligibly worsened MSE of the estimate

Conference on Control Technology and Applications (CCTA)

c© 2020 MERL. This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission
to copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes provided
that all such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi
Electric Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and
all applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall
require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139





MSE-optimal measurement dimension reduction in Gaussian filtering*

Marcus Greiff1, Anders Robertsson1 and Karl Berntorp2

Abstract— We present a framework for measurement di-
mension reduction in Gaussian filtering, defined in terms of
a linear operator acting on the measurement vector. This
operator is optimized to minimize the Cramér–Rao bound of the
estimate’s mean squared error (MSE), yielding a measurement
subspace from which elements minimally worsen the filter
MSE performance, as compared to filtering with the original
measurements. This is demonstrated with Kalman filtering in a
linear Gaussian setting and various non-linear Gaussian filters
with an on-line adaption of the operator. The proposed method
improves computational time in exchange for a quantifiable and
sometimes negligibly worsened MSE of the estimate.

I. INTRODUCTION

In numerous filtering applications, there is a relative
abundance of measurement information and a need to achieve
a high estimation accuracy, often quantified in terms of
an empirically measured mean-squared error (MSE) of the
estimate. One such example is in global navigation satel-
lite system (GNSS) positioning, where measurements on
multiple carrier-frequency bands from multiple satellites in
multiple constellations yield information on the state of the
receiver [1], [2]. In standard GNSS implementations, it is not
uncommon to be dealing with hundreds of measurements per
time-step. This results in problems related to computational
complexity, often solved sub-optimally by heuristically re-
moving measurements to facilitate real-time filter execution.
Applications that suffer from similar problems include RSSI-
localization [3] and Gaussian Process (GP) learning [4].

Motivated by such high-dimensional estimation applica-
tions, we propose a systematic approach for combining
the acquired measurements in a lower-dimensional vector
space, so as to minimally degrade estimate performance
when using minimum MSE (MMSE) estimators. For generic
estimation problems, the Cramér–Rao Bound (CRB) serves
as a lower bound on the variance of any unbiased state-
estimate, cf. [5] and [6]. Consequently, we explore filtering
with linear combinations of the acquired measurements and
study its effect on the CRB. We then minimize the CRB
of the posterior state-estimate MSE over the set of linear
operators used to project the measurements. When applied to
filtering problems to reduce measurement dimensionality, it

∗Marcus Greiff performed parts of this work as an intern at MERL.
1The authors are members of the LCCC Linnaeus Center and

the ELLIIT Excellence Center at Lund University, and affiliated
with Swedish Science Foundation (SSF) project ”Semantic mapping
and visual navigation for smart robots” (RIT15-0038). Department
of Automatic Control, Lund University, SE-221 00 Lund, Sweden.
{marcus.greiff,andersro}@control.lth.se

2The author is with Mitsubishi Electric Research Laboratories (MERL),
02139 Cambridge, MA, USA. berntorp@merl.com

yields a quantifiable and controllable performance degrada-
tion, which is often negligible, in exchange for a substantial
computational speedup. Hence, the proposed approach serves
as a valuable tool in real-time filter implementations. The
ideas are tailored for Gaussian filters, but have further
applicability to Rao-Blackwellized Particle filtering (RBPF)
approaches in [7] or the Kalman mixture model filtering [8].

1) Contributions: We present a way of computing a linear
combination of the measurements, such that the CRB of the
state-estimate MSE is minimized in filtering with the lower-
dimensional projected measurements. We provide an efficient
way of evaluating the gradient of a objective function in the
CRB, facilitating a wide range of optimization algorithms.

In the case of linear Kalman filtering (KF), the CRB can be
computed recursively and is tight. Here we give an example
with an offline version of the optimization, providing a
quantifiable performance decrease for a significantly reduced
complexity in the online measurement updates.

We then consider a wider class of nonlinear filters, here re-
stricted to the Gaussian Approximate density filters (ADFs),
and extend the ideas by providing an algorithm for the on-
line adaption of the projection operator in this setting.

2) Problem: We consider discrete-time systems,

xk+1 = f(xk) +wk ∈ RN , (1a)

yk = h(xk) + ek ∈ RM , (1b)

where the process noise and measurement noise are Gaus-
sian distributed with zero mean, respectively, with wk ∼
N (0,Qk), ek ∼ N (0,Rk), and 0 ≺ Qk = Q>k ,0 ≺ Rk =

R>k . The objective is to find a linear map Ψk : RM → RM̃

such that filtering with the measurements ỹk = Ψk(yk)
minimally degrades estimate MSE performance for fixed M̃ .

