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Abstract
This paper presents a real-time algorithm for stochastic nonlinear model predictive con-
trol (NMPC). The optimal control problem (OCP) involves a linearization based covariance
matrix propagation to formulate the probabilistic chance constraints. Our proposed solu-
tion approach uses a tailored Jacobian approximation in combination with an adjoint-based
sequential quadratic programming (SQP) method. The resulting algorithm allows the nu-
merical elimination of the covariance matrices from the SQP subproblem, while ensuring
Newton-type local convergence properties and preserving the block-sparse problem structure.
It allows a considerable reduction of the computational complexity and preserves the positive
definiteness of the covariance matrices at each iteration, unlike an exact Jacobian-based im-
plementation. The realtime feasibility and closed-loop control performance of the proposed
algorithm are illustrated on a case study of an autonomous driving application subject to
external disturbances.
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Abstract: This paper presents a real-time algorithm for stochastic nonlinear model predictive
control (NMPC). The optimal control problem (OCP) involves a linearization based covariance
matrix propagation to formulate the probabilistic chance constraints. Our proposed solution
approach uses a tailored Jacobian approximation in combination with an adjoint-based se-
quential quadratic programming (SQP) method. The resulting algorithm allows the numerical
elimination of the covariance matrices from the SQP subproblem, while ensuring Newton-type
local convergence properties and preserving the block-sparse problem structure. It allows a con-
siderable reduction of the computational complexity and preserves the positive definiteness of the
covariance matrices at each iteration, unlike an exact Jacobian-based implementation. The real-
time feasibility and closed-loop control performance of the proposed algorithm are illustrated
on a case study of an autonomous driving application subject to external disturbances.
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1. INTRODUCTION

Nonlinear model predictive control (NMPC) has grown
mature and shown its capability of handling relatively
complex constrained processes (Rawlings et al., 2017).
Although NMPC exhibits an inherent robustness due to
feedback, such controllers do not take uncertainties di-
rectly into account and, consequently, the satisfaction of
safety-critical constraints cannot be guaranteed in the
presence of model uncertainties or external disturbances.
One alternative approach is robust NMPC that relies on
the optimization of control policies under worst-case sce-
narios in the presence of bounded uncertainty (Bemporad
and Morari, 1999). However, robust NMPC can lead to
a conservative control performance, due to the worst-case
scenarios occurring with an extremely small probability.

Stochastic NMPC aims at reducing the conservativeness
of robust NMPC by directly incorporating the probabilis-
tic description of uncertainties into the optimal control
problem (OCP) formulation (Mesbah, 2016). It requires
constraints to be satisfied with a certain probability, i.e.,
by formulating so-called chance constraints that allow for
a specified, yet non-zero, probability of constraint viola-
tion. In addition, stochastic NMPC is advantageous in
settings where high performance in closed-loop operation
is achieved near the boundaries of the plant’s feasible re-
gion (Nagy and Braatz, 2007). In the general case, chance
constraints are computationally intractable and typically
require an approximate formulation (Mesbah et al., 2019).

Sampling techniques (Maciejowski et al., 2007) character-
ize the stochastic system dynamics using a finite set of
random realizations of uncertainties, which may lead to
a considerable computational cost. Scenario-based meth-
ods exploit an adequate representation of the probability
distributions (Campi et al., 2009), but determining the

number of scenarios leads to a trade off between robustness
and efficiency (Calafiore and Fagiano, 2013). Gaussian-
mixture approximations can be used to describe the tran-
sition probability distributions of states (Weissel et al.,
2009), but the adaptation of the weights is often computa-
tionally expensive. Another approach relies on the use of
polynomial chaos (PC) (Fagiano and Khammash, 2012),
which replaces the implicit mappings with expansions
of orthogonal polynomial basis functions but, for time-
varying uncertainties, PC-based stochastic NMPC requires
a large number of expansion terms (Mesbah, 2016).

