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Data-Driven Optimal Tracking with Constrained
Approximate Dynamic Programming for Servomotor Systems

Ankush Chakrabarty:, Claus Danielson, and Yebin Wang

Abstract—We design real-time optimal tracking controllers
for servomotor systems engaged in single-axis point-to-point
positioning tasks. The design is challenging due to the presence
of unmodeled dynamics, along with speed and acceleration
constraints. As model-based optimal control design methods
cannot be applied directly to this uncertain system, we propose
a data-driven approximate dynamic programming approach to
learn an optimal tracking controller that is constraint-enforcing.
The potential of our proposed method is illustrated on a
servomotor that positions the head of a laser drilling machine.

Index Terms—Safe reinforcement learning, data-driven meth-
ods, output tracking, constrained control, convex programming,
invariant sets.

I. INTRODUCTION

Servomotors are highly prevalent in industrial applications
for positioning due to their low cost, simple structure, ease
of maintenance, and high power-mass ratio [1]. For appli-
cations like robotics and laser drilling, specifications gen-
erally include high-precision position control and reference
tracking [2]. However, due to modeling uncertainty caused
by compressibility of fluids, or friction forces, optimally
tracking references with high precision in spite of operational
constraints becomes a very challenging problem [3].

Rather than decomposing the motion planner and tracking
controller as in [4], we adopt a method that concurrently
solves these sub-problems, and this is expected to result
in improved performance, albeit at higher computational
expense. The approximate dynamic programming (ADP)
approach provides a computationally tractable method for
learning optimal policies despite unmodeled dynamics [5],
[6], has been particularly successful for optimal tracking of
dynamical systems [7], [8]. An issue that remains unexplored
in ADP methods is constraint satisfaction during tracking:
for example, velocity and acceleration constraints on the
servomotor.

Enforcing constraints during learning for control has been
investigated recently in a variety of domains such as model
predictive control (MPC) for repetitive tasks [9], MPC with
model adaptation using Gaussian processes [10], explicit
MPC [11], and safe reinforcement learning with [12], [13]
and without complete state-space model knowledge [14]–
[17]: although these methods are for regulation, not tracking.

In this paper, we propose a constrained approxi-
mate/adaptive dynamic programming (ADP) algorithm for
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optimal reference tracking for piece-wise constant refer-
ence, despite hard constraints on the motor velocity and
acceleration. The method relies on generating an augmented
incremental system, whose equilibrium is agnostic to the
system’s steady-state: this enables the tracking problem to
be cast as a regulation problem and allows the use of the
constrained ADP formalism of [15] with slight modifications.
Concretely, we propose both a model-based and data-driven
version of updating constraint enforcing sets, value functions,
and corresponding control policies when there is no reference
change. In the event of a change in the reference, we adopt
a reference scaling method akin to reference governors [18]
to adapt the reference so that the updated state lies within
the constraint admissible invariant set associated with the
current control policy. This enables constraint satisfaction
during reference signal jumps.

II. SERVOMOTOR CONTROL PROBLEM

We consider a servomotor system for performing point-
to-point positioning tasks in a single axis. The servomotor
dynamics are modeled by

J :θ “ ´d0 9θ ´ c0 sgnp 9θq `Ktu (1)

where θ is the angular position of the servomotor, 9θ is the
angular velocity, u is the controlled current, J is the lumped
inertia of the servomotor and a load, c0 is the amplitude
of the Coulomb friction force, d0 is the viscous friction
coefficient, and Kt is the torque constant. We enforce that the
servomotor always rotates in the same direction, thus 9θ ě 0
and c0 sgnp 9θq “ c0.

Selecting the states to be the position θ and velocity ω :“ 9θ
and discretizing the dynamics (1) with a sampling time τ
yields the discrete-time state-space representation

θpt`1q “ θptq ` τωptq (2a)
ωpt`1q “ dωptq ` buptq ´ c, (2b)

where xptq “
“

θptq ωptq
‰J

is the state with initial condi-
tions xpt0q “

“

θpt0q ωpt0q
‰J

. The parameters of (2) are
d “ 1´ τd0{J , c “ τc0{J , and b “ τKt{J .