3) Notation: We let uppercase and bold font variables
Y denote matrices and refer to an element of this matrix
by [Y ]ij . Similarly, vectors are denoted with lower case
bold font y with elements yi. All signals are considered in
discrete time with a sampling period of h > 0 [s] where,
yk = y(hk), and we denote y0:k = {y0, · · · ,yk}. We
will be dealing with Gaussian distributions, here denoted
N (xk;m

x
k ,Σ

xx
k ), where the mean is denoted by mx

k and
covariance by Σxx

k . Furthermore, we take the sub-indexation
a|b to denote conditioning of a variable at a time-step k = a
on information up until and including k = b.

4) Outline: The paper gives a brief overview of the
nonlinear Gaussian filters in Section II and summarizes
relevant results on the CRB in Section III, before introducing
the projection optimization scheme in Section IV. The claims
are verified by examples in Section V, and the conclusions
in Section VI closes the paper, with proofs in the Appendix.



II. GAUSSIAN APPROXIMATE DENSITY FILTERS
The general idea of the ADF is to approximate the state-

distribution with some predefined distribution, often chosen
for computational tractability. This is particularly the case in
the Gaussian filters, where the posterior distribution of the
state-estimate at time step k − 1 is approximated as

p(x̂k−1|y0:k−1)≈N (x̂k−1|k−1;m
x
k−1|k−1,Σ

xx
k−1|k−1). (2)

Given this assumption, the state distribution is propagated
through the dynamics in (1a), yielding a prediction

p(x̂k|y0:k−1) ≈ N (x̂k|k−1;m
x
k|k−1,Σ

xx
k|k−1), (3)

and the joint distribution is approximated based on (1b), as

N

([
x̂k|k−1
yk|k−1

]
;

[
mx

k|k−1
my

k|k−1

]
,

[
Σxx

k|k−1 Σxy
k|k−1

Σyx
k|k−1 Σyy

k|k−1

])
. (4)

For a measurement yk|k−1 = yk, we can evaluate

p(x̂k|y0:k) = N (x̂k|k;m
x
k|k,Σ

xx
k|k), (5)

where,

mx
k|k =mx

k|k−1 + Σxy
k|k−1(Σ

yy
k|k−1)

−1(yk −m
y
k|k−1),

Σxx
k|k = Σxx

k|k−1 −Σxy
k|k−1(Σ

yy
k|k−1)

−1Σyx
k|k−1. (6)

The difference among all of the Gaussian ADFs lie in
the way the distribution in (3) and the joint distribution
in (6) are approximated. In the event of linear flow and
measurement equations (1), the state-distribution will be
Gaussian at all times, and the conditional can be computed
exactly. The above equations in (6) then result in the famil-
iar KF measurement update, which is the optimal MMSE
estimator for the filtering problem in the linear setting. If
the flow or measurement functions are non-linear, a first
order Taylor expansion about the estimate mean results in
the Extended Kalman filter (EKF). This filter comes in
many versions, with iteratively refined approximations in the
(IEKF), and higher order approximations in the second-order
EKF (SOEKF) [9]. Another option is to approximate the
joint distribution in (6) using the unscented transform (UT)
resulting in the Unscented Kalman filter (UKF) [10], or by
other direct approximations of the moment integrals

my =

∫
h(x)N (x;mx,Σxx)dx, (7)

Σyy =

∫
(my − h(x))(my − h(x))>N (x;mx,Σxx)dx,

Σxy =

∫
(mx − x)(my − h(x))>N (x;mx,Σxx)dx,

as done in the large family of the linear regression Kalman
filters (LRKFs) [11]. This includes various Gaussian cuba-
ture rules, of which the more common are the spherical-
radial cubature rules, resulting in the Cubature Kalman filter
(CKF) [12], the Gauss-Hermite cubature rules resulting in
the (GHKF) [13], and the less common MC-based approach
in the randomized Unscented Kalman filter (RUKF) [14].

In all of these Gaussian ADFs, we need to invert Σyy
k|k−1

to compute the conditional distribution in (6), which may

become computationally cumbersome for high-dimensional
measurement vectors yk. This is especially true if the filters
are to be used in RBPF schemes or in other mixture
model KF approaches, where multiple filters are executed in
parallel. Consequently, we attempt to address the problem of
reducing the complexity of the measurement update in (6)
by considering the Fisher information matrix (FIM) in the
context of the measurement equation in (1b). This approach
applies to all of the aforementioned Gaussian ADFs.

III. REVIEW OF THE CRAMÉR-RAO BOUND
The CRB serves as a valuable tool when evaluating filter

performance, as it provides a lower bound on the variance
of any unbiased estimate through the inverse of the Fisher
Information Matrix (FIM), here denoted by I. The CRB is
derived for the samples from multi-variate Gaussian distri-
butions in [5], for more general nonlinear Gaussian filtering
problems in [15], with an excellent contemporary survey
paper on various forms of Bayesian CRBs in [6].