We rely on a formulation of the chance constraints that
uses a linearization-based covariance propagation, similar
to (Gillis and Diehl, 2013; Telen et al., 2015). For ensuring
computational tractability, we do not include nonlinearity
bounders (Villanueva et al., 2017). Our main contribution
is an inexact adjoint-based sequential quadratic program-
ming (SQP) algorithm that allows the numerical elimina-
tion of the covariance matrices from the SQP subproblem
while preserving the block-sparse problem structure, re-
sulting in a considerable reduction of the computational
complexity. The proposed optimization algorithm enjoys
Newton-type convergence properties for local minimizers
of the large-scale stochastic NMPC problem and it pre-
serves the positive definiteness of the covariance matrices
at each SQP iteration, unlike existing approaches. We
present a tailored software implementation and illustrate
its performance on a case study of real-time stochastic
NMPC for an autonomous vehicle control system.

The paper is organized as follows. Section 2 introduces the
stochastic NMPC formulation. Based on the description of
SQP in Section 3, the inexact adjoint-based SQP algorithm
is presented in Section 4. Section 5 discusses the efficient
software implementation. Results of the case study are
presented in Section 6 and Section 7 concludes the paper.



2. STOCHASTIC MODEL PREDICTIVE CONTROL

We consider nonlinear systems of the form

xk+1 = f(xk, uk, wk), (1)

where xk ∈ Rnx denotes the state, uk ∈ Rnu the control
inputs, wk ∈ Rnw the process noise, and f : Rnx × Rnu ×
Rnw → Rnx the right-hand side function. The disturbance
wk ∼ N (0,Σ) is assumed to be a normally distributed sig-
nal with zero mean and variance Σ. In certainty-equivalent
NMPC, the disturbances wk are predicted to be zero. At
each sampling time, nominal NMPC solves

min
x,u

N−1∑
k=0

l(xk, uk) +m(xN )

s.t.


∀k ∈ {0, . . . , N − 1},
0 = xk+1 − f(xk, uk, 0), x0 = x̂t,

h(xk, uk) ≤ 0, umin ≤ uk ≤ umax,

(2)

based on the current state estimate x̂t. The function h :
Rnx×Rnu → Rnh denotes the path constraints, while umin

and umax are, respectively, the lower and upper bounds
of admissible control values and x = (x0, . . . , xN ), u =
(u0, . . . , uN−1). For simplicity, given an output function
φk(xk, uk), we consider the stage and terminal cost to be
least squares functions

l(·) =
1

2
‖φk(·)−φref

k ‖2Wk
, m(·) =

1

2
‖φN (·)−φref

N ‖2WN
. (3)

2.1 Linearization based Covariance Propagation

To achieve computational tractability, we use a lineariza-
tion based approximate propagation of the state covari-
ance matrix similar to (Gillis and Diehl, 2013; Telen et al.,
2015). For the discrete-time system dynamics in (1), this
results in the discrete-time Lyapunov equations

Pk+1 = AkPkA
>
k +BkΣB>k , P0 = P̂t, (4)

where Pk ∈ Rnx×nx is the covariance matrix for the
predicted state value xk, the matrix P̂t denotes the un-
certainty of the current state estimate, and the Jacobian
matrices Ak and Bk are computed as

Ak =
∂f

∂x
(xk, uk, 0) , Bk =

∂f

∂w
(xk, uk, 0). (5)

Throughout this paper, we adopt the discrete-time Lya-
punov equation instead of a continuous time formula-
tion (Telen et al., 2015), to reduce the computational cost
and to preserve the positive definiteness of the covariance
matrix (Gillis and Diehl, 2013).

2.2 Probabilistic Chance Constraints

Taking uncertainty into account in the OCP formulation,
we introduce individual chance constraints to ensure that
the probability of violating each of the path constraints
hi(xk, uk) ≤ 0 is below a certain probability level εi, i.e.,

Pr (hi(xk, uk) ≤ 0) ≥ 1− εi, (6)

for each chance constraint i = 1, . . . , nh and at each instant
k = 0, . . . , N along the prediction horizon. Based on the
state covariance propagation in (4), each chance constraint
can be approximated by

hi(xk, uk) + αi

√
Ck,iPkC>k,i ≤ 0, (7)

where Ck = ∂h
∂x (xk, uk) is the constraint Jacobian matrix

and Ck,i is the ith row of Ck. The back-off coefficient value
αi is computed to ensure the probability level εi in the
chance constraint (6). One option is to use the Cantelli-

Chebyshev inequality, αi =
√

1−εi
εi

, which holds regardless

of the underlying probability distribution, but may lead
to relatively conservative bounds (Telen et al., 2015).
An alternative approach is based on an approximation,
assuming normally distributed state trajectories, such that
the coefficient αi can be chosen as

αi =
√

2 erf−1(1− 2εi), (8)

where erf−1(·) is the inverse error function.

