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Abstract
Interior point methods are applicable to a large class of problems and can be very reliable for
convex optimization, even without a good initial guess for the optimal solution. Active-set
methods, on the other hand, are often restricted to linear or quadratic programming but
they have a lower computational cost per iteration and superior warm starting properties.
The present paper proposes an approach for improving the numerical conditioning and warm
starting properties of interior point methods, based on an active-set identification strategy
and inexact Newton-type optimization techniques. In addition, we show how this reduces the
average computational cost of the linear algebra operations in each interior point iteration.
We developed an efficient C code implementation of the active-set based interior point method
(ASIPM) and show that it can be competitive with state of the art solvers for a standard
case study of model predictive control stabilizing an inverted pendulum on a cart.
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1. INTRODUCTION

Optimization based control and estimation techniques,
such as model predictive control (MPC) and moving hori-
zon estimation (MHE), have experienced an increasing
amount of interest from industry (Rawlings et al., 2017).
At each sampling instant, MPC solves an optimal control
problem (OCP), in which a particular cost function is
minimized subject to continuity conditions and inequality
constraints. A block-sparse quadratic program (QP) struc-
ture arises in linear or linear time-varying formulations. A
similarly structured QP defines the subproblems within
sequential quadratic programming (SQP) for nonlinear
optimal control (Gros et al., 2016).

In this paper, we aim to solve the following convex con-
strained linear-quadratic optimal control problem (OCP)
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s.t. x0 = x̂0, (1c)

xk+1 = ak +Akxk +Bkuk, k = 0, . . . , N−1, (1d)

dk ≥ Dx
kxk +Du

kuk, k = 0, . . . , N, (1e)

where xk ∈ Rnx is the state vector, uk ∈ Rnu is the
vector of control inputs, Qk ∈ Rnx×nx , Sk ∈ Rnu×nx and
Rk ∈ Rnu×nu are the cost function weight matrices, and N
is the prediction horizon. Further, we denote the predicted
state and control trajectories as X := [x>0 , . . . , x

>
N ]> and

U := [u>0 , . . . , u
>
N−1]>, respectively. The constraints in

QP (1) include the system dynamics with Ak ∈ Rnx×nx ,
Bk ∈ Rnx×nu , ak ∈ Rnx , inequality constraints with Dx

k ∈
Rnc,k×nx , Du

k ∈ Rnc,k×nu and an initial value condition
where x̂0 ∈ Rnx denotes the current state estimate.

A real-time implementation of MPC requires the solution
of the block-structured QP (1) within a specified time pe-
riod, typically on embedded control hardware with limited
computational resources and a relatively small amount
of available memory (Ferreau et al., 2017; Di Cairano
and Kolmanovsky, 2018). Generally, there is a trade-off
between solvers that make use of second-order informa-
tion and require only few but computationally complex
iterations, including active-set strategies (Ferreau et al.,
2014; Quirynen and Cairano, 2019) and interior point
algorithms (Domahidi and Perez, 2014; Frison et al., 2014),
versus first-order methods that are of low complexity but
may require many more iterations, e.g., ADMM (Raghu-
nathan and Di Cairano, 2015) and other gradient or
splitting-based methods (Ferreau et al., 2017). Similar to
the software tools FORCES (Domahidi and Perez, 2014)
and HPMPC (Frison et al., 2014), we focus on interior point
methods that exploit the block-structured sparsity.

When solving a set of QPs with a varying number of active
constraints (Bartlett et al., 2000), interior point meth-
ods (IPMs) typically provide a smaller variation in the
number of iterations compared to active-set (AS) solvers.
However, each IPM iteration is typically more computa-
tionally expensive than an AS one, because AS solvers
exploit low-rank factorization updates (Wright, 1996). In
MPC applications, the average computational cost of AS
methods can be further reduced by warm starting, which
is generally more complicated for IPMs (Shahzad et al.,
2010b). As a consequence, when solving QPs, IPMs may
outperform AS in worst-case performance but they may
have a longer average computation time.