Note that the model (2) can be written compactly as the
affine system

xpt`1q “ Axptq `Buptq `W, (3a)
eptq “ Cxptq ´ rptq. (3b)
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A “

„

1 τ
0 d



, B “

„
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„

1
0

J
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„
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Here rptq denotes the desired servomotor position. We make
the following assumptions on our knowledge of the sys-
tem (3).

Assumption 1. The matrices B and C are known, while the
state-transition A is unknown. The pair pA,Bq is stabilizable.
The state xptq is available at each time t.

Assumption 1 is mild, because one can typically find the
torque constant Kt and the inertia of the motor J based on the
motor specifications. This assumption particularly holds for
drilling applications, which is the motivation of this work. We
do not make any assumption on the knowledge of the viscous
or Coulomb frictions, which is practically relevant, since
these parameters are more difficult to ascertain with high
precision. Additionally, the assumption on the availability
of both position and speed is not strong: for instance, one
could use encoders to obtain θptq and estimate the speed
from consecutive measurements or via estimators.

Given a target output position rptq, we will design a control
policy that drives the system state xptq as close as possible
to the desired state

“

rptq 0
‰J

while minimizing an infinite-
horizon cost functional

V8 “
8
ÿ

t“0

V ptq (4)

where

V ptq “ }Cxptq ´ rptq}2S ` }∆xptq}
2
Q ` }∆uptq}

2
R, (5)

while enforcing the constraints

0 ď θpt`1q ´ θptq ď τωmax, (6a)
ταmin ď ωpt`1q ´ ωptq ď ταmax. (6b)

In the above, S ľ 0 and Q ľ 0 are weighting matrices on
the tracking error and state rate-of-change, R ą 0 penalizes
the actuator rate, ωmax denotes the maximum allowable
angular speed, and αmin ă 0 ă αmax are limits on angular
acceleration.

Assumption 2. The reference r is piecewise constant and
rpt`1q is available at time t for all t ě t0.

III. TRACKING ADP WITH CONSTRAINTS

A. Model-based ADP for Reference Tracking

ADP is a framework most commonly used for synthesizing
regulators when complete model information is unavailable
or when obtaining exact solutions to an optimal control
problem is computationally intractable [5], making it an
attractive method for servomotor control. However, since we
are trying to control the servomotor for reference tracking, we
need to first transform our tracking problem into a regulation

problem. This is accomplished using the incremental form of
the dynamics

ξpt`1q “

„

A 0
C I



looomooon

A

ξptq `

„

B
0



loomoon

B

∆uptq `

„

0
´I



loomoon

G

∆rptq

(7)

where
ξptq “

„

∆xptq
eptq



is an augmented state vector, ∆xptq “ xpt`1q´xptq is the
incremental state, ∆uptq“upt`1q´uptq is the incremental
control input, and ∆rptq “ rpt`1q´rptq is the change in
the piecewise constant reference rptq. The Coulomb friction
cptq does not appear in the incremental dynamics (7) since
it is constant. The origin r∆x, es “ r0, 0s of the incremental
dynamics (7) corresponds to the original servo-system (3)
being at equilibrium xpt`1q “ xptq with zero tracking error
eptq “ 0.

For constant references rpt`1q “ rptq, the incremental
dynamics (7) are linear, rather than the affine dynamics we
see in the original servo-dynamics (3). Thus, asymptotic
reference tracking e Ñ 0 as t Ñ 8 for the original
servo-system (3) corresponds to asymptotically stabilizing
the origin of the incremental system (7). Using full-state
feedback

∆uptq “
“

FP ptq FIptq
‰

loooooooomoooooooon

Ft

ξptq, (8)

to stabilize the incremental dynamics (7) produces a
proportional-integral control policy

uptq “ FP ptqxptq `
t´1
ÿ

k“0

FIpkqepkq , (9)

for the original servo-system (3) with FP : N Ñ R1ˆ2

and FI : N Ñ R. The integral-action of the controller (9)
automatically compensates for the constant disturbance W
caused by the Coulomb friction forces cptq.

B. Model-based ADP for Constraint Enforcement

In this section, we describe a model-based algorithm
for synthesizing a tracking controller that enforces state
constraints. The state constraints (6) for the servomotor
can be written as constraints on the state ξptq “ r∆θ ´
ωmax{2,∆ω, es

J of the incremental dynamics (7)
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(10)

where the incremental state ∆θ has been offset by ωmax{2
so that the origin is in contained in the interior of the
constraints (10).