2.3 Prestabilizing Feedback Control

The feedback control action should be taken into account
in stochastic NMPC, for which different approaches have
been proposed (Goulart et al., 2006; Mesbah, 2016). For
simplicity, we rely on prestabilizing the nonlinear system
dynamics based on an affine feedback law. Given the
reference steady state and input

(
xref , uref

)
, we apply

the infinite-horizon linear-quadratic regulator uk = K xk
for the linearized dynamics at the steady state, Ar =
∂f
∂x (xref , uref , 0) and Br = ∂f

∂u (xref , uref , 0) and a quadratic

stage cost of x>k Qxk + u>k Ruk,

K = −
(
R+B>r XBr

)−1
B>r XAr, (9)

where the matrix X is computed by solving the discrete-
time algebraic Riccati equation,

X = A>r XAr −A>r XBr

(
R+B>r XBr

)−1
B>r XAr +Q.

As we consider a fixed linearization, K is a time-invariant
feedback gain, but one could use a time-varying sequence
of affine feedback laws as well.

2.4 Stochastic NMPC Problem Formulation

As a result, for the stochastic NMPC, we aim at solving
at each sampling instant the nonlinear OCP

min
x,u,P

N−1∑
k=0

l(xk, uk +K xk) +m(xN )

s.t.



∀k ∈ {0, . . . , N − 1},
0 = xk+1 − f(xk, uk +K xk, 0), x0 = x̂t,

0 = Pk+1 −
(
ÃkPkÃ

>
k + B̃kΣB̃>k

)
, P0 = P̂t,

umin ≤ uk +K xk ≤ umax,

0 ≥ hi(xk, uk +K xk) + αi

√
Ck,iPkC>k,i, ∀ i,

(10)
where the overall control action is in the feedforward-
feedback form uk + K xk due to the prestabilizing con-
troller, and the Jacobian matrices Ãk = ∂f

∂x (xk, uk +

K xk, 0) and B̃k = ∂f
∂w (xk, uk +K xk, 0).

Remark 1. The input bounds are imposed on the nominal
control action uk+K xk in (10). A more accurate problem
formulation relies on probabilistic chance constraints for
each control variable j = 1, . . . , nu as follows

uk,j +Kj xk + αj

√
KjPkK>j ≤ umax,j , (11)

where Kj denotes the jth row of the matrix K. 2



3. SEQUENTIAL QUADRATIC PROGRAMMING

In this section, we briefly introduce a compact notation of
the nonlinear program (NLP) in (10) and we summarize
the basics of sequential quadratic programming (SQP).

3.1 Compact Nonlinear Program Formulation

First, we introduce the optimization variables

y =
[
x>0 , u

>
0 , . . . , x

>
N−1, u

>
N−1, x

>
N

]>
,

z =
[
vec(P0)>, . . . , vec(PN−1)>, vec(PN )>

]>
,

(12)

where Pk is symmetric such that vec(Pk) ∈ R
nx(nx+1)

2 .
Then, we introduce the shorthand notation

F (y) :=

 x0 − x̂t
...

xN − f(xN−1, uN−1 +KxN−1, 0)

 ,

E(y, z) :=


P0 − P̂t

...

PN −
(
ÃN−1PN−1Ã

>
N−1 + B̃N−1ΣB̃>N−1

)
 ,

(13)
and I(y, z) denotes the inequality constraints and L(y) the
function which is used as the least squares cost in (3).
Therefore, the stochastic nonlinear OCP (10) can be
compactly written as the NLP

min
y,z

1

2
‖L(y)‖22

s.t. 0 = F (y), 0 = E(y, z), 0 ≥ I(y, z),
(14)

for which the Lagrangian function is

Λ(·) :=
1

2
‖L(y)‖22 +λ>F (y)+µ>E(y, z)+κ>I(y, z), (15)

where λ and µ are the Lagrange multipliers for the equality
and κ the ones for the inequality constraints.