The aim of this paper is to reduce the average computa-
tional cost per IPM iteration and to improve the warm
starting capabilities of IPMs, while avoiding an undesir-
able increase of their worst-case computational perfor-



mance. We extend prior work on IPM-tailored inexact
Newton-type techniques (Shahzad et al., 2010a) and warm
starting strategies (Shahzad et al., 2010b; Zanelli et al.,
2017) for IPMs. Here, we propose an inexact Newton-
type implementation that results in a numerically robust
active-set identification strategy and allows for using low-
rank factorization update techniques and tailored warm
starting procedures in the IPM. We present an efficient
C code implementation of the resulting active-set based
interior point method (ASIPM) and show that it can be
competitive with state of the art solvers for a case study
of MPC stabilizing an inverted pendulum on a cart.

The paper is organized as follows. Section 2 briefly in-
troduces the standard IPM. Next, Section 3 proposes the
novel inexact Newton-type algorithm and Section 4 de-
scribes its block-sparse structure exploitation. Section 5
discusses tailored warm starting strategies. The ASIPM
solver code and results of the MPC case study are pre-
sented in Section 6 and 7. Section 8 concludes the paper.

2. INTERIOR POINT METHODS FOR
LINEAR-QUADRATIC OPTIMAL CONTROL

We introduce the compact notation for the Hessian H, and
matrices F and G, respectively, denoting the equality (1d)
and inequality constraints (1e), as follows
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We define the gradient vector h := [q>0 , r
>
0 , . . . , q

>
N ]>, and

the constraint vectors f := −[x̂>0 , a
>
0 , . . . , a

>
N−1]> and

g := [d>0 , . . . , d
>
N ]>. Based on this compact notation, we

write the relaxed Karush-Kuhn-Tucker (KKT) conditions

Hz + F>λ+G>µ+ h = 0, (3a)

Fz − f = 0, (3b)

Gz − g + s = 0, (3c)

MS1− τ1 = 0, (3d)

µ, s ≥ 0, (3e)

where we introduced z := [x>0 , u
>
0 , . . . , x

>
N ]>, the Lagrange

multipliers λ and µ for the equality and inequality con-
straints, respectively, and we defined 1 := [1, . . . , 1]> ∈
Rnieq and the diagonal matrices M := diag (µ) and S :=
diag (s). In (3c), we introduced slack variables s ≥ 0 for the
inequality constraints Gz ≤ g. In (3d), we smoothened the
complementarity conditions using the barrier parameter τ .
A primal-dual IPM solves the smoothened system of KKT
conditions in (3) based on a Newton-type method for a
sequence of values of the barrier parameter τ → 0. More
specifically, in the kth iteration of the IPM, the search
direction is obtained by solving the linear system

H F> G> 0
F 0 0 0
G 0 0 1
0 0 Sk Mk




∆zk

∆λk

∆µk

∆sk

 = −


rkz
rkλ
rkµ
rks

 , (4)

where the right-hand side is given by

rkz = Hzk+F>λk+G>µk+h, rkµ = Gzk−g+sk, (5a)

rkλ = Fzk − f, rks = MkSk1− τk1. (5b)

We eliminate the slack variables ∆sk from system (4)
and introduce the notation w ∈ Rnieq , wi := si

µi
and

W := diag (w). This results in the reduced form of the
linearized KKT systemH F> G>

F 0 0
G 0 −W k

∆zk

∆λk

∆µk

 = −

 rkzrkλ
r̄kµ

 , (6)

where r̄kµ = rkµ−Mk−1

rks and ∆sk = −Mk−1

(Sk∆µk+rks ).

3. INEXACT NEWTON-TYPE METHOD FOR
IMPROVED NUMERICAL CONDITIONING

In the following, we propose a novel inexact Newton-type
implementation of the IPM that has following advantages
over standard implementations:

(1) Improved numerical conditioning for the approxi-
mated KKT matrix by bounding of the w-values.

(2) Classification of inequality constraints leads to a
reduced computational cost by restricting to a smaller
set of potentially active constraints (see Section 4).

