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Abstract
The performance of synthetic aperture radar degrades when its moving platform is per-
turbed with unknown position errors or received signals are interfered by strong random
noise. Therefore, it is desirable to perform robust imaging with noisy radar echoes even un-
der large position perturbations. In this paper, we propose a graph-based denoising method,
which regularizes both the smoothness in the graph domain and the sparse gradients in the
time domain. Different from previous GSP-based methods, our graph model is built in the
radar signal domain instead of the image domain, so that we can jointly estimate position per-
turbations of the radar platform and denoise the received signals, providing focused imaging
results. Simulation results demonstrate that our method improves the radar imaging quality
from 13.3dB provided by coherence analysis to 21.6dB in terms of PSNR.
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ABSTRACT

The performance of synthetic aperture radar degrades when
its moving platform is perturbed with unknown position er-
rors or received signals are interfered by strong random noise.
Therefore, it is desirable to perform robust imaging with noisy
radar echoes even under large position perturbations. In this
paper, we propose a graph-based denoising method, which
regularizes both the smoothness in the graph domain and the
sparse gradients in the time domain. Different from previ-
ous GSP-based methods, our graph model is built in the radar
signal domain instead of the image domain, so that we can
jointly estimate position perturbations of the radar platform
and denoise the received signals, providing focused imaging
results. Simulation results demonstrate that our method im-
proves the radar imaging quality from 13.3dB provided by
coherence analysis to 21.6dB in terms of PSNR.

Index Terms— denoising, array signal, graph signal pro-
cessing, radar platform

1. INTRODUCTION

Synthetic aperture radar uses a moving platform to form a
large virtual aperture and consequently realizes high imag-
ing resolution. However, in practice the performance of syn-
thetic aperture radar degrades due to position perturbations
of the moving radar platform and interferences to the radar
echoes received by the platform. When the position pertur-
bation level and the noise level are relatively low, one may
analyze data coherence of received signals to correct phase
errors caused by the perturbations [1,2] or impose sparsity on
the final radar image to realize auto-focused imaging [3–5].
With the increase of perturbation and noise level, it becomes
more and more challenging due to the nonconvexity of data
coherence analysis. Imaging methods may be either time-
consuming due to greedy search for unknown position errors,
or perform poorly due to out-of-focus.

Graph signal processing (GSP) has been an active re-
search topic in image and signal processing areas for years.
GSP basically exploits the underlying specific data structure
defined by the graphs [6–8] to enhance signal or image qual-
ity. Recently, GSP has been applied to synthetic aperture

radar to improve the imaging performance by modeling the
final radar image as a graph [9] where nodes are pixels of the
radar image and edges are correlations between pixels. As
a result, the radar image quality is enhanced with reduced
noise. However, this image-based GSP cannot fundamen-
tally solve the out-of-focus problem caused by radar position
perturbations. Therefore, it is desirable to perform robust
imaging with noisy radar echoes even under large position
perturbations.

In this paper, given perturbed synthetic aperture radars
with noisy radar echoes, we aim to improve the imaging per-
formance by using a novel graph-based denosing method that
can achieve position estimation and signal denoising together.
We treat the synthetic aperture radar system as a graph, each
transmitting and receiving position as a node of the graph,
and the corresponding radar signal as the time-series associ-
ated with each node. To denoise the array signals, we formu-
late a graph-based objective function, which regularizes both
the smoothness in the graph domain and the sparse gradients
in the time domain. The main difference between our pro-
posed method and the previous GSP-based method is that we
build a graph model in the radar signal domain, instead of the
image domain. We thus can jointly estimate position pertur-
bations and denoise radar signals, providing focused imag-
ing results. Preliminary experimental results show that the
proposed method significantly improves the denoising per-
formance combining with a robust decomposition method to
estimate the position perturbation.

2. ARRAY DATA COLLECTION

We consider a 2D radar imaging problem for simplicity in
which a mono-static moving radar platform is utilized to de-
tect localized targets situated in a ROI. We use p(t) and P (ω)
to denote the transmitted time-domain source pulse and its
frequency spectrum respectively, where

P (ω) =

∫
R
p(t)e−jωt dt. (1)

Without loss of generality we assume there are up to M
localized targets, each corresponds to a phase center located



in the ROI. Let lm be the location of the mth target. Ideally,
the mono-static radar performs as a uniform linear array, with
the ith radar position located at ri, for i = 1, 2, ...N . Due to
position perturbations, the actual measurements are taken at
r̃i = ri+εi, where εi stands for the unknown position pertur-
bation of the ith radar position. The overall signal received by
the perturbed array is then a superposition of scattered waves
from all targets in the ROI. We consider measurements at dis-
crete frequency ωk, where k = 1, 2, ...,K. After range com-
pression, we achieve the radar measurement in the frequency
domain, an N ×K data matrix Y = [Yi,k] with

Yi,k =

M∑
m=1

|P (ωk)|2S(ωk, lm)a2(r̃i, lm)e−jωk
2‖r̃i−lm‖

c +ν,

(2)
where S(ωk, lm) is a complex-valued function of frequency
ωk and it accounts for scattering strength of the mth target
located at lm ; a2(r̃i, lm) accounts for the overall magni-
tude attenuation caused by the antenna beam-pattern and
the propagation between ri and lm; e−jωk‖r̃i−lm‖/c is the
phase change term of the received signal relative to the
source pulse; and ν is the overall noise. For the ith radar
position, Yi is the frequency-domain measurement and
yi(t) =

∑K
k=1 Yi,ke2πjωkt is the time-domain measurement.

