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Abstract
This paper proposes an extremum-seeking control design that achieves finite-time stability
of the optimum of an unknown measured cost function. The finite-time extremum-seeking
control technique is shown to achieve finite-time practical stability of the optimum of the cost
function. The main characteristic of the proposed extremum seeking control approach is that
the corresponding target averaged system achieves finite-time stability. A simulation study
is presented to demonstrate the effectiveness of the approach.
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Summary

This paper proposes an extremum-seeking control design that achieves finite-time
stability of the optimum of an unknown measured cost function. The finite-time
extremum-seeking control technique is shown to achieve finite-time practical sta-
bility of the optimum of the cost function. The main characteristic of the proposed
extremum seeking control approach is that the corresponding target averaged sys-
tem achieves finite-time stability. A simulation study is presented to demonstrate the
effectiveness of the approach.
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1 INTRODUCTION

Extremum seeking control (ESC) is a feedback control mechanism designed to drive an unknown nonlinear dynamical system
to the optimum of a measured variable of interest1. The basic stability properties of ESC were first outlined in2 and3. Based on
this initial theoretical work, a vast and growing literature has been evolving to complement, generalize and improve the basic
schemes.
Finite-time stability in control systems is a desirable property in many applications where the timing of control tasks is critical.

One typical example is the control of batch systems which are designed to operate over finite-time horizons4 5. Other typical
problems, amongst others, include finite-time distributed control of multi-agent systems6 7, finite-time synchronization8 and
rendezvous problems9. Several studies have been recently conducted in the design and analysis of finite-time control systems.
The general stability conditions were first developed in10. The finite-time stabilization of a class of controllable systems was
considered in11. The output feedback finite-time stabilization of nonlinear systems was considered in12 for the local case. A
perspective of global finite-time stabilization was provided in13. Robust finite-time stabilization was treated in14. The concept
of finite-time input to state stability (FTISS) was presented in15. This study provides a complete characterization of finite-time
nonlinear systems subject to external inputs. The finite-stability property is usually associated with dynamical control systems
that are either non-Lipschitz or discontinuous. In most existing work, finite-time stable systems are closely related to classes of
nonlinear systems with continuous right hand side10. In a similar fashion, it can be shown that finite-time stabilization can be
achieved using continuous feedback controllers11.
The problem of finite-time optimization using gradient-based descent algorithms was addressed in18. A comprehensive sta-

bility analysis was provided to address the non-Lipschitz nature of finite-time gradient systems. In19,20, a class of discontinuous
dynamical systems was proposed for the design of continuous-time optimization algorithms with finite-time convergence and
prescribed convergence time. In contrast to the gradient based algorithms, this class of optimization algorithms incorporates
second order information of the cost function. Using this information, improved performance is achieved for systems with
time-varying cost functions.
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In this manuscript, we propose an ESC design technique that can achieve finite-time stability in the practical sense. Given a
measured cost function with an unknown mathematical formulation, the objective of this study is to design an ESC that brings
the system to a neighborhood of the unknown optimum value of the input in finite-time. The finite-time can be prescribed by
tuning the parameters of the finite-time ESC system.
In the analysis of the proposed ESC, it is shown that the proposed technique yields an ESC system that is continuous every-

where. In addition, it is shown that the resulting averaged system has a finite-time stable equilibrium at the unknown optimum
of the measured cost function. The detailed analysis of the resulting averaged nonlinear system is based on the concept of finite-
time input to state stability (FTISS) first introduced by Hong et al15. In particular, the small-gain approach proposed by Hong et
al15 is applied to demonstrate the finite-time stability of the averaged ESC. A classical averaging analysis result22 is applied to
show that the closed-loop finite-time ESC system achieves finite-time practical stability of the optimum. The paper is structured
as follows. The problem formulation is given in Section 2. In Section 3, a target averaged finite-time ESC system is proposed.
The proposed ESC is presented in Section 3.3. A simulation study is given in Section 4. Brief conclusions and a discussion of
future research work is presented in Section 5.

2 PROBLEM FORMULATION

In this study, we consider a class of unknown nonlinear systems described by the following dynamical system:

ẋ = u (1a)
y = ℎ(x) (1b)

where x ∈ ℝ are the state variables, u ∈ ℝ is the input variable, and y ∈ ℝ is the output variable. It is assumed that the function
ℎ ∶ ℝ → ℝ is sufficiently smooth. The function ℎ, is assumed to be unknown. It has an unknown minimizer x∗ with an optimal
value y∗ = ℎ(x∗).
We make the following assumptions concerning the measured cost function, ℎ(x).

Assumption 1. The function ℎ(x) is such that its gradient vanishes only at the minimizer x∗, that is:
)ℎ
)x

|

|

|

|x=x∗
= 0.