(3) Tailored warm starting strategies that exploit the
constraint classification procedure (see Section 5).

3.1 Classification of Inequality Constraints in IPM

We follow and extend the idea of δ-inactive constraints
in (Shahzad et al., 2010a) and propose a new classification
based on wi := si

µi
for each i = 1, . . . , nieq. For inequality

constraints that are strictly active at the optimal solution,
si → 0 and µi > 0 such that wi → 0 for k → ∞. For
inactive inequality constraints, µi → 0 and si > 0 such
that wi → ∞ for k → ∞. Thus, the w-values become in-
creasingly small and large for active and inactive inequality
constraints, respectively, which highlights the numerical
ill-conditioning that must be tackled when implementing
IPMs (Shahzad et al., 2010a).

Based on lower and upper bound values wmin � wmax, we
classify constraints into the following three categories:

(1) inactive: constraints that are likely to be inactive at
the solution, with index set Iin := { i | wi ≥ wmax }.

(2) active: constraints that are likely to be active at the
solution, with index set Iact := { i | wi ≤ wmin }.

(3) guessing : constraints that are neither in the active
nor in the inactive range, with index set Ig.

All inequality constraints can be classified in exactly one of
these categories, i.e., the three index sets are disjoint and
Iact ∪ Ig ∪ Iin = {1, . . . , nieq}. The w-values at different
iterations of our IPM, with cold started initial guess, and
their classification are shown in Figure 1. The wide range
of w-values when the IPM is near convergence leads to
numerical ill-conditioning.
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Fig. 1. Distribution and classification of w-values for
particular iterations of a cold started IPM call.

3.2 Inexact IPM: KKT Matrix Approximation

Based on the above classification of constraints, we present
an approximation of the KKT matrix leading to our
proposed inexact IPM implementation that improves the
numerical conditioning, reduces the computational cost
and allows effective warm starting strategies. Instead of the
exact linearized KKT system in (6), our proposed inexact
Newton-type implementation solves the following system
to compute an approximated search direction

H F> G>act G>g 0
F −ε1 0 0 0
Gact 0 −ε1 0 0
Gg 0 0 −W k

g 0
Gin 0 0 0 −W k

in




∆zk

∆λk

∆µkact
∆µkg
∆µkin

 = −


rkz
rkλ

r̄kµ,act
r̄kµ,g
r̄kµ,in

 ,
(7)

where the inequality constraints and w-values have been
reordered and grouped together according to their cate-
gory, i.e., we have defined the diagonal matrices W k

in :=
W k
i∈Iin , W k

act := W k
i∈Iact and W k

g := W k
i∈Ig . Similarly, we

split G and r̄µ into the corresponding blocks.

The approximations in the KKT matrix of each inexact
Newton-type iteration (7) are:

• neglecting contributions of G>in∆µkin to the first row
of optimality conditions, because the corresponding
Lagrange multiplier values are sufficiently small;
• lower bounding of the diagonal block matrices in (7)

that correspond to the equality constraints and active
inequality constraints, i.e., W k

act ≈ ε1.

The latter lower bounding results in an augmented La-
grangian type regularization of the linearized KKT sys-
tem (Malyshev et al., 2018). The lower bound wmin can
typically be chosen equal to the value for the regularization
parameter, i.e., wmin = ε. The accuracy of the approxima-
tion, and therefore the convergence rate of the Newton-
type method, can be manipulated by choosing appropriate
values for wmin and wmax. However, a detailed analysis
of the convergence properties for the proposed inexact
Newton-type IPM is part of ongoing research.

4. TAILORED SPARSITY EXPLOITING DIRECT
LINEAR SYSTEM SOLUTION

The main computational cost of each IPM iteration is
the computation of the search direction by solving the
linearized KKT system (4) for which many different ap-
proaches have been proposed, e.g., in (Domahidi and
Perez, 2014; Frison et al., 2014; Shahzad et al., 2010a).
Here, we propose a specific implementation that is tailored
to the structure of the inexact Newton system in (7).