In this paper, we will primarily consider the CRB of the
MSE of the filter estimate, as given in Remark 1.

Remark 1: For any estimate x̂k of xk, we have

E[‖x̂k − xk‖22] = Tr(Cov[x̂k]) ≥ Tr(I[xk]
−1). (8)

To evaluate this bound, we need to compute FIM in
the context of the filtering problem at hand, which we
can do in two different ways. The first only considers the
measurement at a single time-step with no prior information,
here referred to as the memoryless FIM. This essentially
treats the measurement in an least-squares setting, where
we have no process noise or state dynamics and no prior
information at the time of computing the FIM. From [5],

I[xk] =H
>
kR
−1
k Hk, Hk =

∂h(x)

∂x
. (9)

However, in the context of (1), we some dynamics and
process noise which will both affect the CRB. Therefore,
the FIM could alternatively be computed recursively [6]. If
the flow and measurement functions are linear in x, then

F k =
∂f(x)

∂x
, Hk =

∂h(x)

∂x
, (10)

are constant, the FIM at a time-step k takes the form

I[xk] = [Qk + F kI[xk−1]
−1F k]

−1 +H>kR
−1
k Hk, (11)

as shown in [6], [15]. The associated CRB is commonly
referred to as the joint unconditional Bayesian CRB (JU-
BCRB), and the celebrated KF yields a tight CRB in this
case, being the MMSE estimator for this particular class of
problems. In the general non-linear context, there exist many
CRBs of various tightness, and these will depend on and have
to be computed with respect to a specific state-trajectory.
For simplicity, we will use a first-order Taylor expansion
about the state-estimate mean in evaluating the JU-BCRB
in the nonlinear setting, referring to the prior information
associated with xk−1 by Pk := [Qk +F kI[xk−1]

−1F k]
−1,

such that the FIM in (11) can be written compactly as

I[xk] = Pk +H>kR
−1
k Hk. (12)



Knowing how to compute the MSE CRB in (8), and knowing
how to recursively evaluate the FIM in (11), we can study
how certain operations on the measurement affects the the-
oretical filter MSE-performance. This allows us to address
the measurement reduction problem posed in Section I.

IV. COMPUTING MSE-OPTIMAL PROJECTIONS

The general idea is to consider the effect on the MSE
CRB when filtering with a lower-dimensional vector ỹk =

Ψk(yk) ∈ RM̃ for some M̃ ≤M . Now, if we constrain this
map to be linear, with Ψk ∈ RM̃×M , then

ỹk = Ψkyk ∼ N (Ψkh(xk),Ψ
>
kRkΨk). (13)

Remark 2: A linear map is mainly chosen for computa-
tional tractability and will be shown to be a sufficiently large
class of maps in the considered numerical examples.

Starting with the memory-less FIM in (9), computed with
respect to the state vector with no prior information, provided
the distribution of the projected measurements in (13), is

I[xk;Ψk] =H
>
k Ψ>k (Ψ

>
kRkΨk)

−1ΨkHk. (14)

As for the FIM in (11), incorporating prior information from
the filtering history through Pk, we instead get

I[xk;Ψk] =Pk+H
>
k Ψ>k (Ψ

>
kRkΨk)

−1ΨkHk. (15)

Remark 3: Equation (15) can be shown by arguments
similar to those in [6]. Intuitively, as I[xk−1], f and Qk

are unaffected by Ψk, Pk will in no way be affected by
a projection Ψk acting on yk. The FIM will be a sum of
this prior information, and the new information from the
projected measurement, here the same as in (14).

From (15), we can express the CRB of the MSE as a
function of the projection operator using (8) and (14), as

J(Ψk)=Tr((Pk+H
>
k Ψ>k (Ψ

>
kRkΨk)

−1ΨkHk)
−1) (16)

and study the non-convex optimization problem

min
Ψk∈RM̃×M

J(Ψk). (17)

Remark 4: The function J(Ψ) is scale invariant in the
memory-less case (if we let Pk = 0), in the sense that
J(αΨ) = J(βΨ) for all β 6= 0, α 6= 0. In this case, the
linear operator can be normalized to keep the magnitude of
the projected measurements constant.

Remark 5: The function J(Ψ) will never be smaller than
the identity projection J(I), as the linear combination of
measurements cannot contribute any new information.

The objective function also has some beneficial structure
that can be exploited to compute its gradient with respect
to the projection operator analytically, thereby facilitating a
wide range of efficient gradient-based optimization methods.