Note that in applications of radar target detection, radar
measurements have distinct properties: slow transition in the
frequency domain and sparse gradients in the time domain.
The physical mechanism is as follows. Since both the scatter-
ing strength of targets and the antenna beam-pattern change
gradually in the spatial domain, the scattered electromagnetic
field of ROI will also be smooth in the spatial domain. When
there are several isolated targets located in the ROI, each tar-
get will generate a response or signature to radar excitation.
Therefore, the time-domain gradient of radar measurement at
each position will be sparse, and the sparsity level is related
to the total number of targets.

3. GRAPH-BASED DENOISING

To reduce the influence of noise and position perturbations,
we treat the synthetic aperture radar as a graph G = (V,A),
where V = {v1, ..., vi, ..., vj , ..., vN} is the set of nodes, rep-
resented by sequential positions of the moving radar platform,
and A ∈ RN×N is the graph shift, or a weighted adjacency
matrix that represents the pairwise proximity between nodes,
radar signal Yi ∈ CK is then the noisy time-series associated
with the ith node of the graph. We can estimate the graph
shift through the raw measurements as

Ai,j =
|Y H
i Yj |√

Y H
i Yi

√
Y H
j Yj

, for |ri − rj | ≤ R (3)

whereH indicates the Hermitian transpose, andR is the max-
imum distance of connected neighborhood nodes in the graph.

The intuition is that when radar measurements are taken in
nearby positions, the measurements should have strong pair-
wise correlations in the frequency domain.

Let X and x(t) be the denoised frequency-domain signal
and time-domain signal, respectively. To denoise radar mea-
surements, we consider a graph-based optimization problem

min
X,T

1

2
‖X � T − Y ‖2F +

λ

2
‖X − ĀX‖2F

+β

N∑
i=1

|∇txi(t)|1, (4)

where λ, β are hyperparameters, � stands for the element-
wised product, T = [e−jtiωk ] ∈ CN×K , which compensates
the time shift misalignment caused by position perturbations,
∇txi represents the gradient of the time series xi associated
with the ith node, and Ā is a normalized graph shift matrix
whose entries are computed as Āi,j = Ai,j/

∑
jAi,j to en-

sure each row of Ā sum up to 1. The intuition behind the
optimization problem (4) is that we optimize over both the
radar signals X and position perturbations T , achieving joint
signal denoising and position perturbation estimation.

The objective function in (4) includes three terms. The
first term represents signal fidelity term with the appropriate
time shift ti to compensate the phase misalignment of the ith

position perturbation. The second term is the `2-norm graph
total variation of denoised signal X , which is widely used in
the graph signal processing [8]. The graph total variation

‖X − ĀX‖2F =
∑
i

‖Xi −
∑
j∈Ni

Āi,jXj‖22

compares the difference between the radar measurements
associated with each node and the weighted average of its
neighbors. Minimizing this term promotes the graph smooth-
ness; that is, neighbouring nodes should share similar radar
measurements in the frequency domain. The third term is
the `1-norm total variation of the time-domain signal xi. It
promotes the sparse gradients in the time domain. Over-
all, we use dual regularization terms to capture the physical
properties of radar measurements for target detection.

To solve the optimization problem (4), we alternately up-
date the denoised signal X and the time shift ti due to posi-
tion perturbations.

To optimize X , we fix the time shift ti for i = 1, ..., N .
According to the signal processing theory, we can rewrite
∇txi as

∇txi(t) = F−1 ([jωk]�Xi) ,

where F−1 is the inverse Fourier transform. We solve X
through soft-thresholding the closed-form solution of the two
quadratic terms. The denoised signal at the ith node is

X̂i = [
1

jωk
]� F

{
Sβ

[
F−1

(
[jωk]� X̃i

)]}
,



where the soft-thresholding operator Sβ is defined as

Sβ(z) = max(|z| − β, 0)z/|z|,

and

X̃ =
(
I + λ(I − Ā)T (I − Ā)

)−1
(Y � [ejtiωk ]).