4.1 Direct Solution of Reduced Linear System

We start with the relatively standard numerical elimina-
tion of the Lagrange multiplier values by inverting the
nonsingular diagonal matrices in (7). This results in the
reduced linear system to compute the inexact search di-
rection of the primal variables[
H +

1

ε
F>F +

1

ε
G>actGact +G>g W

k−1

g Gg

]
︸ ︷︷ ︸

:=Mk

∆zk = −r̄kz ,

(8)

where r̄kz = rkz+ 1
εF
>rkλ+ 1

εG
>
actr̄

k
µ,act+G

>
g W

k−1

g r̄kµ,g. When
considering (7), the reduced linear system does not depend
on inactive inequality constraints, due to neglecting con-
tributions of G>in∆µkin to the first row of optimality condi-
tions. In addition, the corresponding search directions for
the Lagrange multipliers can be computed as

∆λk =
1

ε

(
rkλ + F∆zk

)
, ∆µkact =

1

ε

(
r̄kµ,act +Gact∆z

k
)
,

(9a)

∆µkg = W k−1

g

(
r̄kµ,g+Gg∆zk

)
, ∆µkin = W k−1

in

(
r̄kµ,in+Gin∆zk

)
.

(9b)

4.2 Block-tridiagonal Cholesky Factorization

The inexact coefficient matrixMk in (8) is positive definite
and has a block-tridiagonal sparsity structure due to the
block-sparse Hessian and constraint matrices in (2). A
block-tridiagonal Cholesky factorization is used to solve
the corresponding linear system. The dominating term in
the computational cost of the factorization is

N

(
7

3
n3x + 4n2xnu + 2nxn

2
u +

1

3
n3u

)
, (10)

where terms that are quadratic or linear in nx and nu and
those independent of N are dropped. The resulting block-
structured backsolves require

N
(
4n2x + 6nxnu + 2n2u

)
(11)

floating point operations. It is clear that the arithmetic
cost for the factorization in (10) is one order of magnitude
larger than the cost of using it to solve the linear sys-
tem (8) in (11). In addition, as discussed also in (Malyshev
et al., 2018), the arithmetic cost of this particular block-
tridiagonal Cholesky factorization is equal to that of the
factorized Riccati recursion that was proposed originally
in (Frison and Jørgensen, 2013). For our particular inexact
IPM implementation, we can exploit the problem structure
to further reduce the computational complexity of this
block-tridiagonal Cholesky factorization.



4.3 Block Updates of Reverse Cholesky Factorization

First, not all of the blocks in the block-tridiagonal coef-
ficient matrix Mk in (8) are updated from one inexact
IPM iteration to the next, due to our proposed constraint
classification and KKT matrix approximation strategy in
Section 3. More specifically, a particular block remains
unchanged if none of the inequality constraints within the
corresponding stage of the prediction horizon k = 0, . . . , N
are in the guessing range. Second, due to the difference
between prediction model and actual system and the sta-
bilizing effect of the cost function in MPC, the active-
set changes are more likely to occur for stages at the
beginning of the prediction horizon. Similar to the dual
Newton strategy in qpDUNES (Frasch et al., 2015), we use
the reverse variant of the block-tridiagonal Cholesky fac-
torization. We denote the last block that has been changed
as k = Nup and reuse the factorization for all blocks
k = Nup + 1, . . . , N . Therefore, only the first Nup ≤ N
blocks of the reverse Cholesky factorization need to be
updated, resulting in an arithmetic cost of

Nup

(
7

3
n3x + 4n2xnu + 2nxn

2
u +

1

3
n3u

)
(12)

instead of the total cost from (10). As illustrated by
Figure 2, these low-rank block-structured factorization
updates are particularly effective in combination with the
warm starting strategies that are described in Section 5.