The Hessian at the minimizer is assumed to be positive and nonzero. In particular, there exists a positive constant �ℎ such that
)2ℎ(x)
)x)xT

≥ �ℎI

for all x ∈  ⊂ ℝ.

The objective of this study is to develop an ESC design technique that guarantees finite-time convergence to the unknown
minimizer, x∗, of the measured function y = ℎ(x).

3 FINITE TIME EXTREMUM SEEKING CONTROLLER DESIGN AND ANALYSIS

3.1 Finite-time Stability
We first provide a formal definition of finite-time stability (as stated in15) that will be used throughout the manuscript.
Consider the system:

Ẋ = F (X) (2)

where X ∈ ℝn and F ∶ ℝn → ℝn is continuous with respect to X.
The continuity of the right hand side of (2) guarantees existence of at least one solution, which is possibly non-unique. We

denote by (t, t0, X0) the set of all solutions with initial conditions X(t0) = X0 for t ≥ t0. The set of all solutions of system (2)
at time t is denoted by X(t). It is assumed that the equilibrium X0 = 0 is a unique solution of the system in forward time.
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Definition 1. The equilibrium X = 0 of (2) is said to be finite-time locally stable if it is Lyapunov stable and such that there
exists a settling-time function

T (X0) = inf
{

T̄ ≥ t0
|

|

|

|

lim
t→T̄

X(t) = 0 ; X(t) ≡ 0, ∀t ≥ T̄
}

in a neighbourhood U of X = 0. It is globally finite-time stable if U = ℝn.

A continuous function � ∶ ℝ≥0 → ℝ≥0 is a called a class  function if it is strictly increasing and �(0) = 0. It is a class ∞
function if it is class  and lims→∞ �(s) = ∞.
A continuous function � ∶ ℝ≥0 → ℝ≥0 is a generalized class  function if �(0) = 0 and

{

�(s1) > �(s2) if�(s1) > 0, s1 > s2
�(s1) = �(s2) if�(s1) = 0, s1 > s2.

(3)

A continuous function � ∶ ℝ≥0 × ℝ≥0 → ℝ≥0 is a generalized  function if, for each fixed t ≥ 0, the function �(s, t) is a
generalized  function and each fixed s ≥ 0, the function �(s, t) is such that limt→T �(s, t) = 0 for T ≤∞.

Definition 2. System (2) is finite-time stable if there exists a generalized  function � ∶ ℝ≥0 × ℝ≥0 → ℝ≥0 such that every
solution X(t) satisfies:

‖X(t)‖ ≤ �(‖X(0)‖, t) (4)

with �(r, t) ≡ 0 when t ≥ T̄ (r) with T̄ (r) continuous with respect to r and T̄ (0) = 0.

Definition 3. Let V (X) be a continuous function. It is called a finite-time Lyapunov function if there exists class∞ functions
�1 and �2 and a class  function �3 such that:

�1(‖X‖) ≤ V (X) ≤ �2(‖X‖)

and

D+V (X(t)) = lim sup
s→0+

V (X(t + s)) − V (X(t))
s

≤ −�3(‖X‖)

where, in addition, �3 satisfies:

c1V (X)a ≤ �3(‖X‖) ≤ c2V (X)a

for some positive constants a < 1, c1 > 0 and c2 > 0.

Next, we consider the system:

Ẋ = F (X, v(t)) (5)

where X ∈ ℝn. The function v ∶ ℝ≥0 → ℝm is measurable and locally essentially bounded and the vector value function
F ∶ ℝn ×ℝm → ℝn is continuous in X and v(t).

Definition 4. System (5) is finite-time input-to-state stable (FTISS) if there exists a generalized function � ∶ ℝ≥0 ×ℝ≥0 →
ℝ≥0 and a class  function � ∶ ℝ≥0 → ℝ≥0 such that every solution X(t) satisfies:

‖X(t)‖ ≤ �(‖X(0)‖, t) + �(‖v(t)‖∞) (6)

with �(r, t) ≡ 0 when t ≥ T̄ (r) with T̄ (r) continuous with respect to r and T̄ (0) = 0.

Definition 5. Let V (X) be a continuous function. It is called an FTISS Lyapunov function if there exists class∞ functions �1
and �2 and class  functions �3 and �4 such that:

�1(‖X‖) ≤ V (X) ≤ �2(‖X‖)

and,

‖X(t)‖ ≥ �4(‖v(t)‖)⇒ D+V (X(t)) ≤ −�3(‖X‖)

where, in addition, �3 satisfies:

c1V (X)a ≤ �3(‖X‖) ≤ c2V (X)a
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for some positive constants a < 1, c1 > 0 and c2 > 0.

We define semi-global practical finite-time stability as follows.