By the definition of stability, a stabilizing controller (8)
will keep the state ξptq in a neighborhood of the origin
defined by a level-set of its Lyapunov function, called an
invariant-set,

EpP, ρq “ tξ : ξJPξ ď ρu, (11)

where ρ ě ξp0qJPξp0q is the initial value of the quadratic
Lyapunov function V pξq “ ξJPξ. Thus, the controller (8)
will enforce constraints if the invariant-set (11) is contained
EpP, ρq Ď X in the constraint set tHξptq ď 1u described
in (10).

We synthesize a constraint enforcing controller (8) in
two steps; policy evaluation and policy improvement. In the
policy evaluation step, we compute the optimal invariant-
set (11) for the current controller (8) that contains the current
state ξptq and satisfies constraints (10) . This is accomplished
by solving the following semi-definite program

Pt̀ 1, ρt̀ 1 “ arg min
Pą0,ρą0

}J ptq} (12a)

subject to:

pA` BFtqJPpA` BFtq ´ λP ĺ 0 (12b)

ξptqJPξptq ď ρ (12c)

ρHHJ ĺ P (12d)

for some tuning parameter λ P p0, 1q. Here,

J ptq “ pA` BFtqJPpA` BFtq ´ P `Q` FJt RFt.

Minimizing the norm of J promotes a solution close to the
optimal LQR control policy for the incremental system (7),
since J ptq should be equal to zero if the discrete-time alge-
braic Riccati equation admits a control policy that is feasible,
that is, that enforces state constraints. The LMI (12b) ensures
that the invariant-set (11) parameterized by Pt̀ 1 and ρt̀ 1 is
invariant under the current controller gain Ft, that is, the state
ξptq will not leave the set EpPt̀ 1, ρt̀ 1q after it enters. The
LMI (12c) ensures that the new invariant-set EpPt̀ 1, ρt̀ 1q

contains the current state. Finally, the LMI (12d) ensures that
the invariant-set satisfies the constraints (10).

The second step of the controller synthesis is policy
improvement. In this step, we search among the controller
gains Ft̀ 1 that render the set EpPt̀ 1, ρt̀ 1q invariant for the
optimal gain. Since we do not consider input constraints, the
policy improvement step merely updates the policy using

Ft̀ 1 “ ´
`

R`BJPt̀ 1B
˘´1 BJPt̀ 1A. (13)

C. Enforcing Constraints during Reference Changes

The controller (9) designed in the previous section ensures
constraint satisfaction as long as the reference is constant
rpt`1q “ rptq. However, large reference changes ∆r can
cause constraint violation. To overcome this issue, rather
than performing policy improvement, we use the previously
estimated policy Ft and scale the implemented reference to
obtain

r̂pt`1q “ rptq `
1

µt̀ 1

∆r

}∆r}
(14)

where ∆r “ rpt̀ 1q´rptq and the scaling factor µ is obtained
by solving the following semi-definite program

µt̀ 1 “ arg min µ2 (15a)
subject to:
„

LpFt,Pt̀ 1q pA` BFtqJPt̀ 1G
‹ p1´ λqρt̀ 1µ

2I ´ GJPt̀ 1G



ľ 0 (15b)

µ2}∆rptq}2 ě 1 (15c)

where the Lyapunov equation

LpFt,Pt̀ 1q “ pA` BFtqJPt̀ 1pA` BFtq ´ λPt̀ 1.

Note that the condition (15c) ensures that the scaled reference
r̂pt`1q is a convex combination of rpt`1q and rptq.

The following proposition shows that the scaled refer-
ence (14) ensures constraint satisfaction.

Proposition 1. If Assumption 2 holds, then the reference (14)
with µt̀ 1 obtained by solving (15) ensures that closed-loop
system (7) and (8) satisfies the constraints (10).