Remark 1. In addition to the reuse of the last N − Nup

blocks, we could perform rank-1 block-structured factor-
ization updates in order to efficiently take into account the
changes that correspond to a relatively small amount of
inequality constraints over a large range of control stages.
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Fig. 2. Number of factorized blocks within ASIPM for
pendulum stabilization benchmark: cold start (top)
and warm start (bottom) in the nominal case, an
example with disturbance, and for a trivial problem
when only bounds on slack variables are active.

4.4 Structure Exploitation for Auxiliary Control Variables

In real-world applications of MPC Di Cairano and Kol-
manovsky (2018), it is difficult to ensure the satisfaction
of state-dependent inequality constraints h(x) ≤ 0 in
closed loop due to model mismatch and disturbances.
Therefore, soft constraint reformulations h(x) ≤ s with

slack variables s ≥ 0 and exact penalty terms are typically
used (Fletcher, 1987). Even when no state-dependent in-
equality constraints are active at the optimal solution, the
simple bound constraints on the slack variables would be
active at each control stage to impose each of the slack
variables to be equal to zero. Depending on the wmin value,
this could mean that Nup is large and many of the blocks
are updated in each IPM iteration.

However, an additional sparsity structure arises in the
block-tridiagonal coefficient matrixMk in case of a simple
bound on an optimization variable that does not appear
in any cross-terms in the quadratic cost function, nor in
any other inequality constraints that are not inactive or
in any of the equality constraints. The latter results in a
contribution on the diagonal of the coefficient matrix while
the off-diagonal elements are zero for that row and column,
corresponding to an update of the Cholesky factorization
that does not scale with any of the dimensions in the
problem. Therefore, simple bounds on slack variables can
be ignored in the determination of the number of blocks
Nup to be updated, when all of the corresponding soft
constraints are inactive in that particular IPM iteration.

5. WARM STARTING OF ACTIVE-SET BASED
INTERIOR POINT METHOD

As illustrated by Figure 2, there is little variation in the
number of iterations for a cold started IPM when solving a
trivial versus a difficult QP. Instead, warm starting for our
proposed inexact IPM solver can be particularly effective
because it results in the combined effect of

• reducing the average, and maybe even the worst case,
number of IPM iterations to reach convergence;

• reducing the average, and often also the worst case,
computational cost per iteration due to the reuse of
blocks in the reverse Cholesky factorization.

5.1 Dual Warm Starting with Constraint Inactivation

The issue that limits warm starting in IPMs is that
convergence can be (much) slower due to the non-smooth
complementarity conditions siµi = 0 for i = 1, . . . , nieq,
when the active set for the initial guess is different from
the optimal active set. Therefore, it is generally not a
good idea to initialize an IPM with the shifted solution
to the QP at the previous time step. Instead, we propose
to perform a constraint inactivation procedure to the time
shifted solution before using it as an initial guess:

(1) Compute time shifted solution guess
(
z0, λ0, µ0, s0

)
from the QP solution at the previous time step.

(2) Scale the initial values for the slack variables upward
s̃0 = κ s0 with a scaling factor κ� 1.

(3) Compute barrier parameter value τ0 = s̃0
>
µ0

nieq
.

(4) Use resulting initial guess
(
z0, λ0, µ0, s̃0, τ0

)
for IPM.

This procedure corresponds to inactivating the inequality
constraints that were active at the previous time step by
increasing the values for the corresponding slack variables.
The idea is to choose the value of the scaling factor
κ � 1 sufficiently large, but not too large, such that
all active constraints move back into the guessing range



instead. This avoids the risk of making a mistake in
believing an inactive constraint to be active. In addition,
the resulting increase in the initial guess for the barrier
parameter results in a relaxed and therefore smoothened
set of complementarity conditions.

Unlike the warm starting strategy that was proposed
in (Shahzad et al., 2010b), the above procedure initializes
the dual variables with the shifted solution at the previous
time step and preserves the general distribution of w-
values from one IPM call to the next (see Figure 1).