Definition 6. System (2) is semi-globally practically finite-time stable if there exists a generalized function � ∶ ℝ≥0×ℝ≥0 →
ℝ≥0 and a positive constant � > 0 such that every solution X(t) starting in  satisfies:

‖X(t)‖ ≤ �(‖X(0)‖, t) + � (7)

with �(r, t) ≡ 0 when t ≥ T̄ (r) with T̄ (r) continuous with respect to r and T̄ (0) = 0.

The following two theorems are proven in Hong et al15.
Theorem 1. 15 System (5) is FTISS if it admits an FTISS Lyapunov function.

Finally, we consider the interconnection of two FTISS systems:
Ẋ1 =F1(X1, X2)
Ẋ2 =F2(X2, X1)

(8)

where X1 ∈ ℝn1 and X2 ∈ ℝn2 with F1 ∶ ℝn1 × ℝn2 → ℝn1 and F2 ∶ ℝn2 × ℝn1 → ℝn2 are continuous in X1 and X2 with a
unique equilibrium at X1 = 0 and X2 = 0. As above, it is assumed that the equilibrium is the unique solution to (8) forward in
time. In the following, we let �◦� denote the composition of two functions � and �.
Theorem 2. 15 Suppose (8) are FTISS, with X2 as an input for the X1 subsystem and with X1, the input of the X2 subsystem.
Suppose that the solutions of each system satisfy:

‖X1(t)‖ ≤ �1(‖X1(0)‖, t) + �1(‖X2(t)‖∞),
‖X2(t)‖ ≤ �2(‖X2(0)‖, t) + �2(‖X1(t)‖∞)

where �1 and �2 are generalized  functions and �1 and �2 are class  functions. If there exists class∞ functions �1 and �2
that satisfy:

(Id + �2)◦�2◦(Id + �1)◦�1(s) ≤ s, s ≥ 0

then X1 = 0, X2 = 0 is a finite-time stable equilibrium of system (8).

3.2 Proposed target average system
In the design of ESC, one seeks an averaged system that can be achieved using a judicious choice of dither signals. We consider
the following system:

ẋ = − 
(�)�
�̇ = −K
(� − ∇ℎ(x))(� − ∇ℎ(x))

(9)

where K is a controller gain to be assigned. As in16,17, the function 
(�) is given by:


(z) =
c1

‖z‖�1
+

c2
‖z‖�2

where � is a small positive constant, �1 =
q1 − 2
q1 − 1

and �2 =
q2 − 2
q2 − 1

for q1 ∈ (2,∞) and q2 ∈ (1, 2).
The function X1(x, �) = 
(�)� is not locally Lipschitz continuous at � = 0 but it is continuous everywhere. Similarly, the

function X2(x, �) = 
(� − ∇ℎ(x))(� − ∇ℎ(x)) is also not locally Lipschitz continuous for ∀x and ∀� such that � = ∇ℎ(x) but it
is continuous at this point. It is locally Lipschitz everywhere else.
We define the state-space transformation z = � − ∇ℎ(x) and rewrite the dynamics as:

dz
dt
= −K
(z)z + ∇2ℎ(x)
(z + ∇ℎ(x)))(z + ∇ℎ(x)))

d∇ℎ
dt

= − 
(z + ∇ℎ(x))∇2ℎ(x)(z + ∇ℎ(x))).
(10)

This system is such that it has a unique equilibrium at the point z = 0 and ∇ℎ(x) = 0 ⇒ x = x∗. It is also continuous
everywhere and locally Lipschitz continuous away from the equilibrium.
Next we proceed to the stability analysis of system (9).
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Theorem 3. Consider the nonlinear system (9). Let Assumption 1 be satisfied. Then the optimum x∗ is a finite-time stable
equilibrium of the system.

Proof: We first consider the function V1 =
1
2
z2. Its derivative along the trajectories of the system yields:

V̇1 = −K
(z)z2 + 
(z + ∇ℎ(x))∇2ℎ(x)(z + ∇ℎ(x))z.

The function �(z,∇ℎ(x)) = 
(z + ∇ℎ(x))(z + ∇ℎ(x)) is continuous. It is such that:

|�(z,∇ℎ(x))| ≤
c1|z + ∇ℎ(x)|
|z + ∇ℎ(x)|�1

+ c2
|z + ∇ℎ(x)|
|z + ∇ℎ(x)|�2

=c1|z + ∇ℎ(x)|1−�1 + c2|z + ∇ℎ(x)|1−�2 . (11)

By the triangle inequality, one obtains:

|�(z,∇ℎ(x))| ≤ c1|z|
1−�1 + c1|∇ℎ(x)|1−�1 + c2|z|1−�2 + c2|∇ℎ(x)|1−�2 (12)

or,

|�(z,∇ℎ(x))| ≤ c1
|z|
|z|�1

+ c1
|∇ℎ(x)|
|∇ℎ(x)|�1

+ c2
|z|
|z|�2

+ c2
|∇ℎ(x)|
|∇ℎ(x)|�2

. (13)

By definition, the last inequality can be written as:

|�(z,∇ℎ(x))| ≤ 
(z)|z| + 
(∇ℎ(x))|∇ℎ(x)|.