To optimize the time shift ti for i = 1, ..., N , we fix the
estimated signals Xi = X̂i. The time shift ti can be esti-
mated by

t̂i = argmax
t

∑
t

[
(XH

i )T � Yi � e−jtωk
]
, (5)

which can be implemented by the inverse Fourier transform.
Note that Y is noisy and the estimation of ti is not convex.
Therefore, ti using (5) maybe not accurate. In order to im-
prove the accuracy of the time shift ti, we use cross validation

ti,j = argmax
t

∑
t

[(
(Xi � e−jtiωk

)H]T
�
[
Xj � e−jtjωk

]
� e−jtωk (6)

to form a time shift matrix Φ = [ti,j ], where ti,j represents
the time shift between radar signal measured at ith and jth

positions due to position perturbations.
Let ϕ = [t1, t2, ..., tN ]T and L(ϕ) = ϕ1T − 1ϕT . Ide-

ally, we have ti,j = ti − tj , i.e., Φ = L(ϕ), where L(ϕ) is
a low-rank matrix of rank not great than two. However, due
to noisy measurement, the time shift matrix acquired by (6) is
not a low rank matrix. Inspired by the robust principal com-
ponent analysis [10], we achieve ϕ by decomposing the time
shift matrix Φ into a low-rank matrix and a sparse matrix as

min
ϕ,S

1

2
‖Φ−L(ϕ)− S‖2F + γ‖vec{S}‖1, (7)

where γ is a hyperparameter, and S represents a sparse matrix
which absorbs spike errors in the time shift matrix. Similar to
(4), the above equation (7) can be solved by a least-squares
solution followed by a soft-thresholding process. Once ϕ is
achieved by solving (7), the time shift ti is straightforward
according to ϕ = [t1, t2, ..., tN ]T . The position perturbation
at the ith radar position is then estimated by |εi| = tic

2 .

4. SIMULATION RESULTS

The simulation setup is depicted in Fig. 1, where the black
dots indicate ideal moving radar positions, and x-marks to in-
dicate perturbed radar positions. We use a differential Gaus-
sian pulse to illuminate the region of interest (ROI), as indi-
cated by the dashed rectangle, to detect targets represented by
four black dots in the ROI. The received signals are simulated
using (2) with added white Gaussian noise. Fig. 2(a) shows
the simulated noisy signal whose peak-signal-to-noise ratio
(PSNR) is 10dB.
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Fig. 1. Simulation setup for radar data collection.

In our graph-based denoising method, we choose λ =
10PSNR/20+1, where PSNR is our estimated data peak
signal-to-noise ratio in dB, β = 0.15 max |x(t)|, and γ =
0.05 × 10−9. We present the denoised graph signal using
our proposed method in Fig.2(b), from which we see that
radar echoes from targets are much clearer than the noisy
one. A further quantitative analysis shows that the PSNR is
improved from 10dB to 20.2dB. With time compensation,
the denoised signal are well aligned as shown in Fig.2(c).
The corresponding position perturbations are also estimated,
and compared with that estimated by coherence analysis [4];
see Fig. 3. We notice that the estimated positions using our
proposed method matches the true perturbed positions well.
However, the position estimates based on coherence analysis
exhibit large errors. This is because data coherence-based
perturbation estimation is unstable due to the noisy data.

With the denoised radar signal, we perform radar imag-
ing; see in Fig.4 (a). For comparison, the imaging result
based on coherence analysis is shown in Fig.4 (b). It is clear
that our proposed method generates a sharper image with less
background noise than the coherence-based method does. By
defining image patches of targets as the signal and the re-
maining areas as the background noise, we compute PSNRs
of these two radar images. The PSNRs of the graph-based
radar image and the coherence-based radar image are 21.6dB
and 13.3dB respectively, meaning 8.3dB improvement of our
proposed method. We have examined our method on other
scenarios of different target positions and different perturbed
radar positions, all with consistent outperformed results1.

5. CONCLUSIONS

We proposed a graph-based algorithm to denoise array signals
collected by a perturbed synthetic aperture radar. Our method
performs joint radar signal denoising and radar perturbation
estimation by using a dual-regularization-based optimization.
Simulation results demonstrate that our proposed method im-
proves the imaging performance by more than 8dB of PSNR.

1Due to the space limit, we cannot show all the results here.



(a)

Simulated time-domain noisy data
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(b)

Graph denoised time−domain signal
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(c)

Graph denoised time−domain signal after alignment
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Fig. 2. Time-domain radar signals: (a) Original noisy data yi(t), (b) Denoised data xi(t + ti) using proposed method, and (c)
Denoised and aligned data xi(t) after time compensation.
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Fig. 3. Comparison between actual perturbed radar positions
and estimated positions.
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and Jelena Kovačević, “Signal recovery on graphs: Vari-
ation minimization,” IEEE Transactions on Signal Pro-
cessing, vol. 63, no. 17, pp. 4609–4624, 2015.

[9] Shahzad Gishkori and Bernard Mulgrew, “Graph signal
processing-based imaging for synthetic aperture radar,”
IEEE Geoscience and Remote Sensing Letters, 2019.

[10] Emmanuel J Candès, Xiaodong Li, Yi Ma, and John
Wright, “Robust principal component analysis?,” Jour-
nal of the ACM (JACM), vol. 58, no. 3, pp. 11, 2011.


	Title Page
	page 2

	/projects/www/html/my/publications/docs/TR2020-114.pdf
	page 2
	page 3
	page 4