Remark 2. Note that E(·) is linear in z but nonlinear in y
and ∂E

∂z is invertible, i.e., z can be computed easily given
y. Thus, we also introduce a compact notation to rewrite
0 = E(y, z) in an explicit form z = Ez(y). 2

Remark 3. The cost function in (14) only depends on the
variables in y, which simplifies our notation. However, the
proposed algorithms can be readily applied if the cost
depends also on the covariance matrices in z. 2

3.2 Exact Jacobian based SQP Algorithm (EX-SQP)

In a standard SQP for solving the NLP (14), each itera-
tion i, given the solution guess (yi, zi), solves the quadratic
subproblem

min
∆y,∆z

1

2

(
∆yi

)>
Hi∆yi +

(
gi
)>

∆yi

s.t.


σiF
σiE

∣∣∣∣∣ 0 =

[
F (yi)
E(yi, zi)

]
+

[
∂F
∂y (·) 0
∂E
∂y (·) ∂E

∂z (·)

] [
∆yi

∆zi

]
,

σiI

∣∣∣ 0 ≥ I(yi, zi) +
[
∂I
∂y (·) ∂I

∂z (·)
] [

∆yi

∆zi

]
,

(16)
to compute the new search direction (∆yi,∆zi). Then, a
full-step implementation of the SQP method updates the

iterates as yi+1 ← yi+∆yi and zi+1 ← zi+∆zi. Similarly,
the Lagrange multipliers can be updated from (16) as
λi+1 ← σiF , µi+1 ← σiE , and κi+1 ← σiI .

Since the objective is of the least squares form, it is com-
mon to solve the NLP in (14) by the generalized Gauss-
Newton (GGN) variant of the SQP algorithm (Bock,
1983). In this case, the Hessian of the Lagrangian Λ(·)
can be approximated as

Hi :=
∂L

∂y
(yi)>

∂L

∂y
(yi) ≈ ∇2Λ

(
yi, zi, λi, µi, κi

)
, (17)

and the gradient is computed as gi := ∂L
∂y (yi)>L(yi).

In contrast to SQP applied to nominal NMPC, each
QP subproblem (16) additionally involves the covariance
matrices in z for the stochastic NMPC formulation. This
leads to a considerable increase in the computational
cost of each SQP iteration. To remedy this, we propose
tailored inexact Newton-type implementations of SQP for
stochastic NMPC, aimed at achieving a computational
cost comparable to that of nominal NMPC.

4. INEXACT ADJOINT-BASED SQP ALGORITHM
TAILORED TO STOCHASTIC NMPC

Next, we introduce our inexact adjoint-based SQP algo-
rithm that is tailored to stochastic NMPC.

4.1 Inexact Adjoint-based SQP Algorithm (ADJ-SQP)

Based on Remark 2, first note that function E(·) is linear
in z but nonlinear in y, the matrix ∂E

∂z is invertible while

both ∂E
∂z (·) and ∂E

∂y (·) depend on the linearization point

(yi, zi). Applying numerical elimination to ∆zi in the QP
subproblem (16) would destroy the block-sparse problem
structure that allows the efficient implementation of SQP
for NMPC (Gros et al., 2016). Instead, we propose a
tailored approximation for the Jacobian of the equality
constraints J̃eq ≈ Jeq, which allows the elimination of
the variables ∆zi while preserving the block-sparse prob-
lem structure. We present an inexact adjoint-based SQP
algorithm that solves the QP subproblem (16) with the
following Jacobian approximation

J̃ ieq =

[
∂F
∂y (·) 0

0 ∂E
∂z (·)

]
≈

[
∂F
∂y (·) 0
∂E
∂y (·) ∂E

∂z (·)

]
= J ieq. (18)

Due to the inexact Jacobian matrix J̃eq, a correction to
the gradient vector gi is needed in each Newton-type
iteration (Wirsching et al., 2006; Quirynen et al., 2018).
This adjoint-based gradient correction is

gia := gi +
(
Jeq − J̃eq

)> [ λi
µi

]
= gi +

∂E

∂y
(yi, zi)>µi,

(19)
where gi := ∂L

∂y (yi)>L(yi) denotes the objective gradient.

Because of the particular Jacobian approximation in (18),
in which the derivative information ∂E

∂y (·) is set to zero,

the update of the z-variables simplifies to

∆zi = −∂E
∂z

(yi, zi)−1E(yi, zi). (20)



By inserting the inexact update (20) for ∆zi into the
QP (16) with the Jacobian approximation (18), we obtain
the equivalent reduced QP

min
∆y

1

2

(
∆yi

)>
Hi∆yi +

(
gia
)>

∆yi

s.t.