Upon substitution, it follows that V̇1 fulfills the following inequality:

V̇1 ≤ − (K − ∇2ℎ(x))
(z)z2 + 
(∇ℎ(x))|∇ℎ(x)||z|
≤ − (K − ∇2ℎ(x))(c1|z|2−�1 + c2|z|2−�2) + (c1|∇ℎ(x)|1−�1 + c2|∇ℎ(x)|1−�2)|z|

Next, we choose K such that (K − ∇2ℎ(x)) ≥ �:

V̇1 ≤ − �(c1|z|2−�1 + c2|z|2−�2) + (c1|∇ℎ(x)|1−�1 + c2|∇ℎ(x)|1−�2)|z|

Let c ∈ (0, 1), we can rearrange the last inequality as:

V̇1 ≤ − (1 − c)�(c1|z|2−�1 + c2|z|2−�2) − �c|z|
(

c1|z|
1−�1 + c2|z|1−�2 −

1
c�
(c1|∇ℎ(x)|1−�1 + c2|∇ℎ(x)|1−�2)

)

Therefore, one obtains:

V̇1 ≤ − (1 − c)�(c1|z|2−�1 + c2|z|2−�2), if|z| ≥
1
c�

|∇ℎ(x)|.

Using the definition of V1, we finally get:

V̇1 ≤ − 2(1 − c)�
(

c1V
1− �1

2
1 + c2V

1− �2
2

1

)

≡ �3(‖z‖), if|z| ≥
1
c�

|∇ℎ(x)|.

Following Definition 5, it follows that V1 is an FTISS Lyapunov function and therefore the z dynamics are FT ISS with input
∇ℎ(x).
For the gradient dynamics ∇ℎ(x), we consider the Lyapunov function V2 =

1
2
(∇ℎ(x))2. Its rate of change is given by:

V̇2 = −∇2ℎ(x)
(z + ∇ℎ(x))(z + ∇ℎ(x))∇ℎ(x).

As above, we write:

V̇2 = −∇2ℎ(x)
(

c1
z + ∇ℎ(x)

|z + ∇ℎ(x)|�1
+ c2

z + ∇ℎ(x)
|z + ∇ℎ(x)|�2

)

∇ℎ(x).

or,

V̇2 = −∇2ℎ(x)
(

c1
z∇ℎ(x) + ∇ℎ(x)2

|z + ∇ℎ(x)|�1
+ c2

z∇ℎ(x) + ∇ℎ(x)2

|z + ∇ℎ(x)|�2

)

.

We consider this equation evaluated on the set Ωℎ = {(x, z) | |∇ℎ(x)| ≥ |z|}. We first write the following inequality:

V̇2 ≤ − c1∇2ℎ(x)
|∇ℎ(x)|2 − |z||∇ℎ(x)|

|z + ∇ℎ(x)|�1
− c2∇2ℎ(x)

|∇ℎ(x)|2 − |z||∇ℎ(x)|
|z + ∇ℎ(x)|�2

.
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We readily see that V̇2 ≤ 0 on Ωℎ. Moreover, the second term on the right hand side is negative on Ωℎ. Using the triangle
inequality on |z + ∇ℎ(x)|, we get:

|z + ∇ℎ(x)| ≤ |z| + |∇ℎ(x)|
As a result, we can write the inequality as:

V̇2 ≤ − c1∇2ℎ(x)
|∇ℎ(x)|2 − |z||∇ℎ(x)|

|z|�1 + |∇ℎ(x)|�1
As above, we introduce the parameter c ∈ (0, 1) and rewrite the last inequality:

V̇2 ≤ − c1∇2ℎ(x)
(1 − c)|∇ℎ(x)|2 + |∇ℎ(x)|(c|∇ℎ(x)| − |z|)

|z|�1 + |∇ℎ(x)|�1
On the set Ωℎ, one can write that

|z|�1 + |∇ℎ(x)|�1 ≤ 2|∇ℎ(x)|�1 .

Therefore V̇2 is negative definite for |∇ℎ(x)| ≥
1
c
|z|. We define the set, Ωcℎ =

{

(x, z) ||
|

|∇ℎ(x)| ≥ 1
c
|z|

}

. Since c ∈ (0, 1), one
gets that Ωℎ ⊂ Ωcℎ. Consequently, this yields:

V̇2 ≤ −c1∇2ℎ(x)
(1 − c)|∇ℎ(x)|2

2|∇ℎ(x)|�1

for all (x, z) such that |∇ℎ(x)| ≥ 1
c
|z|. Using the definition of V2, and Assumption 1 we can write, as above:

V̇2 ≤ − (1 − c)�ℎ
(

c1V
1− �1

2
2

)

, ifV2 ≥
1
c2
V1.