Proof. We drop the time dependence on Pt̀ 1 and ρt̀ 1 for
brevity. For the scaled reference r̂pt`1q obtained using (14),
the incremental model dynamics in (7) become

ξpt`1q “ pA` BFtqξptq ` Gwptq,

where wptq “ ∆rptq{pµ}∆rptq}q.
With this insight, we take a congruence transformation

of (15b) with the vector
“

ξptq wptq
‰J

, which yields

ξpt`1qJPξpt`1q ´ λξptqJPξptq
` p1´ λqρµ2wptqJwptq ď 0. (16)

Since µ2wJw “ 1, which implies that

ξpt`1qJPξpt`1q ď λξptqJPξptq ` p1´ λqρ. (17)

Since ξptq P EpP, ρq, we know that ξptqJPξptq ď ρ. Thus,
the inequality (17) can be written as

ξpt`1qJPξpt`1q ď λρ` p1´ λqρ “ ρ.

Therefore, ξpt`1q P EpP, ρq Ď X . l

D. Data-driven/model-free implementation

Since complete model knowledge is not available to us, by
assumption, we will now provide a ‘data-driven’ or ‘model-
free’ algorithm to compute the constrained ADP algorithm
with the reference scaling mechanism.

1) Data-driven constrained ADP: Recall that the state
xptq, control uptq, the reference rptq, and all their past values
from t0, . . . , t´ 1 are available to us at time t. This implies
that we can compute the augmented state ξptq (that is, ∆x
and e), the incremental control action ∆uptq, and therefore
the quadratic cost V ptq at every t in order to obtain Pt̀ 1 and
Ft̀ 1. With the history tξkutk“t0 and t∆ukutk“t0 , one can pose
a semi-definite programming problem to obtain Pt̀ 1 given Pt
and Kt. The constrained policy evaluation step yields Pt̀ 1



by solving

Pt̀ 1, ρt̀ 1 “ arg min
Pą0,ρą0

}J̃ ptq} ` γρ ρ (18a)

subject to:

ξptqJPξptq ´ λξpt´ 1qJPξpt´ 1q ď 0 (18b)

ξpt´ 1qJP ξpt´ 1q ď ρ (18c)

ρHHJ ĺ P. (18d)

Here, γρ is a regularization term that promotes the uniqueness
of the solution, and is typically a small positive scalar. The
norm of

J̃ ptq “ ξptqJPξptq ´ ξpt´ 1qJPξpt´ 1q ` V ptq

is analogous to the norm of J ptq in (12a), and can be
evaluated because V ptq can be computed using (5). Simi-
larly, (18b) is analogous to (12b) with the model replaced
with data. For a unique solution to be admitted, one cannot
solve (18) with a single data point, and typically, a train of
historical data is first collected and then the problem is solved
with the LMIs (18b)–(18c) stacked for each instance of the
collected data. More details are given in [15].

The constrained policy improvement step can also be
performed by collecting data on-line and setting up a least
squares problem, described herein. In the presence of a
model, one could obtain the updated policy by solving

Ft̀ 1 “ arg min
F

1

2
ξptqJ

`

FJRF
˘

ξptq

` ξptqJ pA` BFqJ Pt̀ 1 pA` BFq ξptq. (19)

However, it is possible to solve this problem without knowing
A by adopting the procedure described in [15], with the
recursion

Ht̀ 1 “ Ht ` ξptqξptq
J b pR` BJPt̀ 1Bq, (20a)

ϕt̀ 1 “ ξptq b
`

RFtξptq ` BJPt̀ 1ξpt`1q
˘

, (20b)

vecpFt̀ 1q “ vecpFtq ´ βtH´1
t̀ 1 ϕt̀ 1, (20c)

where b denotes the Kronecker product, vec denotes the
vectorization operator, and H, ϕ are Hessian and gradient
estimates initialized at the identity and zero, respectively. The
step size βt is a tuning parameter.

Remark 1. For existence of solutions, the system needs to be
persistently exciting. It is standard practice, therefore, to add
a small-magnitude, random exploratory noise to the control
input for data collection.

Remark 2. We do not formally provide convergence guaran-
tees of the value function and the control policy in this paper,
and consign this to future work. However, the arguments
of the proof will closely follow the arguments made in the
proofs of [15], with the additional assumption that there is
some finite time T0 ě t0 after which ∆r ” 0.