σiF

∣∣∣ 0 = F (yi) +
∂F

∂y
(yi)∆yi,

σiI

∣∣∣ 0 ≥ Ĩ(yi, zi) +
∂I

∂y
(yi, zi)∆yi,

(21)

in which the condensed evaluation Ĩ(·) of the inequality
constraints is

Ĩ(yi, zi) = I(yi, zi)− ∂I

∂z
(·)∂E

∂z
(·)−1E(yi, zi). (22)

In each iteration of our inexact adjoint-based SQP method,
based on the QP solution in (21), the updates for the
variables are yi+1 ← yi+∆yi, λi+1 ← σiF , and κi+1 ← σiI .
In addition, zi+1 ← zi + ∆zi and µi+1 ← σiE where ∆zi

is computed by (20) and the Lagrange multipliers by

σiE = −∂E
∂z

(yi, zi)−>
∂I

∂z
(yi, zi)>σiI . (23)

Remark 4. The computations of Ĩ(·) and σiE can be per-
formed efficiently by exploiting the block-structured spar-

sity of the matrices. For example, Ĩ = I− ∂I
∂z

∂E
∂z

−1
E(yi, zi)

can be computed sequentially as

Ĩ0 = I0 −
∂I0
∂z0

E0, Ẽ0 = E0,

Ẽk = Ek + (Ak−1 ⊗Ak−1) Ẽk−1,

Ĩk = Ik −
∂Ik
∂zk

Ẽk, k = 1, . . . , N,

(24)

based on matrix-vector multiplications for each block,
where Ek and Ik denote the equality and inequality
constraints at stage k, respectively, and Ẽk denotes the
intermediate result from the back substitution with ∂E

∂z . 2

4.2 Inexact SQP with Nonlinear Covariance Propagation

Next, we propose an alternative implementation of the
inexact adjoint-based SQP algorithm, in which we aim
at performing a more accurate update of the covariance
matrices from one SQP iteration to the next. Instead of
the inexact SQP update step in (20) to recover zi+1 ← zi+
∆zi, we could apply the exact Jacobian step

∆zi = −∂E
∂z

(yi, zi)−1

(
E(yi, zi) +

∂E

∂y
(yi, zi)∆yi

)
,

(25)
which can be implemented efficiently based on the struc-
ture exploitation as detailed in Remark 4. Yet another
alternative is to use the nonlinear covariance propagation
dynamics (4) to evaluate zi+1 directly as

zi+1 = Ez(y
i+1), (26)

where the notation Ez(·) was introduced in Remark 2.
Unlike the inexact SQP update in (20) or the exact Ja-
cobian based update in (25), it is important to note that
Eq. (26) intrinsically preserves the positive definiteness of
the covariance matrices from one iteration to the next.
In addition, note that E(yi+1, Ez(y

i+1)) = 0 such that

Ĩ(yi+1, zi+1) = I(yi+1, zi+1) and the additional computa-
tions in Eq. (22) become unnecessary.

4.3 Adjoint-free Variant of Inexact SQP Algorithm

An alternative approach to implement the inexact SQP
method is to remove the covariance propagation dynamics.
This amounts to removing the constraints in E(·) and
approximating the Jacobian ∂I

∂z (·) by zero. Each iteration i
of the resulting algorithm consists of two steps:

(1) Obtain z̄i by propagating the covariance matrices

z̄i = Ez(y
i).

(2) Compute yi+1 = yi + ∆yi by solving the QP

min
∆y

1

2

(
∆yi

)>
Hi∆yi +

(
gi
)>

∆yi

s.t.


σiF

∣∣∣ 0 = F (yi) +
∂F

∂y
(yi)∆yi,

σiI

∣∣∣ 0 ≥ I(yi, z̄i) +
∂I

∂y
(yi, z̄i)∆yi.

(27)

The above inexact SQP approach is rather intuitive and
was adopted, e.g., by (Hewing et al., 2018). Similar to our
inexact adjoint-based SQP method, the above approach
solves QP subproblems of the same dimensions as those of
nominal NMPC, i.e., with states and controls as variables.
But unlike our proposed method, this alternative approach
performs an additional approximation of the linearized
inequality constraints and it omits the computation of an
adjoint-based gradient correction in (27).