As a result, we conclude that the gradient dynamics are FTISS with z as an input.
Also, from the previous development, it can be deduced that V1 satisfies the following inequality:

V̇1 ≤ − (1 − c)�
(

c1V
1− �1

2
1 + c2V

1− �2
2

1

)

= −�2(V1), ifV1 ≥
1

c2�2
V2.

Therefore we can view the finite-time systems as the interconnection of two FTISS nonlinear systems. We can apply the small
gain theorem from Hong et al15.
Following the analysis proposed in21, we define the parameter � chosen such that: 1

c2
≤ � ≤ c2�2. One then poses the

following Lyapunov function candidate:

V (z,∇ℎ) = max
{

�V1(z), V2(∇ℎ)
}

.

By the definitions of the functions V1, V2 and the constant �, the function V is both proper and positive definite. It is also
straightforward to see that the function V (x,∇ℎ) is locally Lipschitz and, therefore, differentiable almost everywhere. One can
then follow the proof of Theorem 3.1 in21 to show that:

D+V ≤ −min
{1
2
�1(V ), �2(V )

}

.

As a result, the system has a finite-time stable equilibrium at the optimum z = 0, ∇ℎ(x) = 0 for any � = K −∇2ℎ(x) > 1. Thus
it follows that if the Hessian ∇2ℎ(x) is globally bounded then there exists a K such that the system is globally finite-time (FT)
stable. Otherwise, for any (arbitrary) compact set in the state space on which the Hessian is bounded, there exists a K such that
the optimum is a semi-global finite-time stable equilibrium of the closed-loop system. This completes the proof.

Remark 1. It follows that if the Hessian is known then the gain K can be chosen as K = � + ∇2ℎ(x). In this case, we achieve
finite-time stability for any � > 1.

3.3 Proposed Finite-time ESC
The proposed finite-time ESC approach is given by:

dx
dt
= − 
(�)�

d�
dt
= − 
(� − �)K(� − �).

(14)
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where � = 2
a
ℎ(x + a sin(!t)) sin(!t). The right hand side of this time-varying nonlinear system is continuous with respect to x

and t. As a result, we guarantee the existence of at least one Carathéodory solution which may not be unique.
A formal average of this system is given by:

dx
dt

av
= − 
(�av)�av

d�
dt

av
= − K

T

T

∫
0

(

c1(�av − �(xav, t))
|�av − �(xav, t)|�1

+
c2(�av − �(xav, t))
|�av − �(xav, t)|�2

)

dt, T > 0
(15)

The term � − �(x, t) can be expanded in the following manner:

� − �(x, t) =� − 2
a
ℎ(x + a sin(!t)) sin(!t)

=1
a

(

a� − 2ℎ(x) sin(!t) − 2∇ℎ(x) sin2(!t)a − a2R(t, x, a, !)
)

where R(t, x, a, !) is a function of higher order derivatives of ℎ(x), higher powers of the sinusoidal signals and the amplitude.
This can be rewritten as:

� − �(x, t) =1
a

(

− 2ℎ(x) sin(!t) − ∇ℎ(x)(1 − 2 sin2(!t))a + (� − ∇ℎ(x))a − a2R(t, x, a, !)
)

=1
a

(

− 2ℎ(x) sin(!t) − ∇ℎ(x) sin(2!t)a + (� − ∇ℎ(x))a − a2R(t, x, a, !)
)

Let us assume that the amplitude is picked small enough such that the last term is negligible:

� − �(x, t) ≈1
a

(

− 2ℎ(x) sin(!t) − ∇ℎ(x) sin(2!t)a + (� − ∇ℎ(x))a
)

As a result, we obtain:

1
T

T

∫
0

(� − �(x, t))dt ≈(� − ∇ℎ(x)).

In addition, it is also easy to compute that:

1
T

T

∫
0

|� − �(x, t)|dt ≈|� − ∇ℎ(x)|.

Since there are no analytical expressions of the right hand side of (15), we cannot provide a suitable closed form expression
for the resulting averaged system. In this study, we propose to consider the stability of the averaged system (15) directly. In
the following, it is shown that the averaged system meets the stability conditions of the target averaged system presented in the
previous section.

Proposition 1. Consider the nonlinear system (15). Let Assumption 1 be satisfied. Then the optimum x = x∗, � = 0 is a
finite-time stable equilibrium of the system.