Proposition 1: The partial derivative of the JU-BCRB
trace when using the projected measurements ỹ = Ψy, taken
with respect to the projection operator Ψ, is given by

∂Tr((I[x;Ψ])−1)

∂Ψ
= −2ULΛ−2L>V > (18)

where

Y =H>Ψ>(ΨRΨ>)−1ΨH, (19a)

U = (ΨRΨ>)−1ΨH, (19b)

V =H −RΨ>U , (19c)

and LΛL> is the Schur-decomposition of Y + Pk.
Proof: The proof is summarized in the Appendix.

Proposition 1 is quite appealing, as we can construct var-
ious gradient-based optimization schemes to solve (17), the
simplest being a gradient-descent. Denoting the projection
operator at iteration n and time k by Ψn

k , we can iterate

Ψn+1
k = Ψn

k − γ
∂Tr((I[x;Ψn

k ])
−1)

∂Ψ
, (20)

with γ > 0 is chosen by a backtracking line-search [16].
Remark 6: We cannot give any global optimality guaran-

tees for any optimization scheme since the problem is non-
convex, but it is easy to check the quality of a locally optimal
solution. If the ratio J(Ψ)/J(I) → 1, then we can expect
the same MSE CRB when using the projected measurements
as when using the original measurements.

A. Implications of the filtering problem

If using the projected measurements in the filtering con-
text, we get a joint Gaussian for the measurement update[
x̂k|k−1
ỹk|k−1

]
∼N

([
mx

k|k−1
Ψmy

k|k−1

]
,

[
Σxx

k|k−1 Σxy
k|k−1Ψ

>
k

ΨkΣyx
k|k−1 ΨkΣyy

k|k−1Ψ
>
k

])
,

and given a measurement ỹk = Ψkyk, we approximate

p(x̂k|ỹ0:k) ≈ N (mx
k|k,Σ

xx
k|k), (21)

where the conditional distribution is given by

Kk = Σxy
k|k−1Ψ

>
k (ΨkΣyy

k|k−1Ψ
>
k )
−1, (22a)

mx
k|k =mx

k|k−1 +Kk(ỹ−Ψkm
y), (22b)

Σxx
k|k = Σxx

k|k−1 −KkΨkΣyx
k|k−1. (22c)

Here we see that all of the means and covariances in the
original filter formulation in (6) re-appear in (22), meaning
that we can use any of the approximations discussed in
Section II, and use the projection with any of the outlined
filters therein. Furthermore, as ΨkΣyy

k|k−1Ψ
>
k ∈ RM̃×M̃

and Σxy
k|k−1Ψ

> = (ΨkΣyx
k|k−1)

> ∈ RM×M̃ , the matrices
we effectively use in the filter update can potentially be
made significantly smaller, if we for some M̃ � M can
find projections for which J(Ψ)/J(I) → 1. However,
when considering on-line adaption of the projection operator,
the overall numerical complexity of the projection scheme
will depend on the convergence rate of the optimization
program, which in turn depends on properties of the flow
and measurement functions of the underlying model. It is
interesting to note that in the linear case if we know the
stationary covariance Pk for large k →∞, the operator Ψk

can be optimized offline before executing the filter.



V. NUMERICAL EXAMPLES

To demonstrate the utility of the projection scheme and
verify its correctness, we give four separate examples. In
Section V-A, the expression for the gradient of the CRB
trace in Proposition 1 is verified, giving some intuition
regarding the rather arcane optimization program. We then
apply this optimal projection computation to the problem
of linear Kalman filtering in Section V-B, where it is used
to reduce the dimension of the measurement vector at a
negligible cost in the empirically computed estimate MSE.
In Section V-C, we proceed to show how the application
of this scheme improves the numerical complexity of the
generic Gaussian ADF update as a function of the dimension
of the measurement vector. Finally, in Section V-D we study
the impact of the measurement projection scheme on the
estimate MSE in the context of nonlinear Gaussian filtering.

A. Illustration of the optimization scheme

To give some intuition regarding the objective function
used in the numerical optimization, we randomize a dense
matrix Hk ∈ R5×3, a positive definite covariance matrix
Rk = R>k ∈ R5×5, and a random measurement projection
Ψk ∈ R3×5. The level sets of the scalar objective function
J(Ψk) are plotted when varying two of the elements of Ψk

(all others are kept constant), and the gradient directions are
computed using Proposition 1 with the result shown in Fig. 1.

Fig. 1. Level sets of the objective J(Ψ) and its gradient (here normalized).

It is clear that the gradient direction is orthogonal to the
level sets, and we also note a substantial variability in the
objective function over the plotted domain. It is intuitively
obvious that we can make the estimate CRB MSE arbitrarily
large by setting Ψk = 0, but it is less intuitive that the
quality of the estimate is so contingent of individual elements
of the linear operator. Recall that we are only varying two
dimensions of a 5× 3-dimensional linear operator in Fig. 1.