5.2 Warm Starting based on Smooth Relaxed Solution

Based on the same concepts that motivated the previous
warm starting strategy, an alternative idea is to use a
shifted trajectory of a smooth relaxed solution to the QP
at the previous time step instead of the optimal solution.
More specifically, one needs to store an inexact relaxed
solution, for which a particular set of conditions is satisfied,
that can be used as a warm start to the next problem. For
example, the set of values

(
zk, λk, µk, sk

)
can be stored

for a particular IPM iteration for which the conditions
τk ≤ τmin and ‖rk‖ ≤ rmin hold, where ‖rk‖ corresponds
to the norm of the right-hand side in (4).

5.3 Tailored Constraint Reactivation Strategy

The two warm starting strategies described above aim
at avoiding convergence issues, when making the wrong
decision on which of the constraints are active, due to
the non-smoothness of the complementarity conditions.
However, convergence can still be slow due to inequality
constraints that are wrongly identified to be inactive in the
initial solution guess. Therefore, we include an additional
constraint reactivation procedure that can be used in case
of bad initializations, e.g., due to disturbances.

The first step is to accurately detect a bad initialization
of the IPM, which we propose to address by monitoring
the step sizes at successive iterations. If the step size is
below a particular threshold αmin and the step size has
decreased over a particular number of iterations n̄d, then
the reactivation procedure is invoked. In the latter case,
the Lagrange multiplier values for the inactive inequality
constraints are scaled upward in order to reactivate a
particular percentage 0 < γ ≤ 1 of the constraints in
the inactive range. The parameters αmin, n̄d and γ must
be properly selected, otherwise the method may result in
a considerable increase in the computational cost, since
it can lead to the computation of many more Cholesky
blocks as illustrated in Figure 2. We outline the resulting
constraint reactivation procedure in Algorithm 1.

6. IMPLEMENTATION DETAILS AND SOFTWARE

The overall description of our proposed ASIPM implementa-
tion can be found in Algorithm 2. Next, we briefly describe
the C code software implementation before presenting the
numerical simulation results.

6.1 Tailored Heuristics for Inexact Active-set based IPM

In addition to the algorithmic techniques that have been
presented in the previous three sections, there are multiple

Algorithm 1 Constraint reactivation procedure for IPM

1: Input: Current value nd, n̄d, αmin, and γ.
2: if Decreasing step size αk < αk−1 then
3: nd ← nd + 1.
4: if nd ≥ n̄d and α < αmin then . Reactivate
5: # of constraints to reactivate: na = d γ |Iin| e.
6: Compute β > 1 to reactivate na constraints.
7: µi ← β µi, i ∈ Iin.
8: end if
9: else

10: nd ← 0. . Reset counter
11: end if

Algorithm 2 Active-set based Inexact IPM for MPC

1: Warm starting strategy from Section 5.1 or 5.2.
2: while max(τk, ‖rk‖) > tol do
3: Call reactivation procedure in Algorithm 1.
4: Nup-block update of sparse factorization for Mk.
5: Form and solve reduced linear system in (8).
6: Compute dual search direction step in (9b).
7: Step size αk to ensure positivity constraints.

8: (z, λ, µ, s)
k ← (z, λ, µ, s)

k−1
+ αk∆ (z, λ, µ, s)

k
.

9: end while
10: Output: Next optimal control input values u?0.

tailored heuristics that make our ASIPM algorithm imple-
mentation effective in practice. For example, an adaptive
step-size selection strategy is used to increasingly favor
taking the maximum step size that satisfies the positivity
constraints for slack variables and Lagrange multipliers.
In addition, the proposed ASIPM algorithm switches be-
tween a standard IPM versus a predictor-corrector im-
plementation, as originally proposed in (Mehrotra, 1992),
depending on the relative computational cost of the block-
tridiagonal Cholesky factorization in (12) versus the linear
system solution in (11). In fact, the predictor-corrector
IPM can provide a computational speedup if and only if
the linear system solution is relatively cheap.