Proof: We consider the same change of coordinates to zav = �av − ∇ℎ(xav) and ∇ℎ(xav) and write the average dynamics as
follows:

d∇ℎ(xav)
dt

= − ∇2ℎ(xav)
(zav + ∇ℎ(xav))(zav + ∇ℎ(xav))

dzav
dt

= − K
T

T

∫
0

(

c1(�av − �(xav, t))
|�av − �(xav, t)|�1

+
c2(�av − �(xav, t))
|�av − �(xav, t)|�2

)

dt + ∇2ℎ(xav)
(zav + ∇ℎ(xav))(zav + ∇ℎ(xav)).
(16)
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Then we pose the Lyapunov function candidates, V av
1 = 1

2
(zav)2 and V av

2 = 1
2
(∇ℎ(xav))2. The time derivative of V av

1 is given
by:

V̇ av
1 = zav

(

− K
T

T

∫
0

(

c1(�av − �(xav, t))
|�av − �(xav, t)|�1

+
c2(�av − �(xav, t))
|�av − �(xav, t)|�2

)

dt
)

+ zav∇2ℎ(xav)
(

K
(zav + ∇ℎ(xav))(zav + ∇ℎ(xav))
)

(17)

If one substitutes for zav = 1
T
∫ T
0 (�

av − �(xav, t))dt, then the first term in the right hand side is clearly negative. However, we
must confirm that the averaged system possesses the FTISS property demonstrated for the target system in the previous section.
We consider the first term in (17):

Φ1 =
1
T
zav

T

∫
0

(

c1(�av − �(xav, t))
|�av − �(xav, t)|�1

)

dt,

then

Φ1 =
(

1
T

T

∫
0

(�av − �(xav, t))dt
)(

1
T

T

∫
0

c1(�av − �(xav, t))
|�av − �(xav, t)|�1

dt
)

.

Since the two terms have the same sign, this term is clearly nonnegative. As a result, it can be written as:

Φ1 =
|

|

|

|

1
T

T

∫
0

(�av − �(xav, t))dt
|

|

|

|

|

|

|

|

1
T

T

∫
0

c1(�av − �(xav, t))
|�av − �(xav, t)|�1

dt
|

|

|

|

.

Similarly, we define

Φ2 =
|

|

|

|

1
T

T

∫
0

(�av − �(xav, t))dt
|

|

|

|

|

|

|

|

1
T

T

∫
0

c2(�av − �(xav, t))
|�av − �(xav, t)|�2

dt
|

|

|

|

.

Next we rewrite the following expression:

|

|

|

|

1
T

T

∫
0

c1(�av − �(xav, t))
|�av − �(xav, t)|�1

dt
|

|

|

|

T

∫
0

|(�av − �(xav, t))|�1dt

=
|

|

|

|

1
T

T

∫
0

c1(�av − �(xav, t))
∫ T
0 |(�av − �(xav, t))|�1dt

|�av − �(xav, t)|�1
dt
|

|

|

|

It follows that for any t such that (�av − �(xav, t)) > 0 then

(�av − �(xav, t))
∫ T
0 |(�av − �(xav, t))|�1dt

|�av − �(xav, t)|�1
≥ (�av − �(xav, t)).

Similarly, for any t such that (�av − �(xav, t)) < 0, we have

(�av − �(xav, t))
∫ T
0 |(�av − �(xav, t))|�1dt

|�av − �(xav, t)|�1
≤ (�av − �(xav, t)).

As a result, it follows that:

|

|

|

|

1
T

T

∫
0

c1(�av − �(xav, t))
∫ T
0 |(�av − �(xav, t))|�1dt

|�av − �(xav, t)|�1
dt
|

|

|

|

≥
|

|

|

|

1
T

T

∫
0

c1(�av − �(xav, t))dt
|

|

|

|

.
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Simlarly, we obtain:

|

|

|

|

1
T

T

∫
0

c1(�av − �(xav, t))
∫ T
0 |(�av − �(xav, t))|�2dt

|�av − �(xav, t)|�2
dt
|

|

|

|

≥
|

|

|

|

1
T

T

∫
0

c1(�av − �(xav, t)dt
|

|

|

|

.