B. Offline projection computation in linear Kalman filtering

In this example, we consider a linear time-invariant (LTI)
system defined by the three-dimensional triple integrator,...
p = v̈ = ȧ = u + dβ ∈ R3, with a state vector
x = [p>,v>,a>]> discretized at a time-step of h =
0.01 [s] using zero-order hold and driven by an input
u = 5[cos(4ht), cos(5ht), cos(2ht)]> and Wiener distribu-
tion dβ. The measurement equation is characterized by a
set of N points {pi ∈ R3; i = 1, .., N} to which distances
di = ‖pi − p‖2 are measured. We then form distance-
difference measurements, known as time-difference of arrival
measurements in the Ultra Wideband (UWB) literature or
single difference measurements in the GNSS literature. The
mth element of h(x) is defined by hm(x) = di(x)−dj(x),
including all combinations (i, j) with i > j.

To properly illustrate the ideas in Section IV, we start by
considering an LTI context where the CRB should be tight.
Using a slightly simplified measurement model, where

yk =Hkxk where Hk =
∂h(x)

∂x

∣∣∣
x=x0

∀k. (23)

We let Rk be a random dense matrix satisfying 0.1I ≺
Rk ≺ 0.3I and use a process noise defined by Qk = 0.01I ,
and randomize a set of points N = 6 points, with dim(yk) =
N(N − 1)/2 = 15 measurements per time-step.

Given this time-invariant measurement model, we compute
a projection operator offline which is to be applied when
solving the filtering problem. For this purpose, we use the
memory-less FIM in the optimization problem, and compare
three different projection operators, as listed below;

(A) Here we use all available measurements, letting ΨA =
I ∈ RM̃×M , where then (M̃,M) = (15, 15).

(B) Here we use the first five measurements, letting ΨB =
[I,0,0] ∈ RM̃×M , where then (M̃,M) = (5, 15).

(C) Here we choose ΨC ∈ RM̃×M solving (17) by
iterating (20), here constrained to (M̃,M) = (3, 15).

Having solved the optimization program by iterating (20), we
get the following cost ratios from the three different maps;

(A) J(ΨA)/J(I) = 1.000, (24a)
(B) J(ΨB)/J(I) = 2.437, (24b)
(C) J(ΨC)/J(I) = 1.001. (24c)

Consequently, if the filtering problem using an unbiased
MMSE estimator such as the KF, then we should expect
near identical performance when using the original filter (A)
using ΨA as when using the projected measurements in (C)
using ΨC , and the strategy in (B) using ΨB can be expected
to perform roughly a factor 2.5 worse in terms of MSE.

To verify these claims, we give a simulation study where
a standard discrete-time KF is executed with the projected
measurements, using each of the maps ΨA,ΨB , and ΨC .
We perform NMC = 103 Monte-Carlo (MC) runs and denote
a state trajectory of simulation n by xn

k . In Fig. 2, the
empirically computed MSE of the estimate is compared to



an average posterior estimate covariance (APC),

MSE(xk) =
1

NMC

NMC∑
n=1

‖xn
k − x̂

n
k|k‖22,

APC(Σxx
k ) =

1

NMC

NMC∑
n=1

Σxx,n
k|k ,

the latter included to check consistency of the state-estimates.
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Fig. 2. Empirically computed positional MSE plotted against the trace of
the positional APC from the MC-executions in the example in Section V-B.
Bottom: APC trace and MSE of the positional states, p, using the operators
in (A)-(C). Top, left: Enlarged view of the MSE corresponding to the cases
(A) and (C) around 3.3 [s]. Top, right: Further enlarged view of the MSE
corresponding to the cases (A) and (C) around 3.3 [s].

Here we start by noting that the filters are consistent,
i.e., the MSE is approximately equal to the APC-trace for
the three cases (A)-(C). Furthermore, we see that the MSE-
performance in (A) and (C) are virtually the same, given
that the computed CRBs J(Ψ) in (24) are near-identical
for ΨA and ΨC . However, simply choosing the first five
measurements with ΨB results in a loss of information and a
degraded MSE performance (see Fig 2). Here, the ratio of the
MSE when using (B) as compared to (A) is 10−0.8/10−1.2 ≈
2.5, approximately equal to the ratio in (24). Similarly, the
ratio between the MSE when using (C) as compared to (A)
is 10−1.21/10−1.2103 ≈ 1.001, again comparable to (24).