6.2 ASIPM Solver Implementation: Self-contained C code

We prepared a preliminary self-contained C code imple-
mentation of the ASIPM solver for fast MPC applications,
which does not rely on external libraries, e.g., for perform-
ing linear algebra routines. It is known that such oper-
ations can be performed more efficiently using advanced
Basic Linear Algebra Subprogram (BLAS) libraries. For
instance, the open-source BLASFEO (Frison et al., 2017)
framework provides hardware-tailored optimized dense
BLAS routines, outperforming most alternative tools for
small-to-medium-scale matrix dimensions that occur typ-
ically for applications of embedded optimization. How-
ever, external libraries may not be supported by micro-
controller platforms for embedded implementation. Thus,
our C code implementation is written such that the solver
can easily be embedded in prototyping platforms as well
as in micro-controllers that are used in real-world mecha-
tronic systems (Di Cairano and Kolmanovsky, 2018). De-
spite this, our simple, self-contained C code implementa-
tion will be shown to remain very competitive with state of
the art QP solvers, thanks to exploiting its active-set strat-
egy for reduced block-structured factorization updates and
tailored warm starting techniques.



7. NUMERICAL SIMULATION RESULTS: MPC ON
AN INVERTED PENDULUM

We consider the standard case study of an inverted pen-
dulum on a cart, and present closed-loop numerical simu-
lation results of a linearized MPC for stabilization.

7.1 Randomized Benchmark of Linear MPC Simulations

The nx = 4 state variables include the position xC(t) and
velocity vC(t) of the cart, and the angle θ(t) and angular

velocity θ̇(t) of the pendulum. The nu = 2 control variables
are the force uF(t) that is applied to the mass at the end of
the pendulum and the slack variable s(t) ≥ 0. The latter is
used to reformulate state constraints on the position and
velocity of the cart into soft constraints

xC − s ≤ xmax, −xmax ≤ xC + s, (13a)

vC − s ≤ vmax, −vmax ≤ vC + s, (13b)

−umax ≤ uF ≤ umax, 0 ≤ s. (13c)

We use a prediction horizon of N = 40 control intervals
and a sampling time of Ts = 0.1 s for the MPC controller.
More details on the OCP formulation for the inverted
pendulum example can be found in (Quirynen et al., 2014).

We created a randomized benchmark of 100 test scenarios
of linearized MPC, based on a steady state lineariza-
tion of the nonlinear system dynamics for the inverted
pendulum, with different initial state values and exter-
nal disturbances of the applied control input values. The
disturbances are simulated as an instantaneous external
force that is applied once for the duration of one sampling
period in the middle of each closed-loop simulation, to
the mass at the end of the pendulum. The initial state
values consist of zero velocities and random position values
that are uniformly generated in the union of the inter-
vals [−1,−0.5]xmax ∪ [0.5, 1]xmax and [−1,−0.5] θmax ∪
[0.5, 1] θmax, respectively. Similarly, the randomized dis-
turbance values ∆u are uniformly sampled in the union of
the intervals [−1,−0.5]umax ∪ [0.5, 1]umax.

7.2 Numerical Results: Comparison of MPC Solvers

The timing results for the benchmark of 100 randomized
closed-loop linear MPC simulations are presented in Fig-
ure 3. We compare a range of state of the art QP solvers
for MPC against our proposed ASIPM algorithm, including
qpOASES (Ferreau et al., 2014), OSQP (Stellato et al., 2017),
PRESAS (Quirynen and Cairano, 2019), qpDUNES (Frasch
et al., 2015) and HPIPM (Frison and Diehl, 2020). Note
that the results in Figure 3 are based on warm starting
and using a solution tolerance of 10−6 for each of the
QP solvers. The figure shows a colored rectangular area
that indicates the minimum and maximum number of
iterations and corresponding computation time for solving
one QP, while additionally the average value is indicated
by a black line. It can be observed that our proposed ASIPM
solver has the best average performance and it additionally
outperforms most of the other solvers in best- and worst-
case performance. Even though one cannot make conclu-
sions from one benchmark case study, these preliminary
results are aligned with the aim of ASIPM to provide the
best-case performance of a structure-exploiting active-set
solver like PRESAS in combination with the worst-case
performance of a highly optimized IPM such as HPIPM.
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Fig. 3. Minimum, average and maximum number of itera-
tions and timing results for a range of solvers on the
benchmark of 100 randomized closed-loop linear MPC
simulations on the inverted pendulum example. 1