Consequently, the last two inequalities can be used to show that:

Φ1

T

∫
0

|(�av − �(xav, t))|�1dt ≥ c1
|

|

|

|

1
T

T

∫
0

(�av − �(xav, t))dt
|

|

|

|

2

and

Φ2

T

∫
0

|(�av − �(xav, t))|�2dt ≥ c2
|

|

|

|

1
T

T

∫
0

(�av − �(xav, t))dt
|

|

|

|

2

This yields the following pair of inequalities:

|

|

|

|

1
T

T

∫
0

(�av − �(xav, t))dt
|

|

|

|

|

|

|

|

1
T

T

∫
0

c1(�av − �(xav, t))
|�av − �(xav, t)|�1

dt
|

|

|

|

≥
c1
|

|

|

|

1
T
∫ T
0 (�

av − �(xav, t))dt
|

|

|

|

2

∫ T
0 |(�av − �(xav, t))|�1dt

and:

|

|

|

|

1
T

T

∫
0

(�av − �(xav, t))dt
|

|

|

|

|

|

|

|

1
T

T

∫
0

c2(�av − �(xav, t))
|�av − �(xav, t)|�2

dt
|

|

|

|

≥
c2
|

|

|

|

1
T
∫ T
0 (�

av − �(xav, t))dt
|

|

|

|

2

∫ T
0 |(�av − �(xav, t))|�2dt

Finally, we apply Jensen’s inequality on the denominator of the right hand side term in the last two equations and obtain the
final inequalities:

c1
|

|

|

|

1
T
∫ T
0 (�

av − �(xav, t))dt
|

|

|

|

2

∫ T
0 |(�av − �(xav, t))|�1dt

≥
c1
|

|

|

|

1
T
∫ T
0 (�

av − �(xav, t))dt
|

|

|

|

2

|

|

|

|

∫ T
0 (�av − �(xav, t))dt

|

|

|

|

�1
=
c1(zav)2

|zav|�1
,

and,

c2
|

|

|

|

1
T
∫ T
0 (�

av − �(xav, t))dt
|

|

|

|

2

∫ T
0 |(�av − �(xav, t))|�2dt

≥
c2
|

|

|

|

1
T
∫ T
0 (�

av − �(xav, t))dt
|

|

|

|

2

|

|

|

|

∫ T
0 (�av − �(xav, t))dt

|

|

|

|

�2
=
c2(zav)2

|zav|�2
.

We can then substitute these inequalities in (18) as follows:

V̇ av
1 ≤ −K

(

c1
|zav|2

|zav|�1
+ c2

|zav|2

|zav|�2

)

+ zav∇2ℎ(xav)
(

K
(zav + ∇ℎ(xav))(zav + ∇ℎ(xav))
)

(18)

Next we consider the dynamics of the gradient ∇ℎ(xav) for the averaged system. As in the previous section, we consider the
candidate Lyapunov function V av

2 = 1
2
∇ℎ(xav)2. Its time derivative is given by:

V̇ av
2 = −∇2ℎ(xav)
(zav + ∇ℎ(xav))(zav + ∇ℎ(xav))∇ℎ(xav).

Repeating as in the proof of Theorem 3 in Section 3.2, we can use V av
1 and V av

2 to demonstrate that the averaged system is
FT stable for any K > K∗.
Having established that the averaged system (15) achieves the performance of the proposed target system (9), we must prove

that the trajectories of the ESC system (14) approach the trajectories of the averaged system. Since the right hand side of the
dynamics are not Lipschitz, but only continuous, the application of standard averaging results that rely on Lipschitz properties
is not suitable.
Many suitable averaging results have been proposed in the classical literature. In this study, we consider the classical

Krasnosel’skii-Krein theorem22 (generalized by Plotnikova for differential inclusions23) to demonstrate the closeness of solution
of the nominal system and the averaged system over a compact set D ⊂ ℝ2 as a→ 0.
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The theorem can be stated as follows.

Theorem 4. 22 Consider the nonlinear system Ẋ = f (t, X, �) where,

1. the map f (t, X, �) is continuous in t and X on ℝ≥0 ×ℝn,

2. there exists a positive constant L > 0 and a compact set D ⊂ ℝn such that ‖f (t, X, �)‖ ≤ L for t ∈ ℝ≥0, X ∈ D and
� ∈ [0, �∗],

3. the averaged system

Ẋav = lim
T→∞

1
T

T

∫
0

X(t, Xav, 0)dt

exists with solutions defined on the set D.

Then, for any � ≤ �∗, there exists constants � and T such that:

‖X(t) −Xav
‖ ≤ �

for t ∈ [0, T ].

We can now state the final result of this study.

Theorem 5. Consider the ESC system (14). Let Assumption 1 be satisfied. Then there exists an a∗ such that for all a ∈ (0, a∗],
the optimum x = x∗, � = 0 is a semi-globally practically finite-time stable equilibrium of system (14).

Proof: The proof proceeds in two steps. In the first step, we consider the application of Theorem 4. For the analysis of the
proposed finite-time ESC, the Krasnosel’skii-Krein theorem can be applied as follows.
Consider the state,X = [x−x∗, �]T , and the corresponding averaged variablesXav = [xav−x∗, �av]T . Consider the system’s

dynamics:
dx̃
dt

= − 
(�)�

d�
dt
= − 
(� − �(x̃ + x∗, t))K(� − �(x̃ + x∗, t)).