Using ΨC clearly results in a negligible performance
decrease when compared to using the full measurement
vector in ΨA. However, instead of performing the Kalman
filter updates by inverting Σyy

k|k−1 ∈ R15×15, we now require
an inversion of the projected measurement covariance,

Σỹỹ
k|k−1 = ΨC(HkΣxx

k|k−1H̃k +Rk)Ψ
>
C ∈ R3×3,

which results in a computational speedup when running the
filter with the projection operator ΨC as opposed to using
the original measurements with ΨA.

This example demonstrates the utility of the optimization
scheme in a linear setting. Importantly, it shows that it is

possible to perform an offline optimization of Ψ prior to the
filtering, in this case resulting in a computational speed-up of
the Kalman filter at a negligible decrease in the MSE of the
estimate. Exactly how much faster the algorithm becomes
depends greatly on M and M̃ , as we shall see next.

C. Computational complexity

We now consider the impact of the measurement pro-
jections on computational complexity for problems similar
to the three-dimensional triple integrator in the previous
example. A large contributor to the numerical complexity
in the measurement update of the ADF comes from the
need to invert of the predicted measurement covariance
in (6), scaling roughly with O(M3). When applying the
linear operator to the measurement as in (22), we need to
perform a few additional matrix multiplications in order to
compute the joint distribution of the predicted state and
predicted projected measurement. However, the complexity
of the inversion will instead be capped at O(M̃3) with M̃
being an integer that we are free to choose. In this example,
we measure the computational time required to perform a
measurement update with M increasing from 10 to 100,
using (6) and (22) respectively. Here, M̃ = 3 as in the
previous example, and the mean computational time over
107 updates are shown in Fig 3.
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Fig. 3. Top: Mean computational time taken to perform a measurement
with a 1σ-interval from 107 updates as a function of the measurement
dimension M . Without the measurement projection using (6) (blue) and
with the measurement projection (22) (red). Bottom: Relative speedup in
the mean computational time when using the measurement projection.

Based on this, we note that the proposed measurement re-
duction greatly reduces the computational complexity of the
measurement update, and in the previous example, we should
expect an 8-fold computational speedup of the measurement
update for a quantifiable MSE performance decrease when
using upwards of M = 100 measurements. However, this is
for the offline computation of Ψ. In the non-linear setting,
additional computation will be required to adapt Ψk.

D. Online projection adaption in nonlinear filtering

To demonstrate the online adaption of the projection oper-
ator, we consider a simple example with a two-dimensional



non-linear pendulum. The process is defined by a two-
dimensional state-space and discretized at h = 0.01, where

xk+1 = f(xk) +wk =

[
x1,k + hx2,k

x2,k + hg sin(x1,k)

]
+wk.

Here we simply let g = 9.81 and assume zero-mean Gaus-
sian noise wk ∼ N (0,Q) where Q = diag(10−5, 10−1).
However, in contrast to the typical pendulum measurement
models, we consider an abundance of measurement infor-
mation with non-physical sensors. This is mainly done to
demonstrate that the projection optimization can be run
online for highly nonlinear measurement models. Let

yk = h(xk) + ek =


sin(x1,k + 0.1)
sin(x1,k + 0.2)

...
sin(x1,k + 0.9)

x2,k

+ ek ∈ R10,

where the measurement noise ek is Gaussian zero mean
ek ∼ N (0,R) with the covariance R being a random, dense
positive definite matrix satisfying 0.1I ≺ R = R> ≺ 0.3I .

Given this model, we compare the state estimates using a
large collection of ADFs, with and without the application
of a projection operator to the measurements. Here, the
measurement model is 10-dimensional, and we let M̃ =
2 and perform the optimization using the gradient-based
approach in Proposition 1, updating the projection operator
with one gradient descent step per time-step. We consider
• EKF - As in [17], see Chapter 5.2.
• SOEKF - In [9], using analytical Hessian evaluations.
• UKF - In [10], with parameters α = 1, κ = 0, β = 2.
• CKF - In [12], with a 3rd-order spherical cubature rule.
• GHKF - As in [17], see Chapter 6.3, here we use the

4th-order Gauss-Hermite integral approximation.
• RUKF - As in [14], approximating the moments by a

stochastic integration rule [18], here N = 20 iterations.
The system is initialized at x0 = (2,−1)>, and the filters
are initialized with substantial initial errors, with a mean
mx

0|0 = (0, 0)> and covariance Σxx
0|0 = 10I . The projection

operator is initialized at k = 0 by solving the non-convex
optimization problem in (17) using an interior point method,
with the FIM evaluated about the initial estimate mean. Then,
Ψk is subsequently updated online by a single gradient step
per time-step of the filter using 1. Before discussing the MC-
results, we present the state estimate for a one simulation
with the RUKF (N = 20) using the projected measurements
and online adaption of Ψk, is shown in Fig. 4.