The lack of a gradient correction means that the above
inexact SQP optimization algorithm cannot converge to a
solution of the original stochastic NMPC problem in (10).
More specifically, due to the use of inexact Jacobian
information, a fixed point to the above adjoint-free SQP
iterations is generally not a local minimizer for the NLP
in (10), as discussed in (Wirsching et al., 2006; Quirynen
et al., 2018) and references therein.

5. EFFICIENT SOFTWARE IMPLEMENTATION
FOR REAL-TIME STOCHASTIC NMPC

Following the standard real-time iteration (RTI) algo-
rithm, as described for nominal NMPC in (Gros et al.,
2016), we propose our tailored adjoint-based algorithm for
real-time stochastic NMPC.

5.1 Adjoint-based Inexact RTI for Stochastic NMPC

To ensure real-time feasibility and to achieve fast feedback
to the system, Algorithm 1 performs only one inexact
adjoint-based SQP iteration per control time step. The
approach consists of three main steps, including the prepa-
ration step that computes the Jacobian matrices and di-
rectional derivatives, followed by the solution of the block-
sparse QP in (21) and the expansion of the covariance ma-
trices and corresponding Lagrange multiplier values. Note
that a shifting procedure should be performed when using
the updated values for the primal and dual variables from
Algorithm 1 as the solution guess to the same algorithm,
from one control time step to the next.

5.2 Efficient Preparation of Block-Sparse QP Subproblem

One of the most computationally expensive tasks in
preparing the QP subproblem (16) in an exact SQP algo-



Algorithm 1 Real-time Adjoint-based Stochastic NMPC

1: Input: Guess (yi, zi, λi, µi, κi), and feedback gain K.
Preparation step of QP subproblem:

2: for k = 0, . . . , N do
3: Compute Jacobians ∂F

∂yk
(yik) and ∂I

∂yk
(yik, z

i
k).

4: Evaluate Ĩk(yik, z
i
k) in (22) using forward AD.

5: Evaluate gradient gia,k in (19) using adjoint AD.
6: end for

Solution step of block-sparse QP:
7: Receive current state estimate x̂t.
8: Solve QP in (21) to obtain ∆yi, σiF and σiI .
9: yi+1 ← yi + ∆yi, λi+1 ← σiF , and κi+1 ← σiI .

10: Feedback: send control u∗ = ui+1
0 +Kx̂t to process.

Expansion step for variables:
11: Compute µi+1 ← σiE in (23) using adjoint AD.
12: Compute zi+1 ← zi + ∆zi using Eq. (20) or (26).
13: Output: New values (yi+1, zi+1, λi+1, µi+1, κi+1).

rithm is the evaluation of the Jacobian matrix J ieq for the
equality constraints. Especially the Jacobian evaluation
for the covariance propagation dynamics is often compu-

tationally expensive, consisting of N blocks of nx(nx+1)
2

equations in E(·). None of the proposed inexact SQP
methods require the explicit evaluation of the complete

Jacobian matrix
[
∂E
∂y (·) ∂E

∂z (·)
]
. Instead, only directional

derivatives are required for computing the gradient correc-
tion in (19), the condensed constraint evaluation in (22)
and the expansion steps in (20) and (23).

The above mentioned directional derivatives can be eval-
uated efficiently using either the forward or the adjoint
mode of algorithmic differentiation (AD), which require
a computational cost that is a small multiple of the cost
for the corresponding function evaluation (Griewank and
Walther, 2008). The latter observation results in a con-
siderable computational speedup for the QP preparation
step in our proposed algorithm, in comparison with a
standard exact Jacobian based implementation. In our
preliminary C code implementation of Algorithm 1, we
use the open-source software package CasADi (Andersson
et al., 2018) and its code generation capabilities for the
efficient evaluation of the directional derivatives.