(19)

and the corresponding average:
dx̃
dt

av
= − 
(�av)�av

d�
dt

av
= − K

T

T

∫
0

(

c1(�av − �(x̃av + x∗, t))
|�av − �(x̃av + x∗, t)|�1

+
c2(�av − �(x̃av + x∗, t))
|�av − �(x̃av + x∗, t)|�2

)

dt.
(20)

By the analysis provided above, the averaged system has a finite-time stable equilibrium at the originX = 0. Furthermore, the
solutions of (20) exist and can be contained in a compact set D ∈ ℝ2. Consider the nonlinear system (19). By the smoothness
of the cost function ℎ(x) and the periodicity of the dither signal, it follows that the right hand side of the system can be bounded
on a compact set D ∈ ℝ2 uniformly in t. The continuity and the boundedness of the right hand side of (19) over a compact
set D guarantees existence of solution of the averaged system. As a result, one can invoke the Krasnosel’skii-Krein theorem to
guarantee that for any a ∈ (0, a∗) there exists a T and a � such that:

‖X(t) −Xav(t)‖ ≤ �

for t ∈ [0, T ].
In the second step, we exploit the finite-time stability of the averaged system and the averaging result established in the first

step to establish the finite-time practical semi-global stability of the ESC system.
Using the finite-time stability property of the averaged system (in particular, the corresponding generalized∞ function) and

the averaging result for small amplitude signals, one can apply the approach in the proof of Theorem 1 in24 to show that there
exists a generalized class ∞ function, �X and a constant, cX , such that:

‖X(t)‖ ≤ �X(‖X(t0)‖, t) + cX
for X(t0) ∈ D. This completes the proof.
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4 SIMULATION STUDY

We consider the minimization of the cost function: y = 1 + 2(x − 1)2. The finite extremum seeking controller is implemented
with the following tuning parameters: a = 1, q1 = 3, q2 = 1.5, c1 = 1, c2 = 1, k = 1, K = 250 and ! = 300. The initial
conditions are: x(0) = 3 and �(0) = 0.01. The simulation results are shown in Figure 1. The top and middle plots of Figure 1
show the trajectories of the decision variable x and the auxiliary variable � along with the trajectories of the target averaged
system. The bottom plot shows the corresponding value of the cost function for the finite-time ESC. The results demonstrate that
the extremum seeking controller brings the system to the unknown optimum y∗ = 1 in finite-time. The simulation results also
demonstrate that the extremum seeking controller follows the trajectories of the target averaged system described in Section 3.
To emphasize the non-local nature of the finite-time convergence property of the finite-time ESC, we provide a simulation

of the finite-time ESC with varying initial conditions, x(0), ranging from -3 to 3. The corresponding trajectories of the system
are show in Figure 2. As expected, the trajectories all converge to the correct optimum at the same finite-time in the interval
t ∈ [1.5, 2.0].

0 0.5 1 1.5 2 2.5 3

0

1

2

3

x
,
x
a
v

0 0.5 1 1.5 2 2.5 3

-20

0

20

40

ξ
,
ξ
a
v

0 0.5 1 1.5 2 2.5 3

t

0

5

10

y

FIGURE 1 Performance of the Finite-time ESC. The graph shows the decision variable x (solid line) and its target averaged
xav (dashed line), the auxiliary variable � and the cost function y.

5 CONCLUSION

In this study, we proposed an ESC design for the solution of real-time optimization problems for unknown static maps that
achieves finite-time convergence to the unknown optimum. The proposed extremum seeking controller yields an averaged system
with a finite-time stable equilibrium at the unknown optimum. Using classical averaging results for dynamical systems with
continuous right hand sides, it is shown that the optimum is finite-time practically semi-globally stable equilibrium of the ESC
system.
The class of staticmaps remains extremely restrictivewhen one considers practical situations. The proposed approach provides

a firm theoretical foundation for the potential analysis of more complex systems. The first extension of the proposed technique
will be to consider the development of Newton seeking techniques for multivariable problems. Newton seeking techniques can
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FIGURE 2 Performance of the Finite-time ESC. The graph shows the decision variable x (solid line) for the finite-time ESC
with varying initial conditions.

be used to remove some important scaling issues arising in multivariable systems. Based on the methodology provided, it is
very likely that a suitable Newton seeking technique can be developed. Another problem of interest will be the class of static
maps subject to actuator limitations such as actuator delay, saturation and quantization.
Extension to dynamical systems requires a greater care since the practical finite-time stability of the system would require

that the dynamical system provides some finite-time stability. In future work, we will consider the application of dual mode ESC
techniques25 26 for classes of dynamical systems that can achieve finite-time closed-loop stability.
Finally, extension of these methods to the case of discrete optimization algorithms, with accelerated convergence rates,

remains a challenging open problem.
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