2) Data-driven reference scaling: Recall that we scale the
reference only when ∆r ‰ 0, and that the reference change
∆r (and hence, }∆r}) is known a priori, by assumption. One
can then design the scaling factor by solving the following

problem

µ´1
t̀ 1 “ arg max µ´1 (21a)

subject to:

ξJµPt̀ 1ξµ ´ λξptq
JPt̀ 1ξptq ` p1´ λqρ ď 0 (21b)

0 ď µ´1 ď }∆rptq}, (21c)

where

ξµ “ pA` BFtqξptq ` Gµ´1 ∆rptq

}∆rptq}

“ Aξptq ` B∆uptq ` Gµ´1 ∆rptq

}∆rptq}
. (22)

Clearly, the component Aξptq is unknown, since A is un-
known, but the other terms are known, or can easily be
calculated for a given µ. However, one can estimate Aξptq
if the state ξptq has been attained before. This condition is
formally stated next.

Condition 1. For each t P T 1 :“ tt : ∆rptq ‰ 0u, there
exists some time teptq P rt0, ts such that ξpteptqq “ ξptq.

Condition 1 invokes a requirement similar to that used in
experience replay: a mechanism deployed in reinforcement
learning [19], [20] to improve learning quality by relying
on past experiences (states, actions, and Q-function/value-
function values). We rely on having some knowledge in the
past about how the system behaved at a certain state ξpteptqq,
so that this knowledge can then be leveraged if the system
returns to that same state at some future time.

If Condition 1 is satisfied, we can obtain the estimate

Aξptq “ Aξpteptqq “ ξpteptq`1q´B∆upteptqq´G∆rpteptqq.

Substituting this into (22), we get,

ξµ“ξpteptq`1q´B∆upteptqq´G∆rpteptqq

` B∆uptq ` G ∆rptq

µ}∆rptq}
.

With this form of ξµ, we can solve the data-driven version
of the reference scaling problem (21) by employing a line
search to maximize µ´1 P r0, }∆r}s which satisfies (21b).

A full pseudocode is presented in Algorithm 1 to help
facilitate implementation.

IV. SERVOMOTOR PERFORMANCE EVALUATION

In the drilling process, a drilling head is first moved atop
of the location of the hole, stands still, and then the laser
beam will be fired to melt material and drill a hole. Because
the drilling head has to stop at the hole, the movement of the
drilling head for drilling a series of holes can be decomposed
into a number of point to point single-axis positioning tasks.

We illustrate this behavior in Fig. 1. The piece on which
the holes are to be drilled, the servomotor and drill bit, the
direction of motion of the drill to attain the correct sequence
of cuts, and the corresponding reference to be tracked to
make the four holes (without returning to the origin), are
all shown in the figure. Although in practice, there are
two servomotors, each of which are capable of single-axis



Algorithm 1 Constrained ADP for Tracking
Require: Initial feasible policy and value matrix: F0, P0

Require: System matrices B, C
Require: Initial reference r0
1: for t ě 0 do
2: Store prior ξ, u in history
3: Acquire reference update rpt`1q
4: Compute ∆r
5: if ∆r ‰ 0 then
6: Compute r̂ using (21) Ź reference scaling
7: rpt` 1q Ð r̂pt` 1q
8: else
9: if t P Tlearn then Ź enough data collected

10: Compute Pt`1 using (18)
11: Compute Ft`1 using (20)
12: Apply control using Ft`1 Ź use new policy
13: else
14: Apply control using Ft Ź use old policy
15: end if
16: end if
17: end for

motion, since the two motors are temporally decoupled, we
focus our results on one of the servomotors for simplicity.
Consequently, we have one reference signal r to track. The
stroke lengths required by each servomotor along the edges
of the piece to attain the correct positioning for drilling are
shown in radians: these stroke lengths correspond exactly
to the magnitude of the reference signal. The servomotor

Fig. 1. Exemplar drilling task and stroke lengths required as reference input.

parameters and constraint values are provided in Table I.
While most parameter values have been taken from [3], [21],

TABLE I
TRUE SERVOMETER PARAMETERS AND CONSTRAINTS.

J 7.2 ˆ 10´5 Kt 0.2723
c0 6.37 ˆ 10´2 d0 1.01 ˆ 10´3

ωfeas
min 0 ωfeas

max 100π
αfeas
min ´1.326 ˆ 104 αfeas

max 1.326 ˆ 104

ωinfeas
min 0 ωinfeas

max 10π
αinfeas
min ´1.326 ˆ 103 αinfeas

max 1.326 ˆ 103

we consider two sets of velocity and acceleration constraints
in this paper to illustrate the effectiveness of our approach

under much tighter constraints than those investigated before.
The first set, labeled ‘feas’, denotes a scenario when the
optimal LQR tracking control policy is feasible, and when
the constrained ADP is expected to converge to the optimal
policy: these are the constraint values considered in [3]. The
second set of constraints, labeled ‘infeas’, considers a more
challenging problem: namely, when the constraints are too
tight to admit the optimal LQR policy. In this scenario, the
constrained ADP is expected to converge to the best feasible
controller rather than the optimal LQR policy.