The CRB ratio changes in time by the proposed gradient
descent algorithm. However, this change is very slight, and
the cost ratio is 1 down to the fourth decimal at all times
(third subplot). However, to keep the ratio low, the operator
Ψk changes significantly in time (fourth subplot).

This demonstrates that the algorithm works as intended for
the RUKF, but to validate it for all of the listed filters, we
need to compute the MSE empirically with and without the
measurement reduction. To this end, the filters are run on the

Fig. 4. One of the simulations from the MC-executions in Section V-D,
here for the RUKF. Top: State trajectories of the pendulum (black) with
the means of the state-estimate (blue/red) with the estimated 2σ-interval.
Top, center: State estimate error (blue/red) with the estimated 2σ-interval.
Bottom, center: CRB ratio J(Ψk)/J(I), the relative increase in the lower
bound on the estimate MSE when using Ψk as opposed to using the full
measurement vector. Bottom: Ψk , updated in time by Proposition 1.

exact same measurement data over NMC = 102 MC-runs,
the resulting empirically computed MSE of the state estimate
is plotted as a function of the time-step k, as shown in Fig. 5.

Here we note a substantial difference in the transients
between the filters using Ψk, and their original counterparts
utilizing the full 10-dimensional measurement vector. This
is mainly due to the substantial initial error in the estimate
mean, about which Ψ0 is computed. However, as the estimate
improves, the projection operator adapts accordingly, and for
large k there is an extremely small difference between the
MSE of the estimates computed with the projection operator
(using a two-dimensional projected measurement) and the
filters using the full 10-dimensional measurement vector.

When studying the estimates more closely, we see that the
SOEKF, RUKF, and GHKF are slightly superior to the other
filters for larger k, and especially superior in the transient
phase. And we also note that the filtering with the projected
two-dimensional measurements results in an empirical MSE
which is extremely close to the corresponding filters using
the full 10-dimensional measurement vector for large k. In
other words, the projection operator is adapted as intended,
and the number of measurements used in the update has been
reduced by a factor of 5 for a slight increase in MSE.

This example serves to show the wide applicability of the
method, and that it can be applied to non-linear Gaussian
filtering. However, from a computational point of view, it
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Fig. 5. Results of an MC-study with the various non-linear Gaussian
ADFs in Section V-D, showing the empirically computed MSE of the
estimate using the original filter (full) and the same filter with projected
measurements (dashed). Top: Enlarged view of the MSE of the angular state
at k = 540. Center: MSE of the angular state as estimated by the filters.
Bottom: MSE of the angular velocity state as estimated by the filters.

will mainly make sense to use it for very-high-dimensional
measurement models, or in mixture model Kalman filtering
and RBPFs, where the same projection operator can be used
for all particles. In such a setting, the computational gains
in reducing the complexity of the measurement update far
exceed the additional computational burden of updating the
linear map every time-step for large M .

VI. CONCLUSIONS

In this paper, we consider the problem of filtering using
Gaussian ADFs with high-dimensional measurement equa-
tions subject to computational constraints. We propose a
structured way of determining linear operators, whose appli-
cation to the measurements minimally increase the Cramér
Rao bound of the MSE of the state-estimate while reducing
the computational complexity of the measurement updates.

The choice of M̃ needs to be done with care. A lower
bound on M can be computed for which the system states
become observable through the projected measurements. For
the example in Section V-B, this implies that M̃ ≥ 3. Beyond
this, the selection of M̃ should be chosen low, so as to yield
a sufficiently small degradation of the MSE CRB.

In the linear case, and for high-dimensional measurement
problems, we can typically reduce the computational com-
plexity of the measurement update by several factors, with
a quantifiable decrease in MSE performance. However, the
feasibility of this approach depends greatly on the system

at hand and the structure of the measurement equation.
Nonetheless, it is a valuable tool when for real-time imple-
mentation of KFs subject to computational constraints.

We also presented a method for on-line adaption of the
linear map in the event of non-linear measurement equations.
This was subsequently illustrated by a simulation example
with the EKF, SOEKF, UKF, CKF, GHKF, and RUKF. How-
ever, the method is likely best exploited for Kalman mixture
model filtering or RBPFs. Utilizing the scheme in such a
context will be the subject of future research. In addition, the
cost function and the resulting optimization methods should
be studied further, and the method’s sensitivity to modelling
errors in the measurement equation should be investigated.
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APPENDIX

For matrices X and Y of compatible dimensions,

∂(X + Y ) = ∂X + ∂Y , (25)
∂(XY ) = (∂X)Y +X(∂Y ), (26)

and if the matrix X is square with eigenvalues and eigen-
vectors λj(X)vj =Xvj , we have the identity

∂(λj(X)) = v>j ∂(X)vj . (27)