7.3 Warm Starting of Active-Set based IPM

The effectiveness of our proposed warm-starting strate-
gies are illustrated in Table 1 that shows the computa-
tional results of the ASIPM solver on the benchmark of
100 randomized closed-loop linear MPC simulations, when
using a cold start, the dual warm-starting method with
constraint inactivation from Section 5.1 or the smooth re-
laxed initialization that was presented in Section 5.2. Due
to our tailored constraint reactivation strategy, described
in Algorithm 1, the proposed warm starting procedures
preserve the worst-case performance of the cold started
solver while resulting in a considerable improvement of its
average computational performance.

Table 1. Timing results for the ASIPM solver,
with a cold start or two tailored warm-start ini-
tialization strategies on the benchmark of 100
randomized closed-loop MPC simulations. 1

# IPM iterations CPU time [ms]
ASIPM min mean max min mean max

cold 10.0 12.0 16.0 0.56 0.70 0.99
dual 2.0 3.5 18.0 0.12 0.21 1.30
relaxed 1.0 2.2 16.0 0.08 0.16 1.12

7.4 Detailed Timing Results on Raspberry Pi 2 Platform

Unlike the computational timing results in Figure 3 and
Table 1, which have been obtained on a relatively powerful
computer, next we present detailed timing results for
an ARM Cortex-A7 processor in the Raspberry Pi 2.
While they are not embedded processors by themselves,
such Raspberry Pis use ARM cores with computational
capabilities on the order of high-end microprocessors that
can be used for embedded control applications in several
industries (Di Cairano and Kolmanovsky, 2018). Table 2
illustrates detailed timing results of the QP solvers for
different linearized MPC simulations on the ARM Cortex-
A7 processor, corresponding to different initial conditions
θ0 for the pendulum angle. It can be observed that our
ASIPM solver has the best average performance and it
additionally outperforms most state of the art solvers in
worst-case performance.
1 Computation times were obtained on a powerful computer that is
equipped with an Intel(R) Xeon(R) CPU E3-1505M v5 @ 2.80GHz.



Table 2. Average and worst-case computation times (ms) for MPC of an inverted pendu-
lum (Ts = 50 ms and N = 50), with varying initial conditions for the pendulum angle, on

an ARM Cortex-A7 processor in the Raspberry Pi 2 computing platform. 2

θ0 = 0.16 θ0 = 0.20 θ0 = 0.24

time [ms] # iter time [ms] # iter time [ms] # iter
(mean/max) (mean/max) (mean/max) (mean/max) (mean/max) (mean/max)

qpOASES 8.90/37.72 0.2/5 19.30/57.51 2.8/10 59.40/162.66 13.3/40
PRESAS 3.19/31.37 1.3/20 5.01/47.47 2.6/30 15.79/122.50 8.4/77
qpDUNES 3.78/19.65 2.1/5 5.50/27.27 2.5/7 6.91/27.29 2.8/8
HPIPM 22.35/27.04 10.2/12 24.10/31.45 10.3/12 23.84/29.57 11.3/14
ASIPM 2.81/21.79 1.2/12 4.41/25.17 1.9/12 5.29/27.77 2.1/13

8. CONCLUSIONS

We presented a structure-exploiting implementation of an
IPM that is tailored to MPC. Based on an active-set iden-
tification strategy, we proposed an inexact Newton-type
algorithm that allows block-based updates to a reverse
Cholesky factorization and tailored warm-started solver
initialization strategies. We illustrated the computational
performance of the QP solver against a range of state
of the art software packages that are tailored to MPC
for a self-contained C code implementation of our IPM.
In addition, we showed that the solver is suitable for
embedded computational hardware with relatively limited
resources and using, e.g., single-precision arithmetics.
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