Hyperparameters required for the constrained ADP algo-
rithm are as follows. The cost function weight matrices are
given by S “ 1, Q “ 0, and R “ 10. The sampling time
τ “ 10 ms, the initial state is the origin, and λ “ 0.999.
The initial feasible policy and initial CAIS ellipsoid is
parametrized by

K0 “
“

´0.3501 ´0.0325 ´0.0150
‰

and

P0 “ 103

»

–

5.4859 0.0523 0.2568
0.0523 0.0055 0.0023
0.2568 0.0023 0.0233

fi

fl

which is obtained by model-free tuning of a proportional-
integral control policy and estimating an ellipsoidal admis-
sible domain of attraction from data that lies within the
constraint set X , for example, using methods described
in [22].

Fig. 2. [A] Position in radians for the unconstrained and constrained ADP
for a problem where the optimal tracking controller is feasible. [B, C]
Angular velocity and acceleration with hard constraints for the servomotor
driven by unconstrained (dashed line) and constrained ADP (continuous
line). [D] Evolution of normed error in the P matrix. [E] Evolution of
normed error in the F matrix.

We begin with the case when the optimal LQR tracking
controller F8 is feasible: that is, one can track the desired
rptq signal without violating constraints using the control
policy ∆uptq “ F8ξptq. Fig. 2 illustrates the performance of
constrained ADP tracking in such a scenario. From subplot
[A], we observe that the output trajectories are identical for
the optimal policy and the constrained ADP policy, which
disparity seen only in the first few seconds when the ADP



iterations are still reaching the fixed point; see [D] and [E]
for convergence of the iterates Pt and Ft to their respective
optima. The fact that the optimal policy can be achieved
without violating the velocity and acceleration constraints is
evident from subplots [B] and [C].

Fig. 3. [A] Position in radians for the unconstrained and constrained ADP
for a problem where the optimal tracking controller is infeasible. [B, C]
Angular velocity and acceleration with hard constraints for the servomotor
driven by unconstrained (dashed line) and constrained ADP (continuous
line). [D] Evolution of normed error in the P matrix. [E] Evolution of
normed error in the F matrix.

A more interesting scenario is investigated next, wherein
the optimal (unconstrained) policy F8 will result in con-
straint violation for the given reference signal. We ensured
infeasibility of F8 by tightening to more restrictive con-
straints than considered in the prior experiment. The fact
that employing F8 results in velocity constraints being
violate is apparent from subplot [C] of Fig. 3: constraint
violation occurs twice, during the drilling of the final two
holes. Conversely, the constrained ADP formulation results
in no constraint violation, despite the same reference be-
ing tracked: the effectiveness of the reference adaptation
is especially noteworthy around 12 s, when the velocity
grazes and recovers from the constraint. As expected, the
output trajectories in subplot [A] are different at the reference
jumps: the constrained ADP has a smoother, less aggressive
halting motion compared with the optimal tracking controller.
From the subplots [D] and [E], we notice another interesting
phenomenon: that the sequence of Pt and Ft converges
not to P8 and F8 but to the pair of value function and
policy matrices that are feasibly optimal. In other words,
the system learns the best tracking policy that is constraint-
enforcing automatically and does not attain the optimal
tracking controller that is infeasible.

V. CONCLUSIONS

In this paper, we propose a methodology for computing
optimal constraint-enforcing tracking policies for servomo-
tors under velocity and acceleration constraints. We learn
the optimal feasible policies using a novel combination of
constrained ADP and reference scaling for applications where
the reference signal is known and piece-wise constant and

illustrate the potential of the approach on a positioning task
for laser drilling operations. The problem is posed as a
semidefinite program that can be solved on-line using stan-
dard convex programming methods—both in a model-based
and data-driven manner. In future work, we will provide
formal guarantees on the convergence of the learned value
function and control policies to their respective optima.
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