In deriving the matrix derivatives of the CRB, we will make
use of a rectangular matrix Jmn, in which all the entries are
zero, except for a single element which is set to one. This
matrix is defined as the outer product of two unit vectors on
the form eMm ∈ RM×1 with the mth entry set to 1, such that

Jmn = eMm (eNn )> ∈ RM×N . (28)

With the unit vectors and a matrix A ∈ RM×N , where the
mth row is Am,: and the nth column is A:,n, we have

(eMm )>A = Am,: ∈ R1×N , AeNn = A:,n ∈ RM×1. (29a)

Furthermore, with this singleton matrix notation,

∂(XA)

∂[X]mn
= JmnA,

∂(A>X>)

∂[X]mn
= A>(Jmn)>, (30a)

which, using (26) and (30), yields

∂XRX>

∂[X]mn
=XR(Jmn)> + JmnRX>, (31)

which holds under the assumption that R> = R. Further-
more, we have the following well known inverse identity

∂Y −1

∂[X]mn
= −Y −1 ∂Y

∂[X]mn
Y −1. (32)

See [19] for additional details on the above identities.
Lemma 1: For any 0 ≺ Y (Ψ) = Y (Ψ)> ∈ RK×K ,

Tr(Y (Ψ)−1) =

K∑
j

1

λj(Y (Ψ))
. (33)



Proof: If 0 ≺ Y (Ψ) = Y (Ψ)>, there exists an Schur-
decomposition Y (Ψ) = LΛL> where Λ is a diagonal
matrix with entries λj(Y (Ψ)) on its diagonal and L> =
L−1, whereby Tr(Y (Ψ)−1) = Tr(Λ−1L>L) = Tr(Λ−1).

Lemma 2: Let Ψ ∈ RM×N be a real-valued rectangular
matrix with elements [Ψ]mn. Let 0 ≺ Y (Ψ) ∈ RK×K , with
eigenvalues λj(Y (Ψ)) and eigenvectors vj , then

∂Tr([Y (Ψ)]−1)

∂[Ψ]mn
= −

K∑
j=1

1

λj(Y (Ψ))2
v>j

( ∂Y (Ψ)

∂[Ψ]mn

)
vj .

Proof: Omitting the argument Ψ, application of
Lemma 1 and the matrix identities, yields

∂Tr(Y −1)
∂[Ψ]mn

=
∂

∂[Ψ]mn

( K∑
j=1

1

λj(Y )

)
(34a)

=
(25)

K∑
j=1

∂

∂[Ψ]mn

1

λj(Y )
(34b)

=
(32)
−

K∑
j=1

1

λj(Y )2
∂λj(Y )

∂[Ψ]mn
(34c)

=
(27)
−

K∑
j=1

1

λj(Y )2
v>j

( ∂Y

∂[Ψ]mn

)
vj (34d)

Lemma 3: If 0 ≺ R ∈ RN×N , with rectangular matrices
Ψ ∈ RN×M , and H ∈ RM×K then

∂(Y )

∂[Ψ]mn
= U>JmnV + (U>JmnV )> (35)

where

Y =H>Ψ>(ΨRΨ>)−1PH (36a)

U = (ΨRΨ>)−1ΨH, (36b)

V =H −RΨ>U . (36c)
Proof: Follows form application of the identities (26),

(32), (36b), (30), (31) and (36c) to (35) in that order.
Proof: To prove Proposition 1, we first derive the

equations for the partial derivatives with respect to single
elements [Ψ]mn of Ψ and then generalize it to the full matrix
derivative on the form in (18). By application of Lemma 2
and 3, we obtain the second and third equality, such that

∂Tr((Y )−1)

∂[Ψ]mn
=

(34a)
−

K∑
j=1

1

λj(Y )2
v>j

( ∂Y

∂[Ψ]mn

)
vj

=
(3)
−

K∑
j=1

1

λj(Y )2
v>j

(
U>JmnV + (U>JmnV )>

)
vj

=
(28)
−

K∑
j=1

1

λj(Y )2
v>j

(
U>eMm (eNn )>V +(U>eMm (eNn )>V )>

)
=

(29)
−

K∑
j=1

1

λj(Y )2
v>j

(
(Um,:)

>V n,:+((Um,:)
>V n,:)

>
)

= −2
K∑
j=1

[Um,:vj ]
1

λj(Y )2
[v>j V

>
n,:] := Dmn

where Dmn is recognized as the element at the mth row and
nth column of D = −2ULΛ−2L>V >. Thus,

∂Tr(Y −1)
∂Ψ

=D = −2ULΛ−2L>V >, (37)

which concludes the proof. Since Pk does not depend on Ψ,
the proof is trivially extendable to the case where Pk 6= 0.
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