5.3 Tailored Solution of Convex QP Subproblem

For our proposed inexact adjoint-based Algorithm 1, the
QP in (21) has only nx + nu variables per interval in-

stead of nx + nu + nx(nx+1)
2 for the exact Jacobian-

based subproblem (16). The QP subproblem in (21) is
of the same form as the convex subproblem solved in
the standard RTI approach to nominal NMPC. In our
preliminary C code implementation, we use the recently
proposed block-structured primal active-set method in
PRESAS (Quirynen and Cairano, 2019). Block-sparse QP
solvers tailored to MPC, such as PRESAS, typically have
a computational cost that scales linearly with the hori-
zon length N , but cubically in the number of optimiza-
tion variables per interval (Quirynen and Cairano, 2019).
Therefore, the solution by the inexact SQP algorithm has
a computational complexity of O(n3

x) instead of O(n6
x) for

the case of the exact SQP.

6. NUMERICAL CASE STUDY: AUTONOMOUS
VEHICLE CONTROL UNDER UNCERTAINTY

Our simulation case study is based on a stochastic for-
mulation of the NMPC trajectory tracking controller that
was used in the autonomous driving system on the test
platform of small-scale vehicles in (Berntorp et al., 2018).

6.1 Vehicle Model and Problem Formulation

We use the kinematic single-track vehicle model
ṗX(t)
ṗY(t)

ψ̇(t)

δ̇f(t)

 =


vx cos(ψ + β)

vx sin(ψ + β)
vx
L tan(δf) cos(β)
1
τ (δ + δ0 − δf)

 , (28)

where β = arctan (lr tan(δf)/L) is the body-slip angle and
L = lf + lr denotes the wheel base. The state vector is

x = [pX pY ψ δf ]
> ∈ R4, in which pX and pY denote the

longitudinal and lateral position in the world frame, ψ is
the heading angle and δf the front wheel steering angle.

The input vector is u = [vx δ]
> ∈ R2 where vx is the

longitudinal velocity and δ is the commanded steering
angle. In (28), δ0 denotes an input disturbance that
groups model errors and actuator offsets and is modeled
as a normally distributed disturbance δ0 ∼ N (0,Σ). The
nonlinear system dynamics (28) are discretized using the
explicit Runge-Kutta method of order 4.

The goal of the stochastic NMPC controller is to track
a reference motion that corresponds to the sharp lane
change maneuver shown in Figure 2, while considering
safety-critical constraints under the uncertainty. More
specifically, the objective function is of the form in Eq. (3)
based on a time trajectory of reference position values(
pref

X (ti), p
ref
Y (ti)

)
i=0,...

and a constant reference velocity

vref
x . We introduce simple bounds umin ≤ uk+Kxk ≤ umax

on the control inputs and, for our simplified setting, the
road boundary constraints can be imposed directly with
respect to pY position by time-varying lower and upper
bounds (see Figure 2). We approximate the feasible region
on the road by the discrete-time chance constraints

pY,k − pmax
Y,k + α

√
P2,k − sk ≤ 0,

pmin
Y,k − pY,k + α

√
P2,k − sk ≤ 0,

(29)

where P2,k denotes the variance for pY,k and the back-off
value α is computed based on the maximum allowed vio-
lation rate ε = 0.05 in Eq. (8). We additionally introduced
the slack variables sk ≥ 0, with an exact penalty in the cost
function, such that a feasible solution to the constrained
optimization problem always exists. The NMPC controller
uses a prediction horizon of T = 2.0 s, with 20 control
intervals and 40 Runge-Kutta integration steps.

6.2 Numerical Results: Local Convergence Analysis

Let us first illustrate the Newton-type convergence proper-
ties of our proposed inexact adjoint-based SQP algorithm
by comparing the following variants:

(EX) exact Jacobian SQP method in Section 3.2.
(ADJ) inexact adjoint-based SQP method in Section 4.1.
(IN) inexact adjoint-free SQP method in Section 4.3.



We introduce an additional SQP algorithm (ADJ-IN) that
corresponds to the inexact method in Section 4.3, includ-
ing the Jacobian approximation in the inequality con-
straints, but with an adjoint-based gradient correction.
Figure 1 shows the convergence for each of these SQP
algorithms, compared to a high-accuracy solution that was
obtained by IPOPT for the stochastic NMPC problem.

Fig. 1. Convergence results on the stochastic NMPC case
study for 4 SQP variants: EX, ADJ, ADJ-IN and IN.

From the results in Figure 1, one can immediately observe
that IN does not converge to the same solution due to the
lack of a gradient correction in (27). More specifically, IN
would not converge to the same solution when initialized
arbitrarily close to this minimizer. Instead, the adjoint-
based variants do converge to the local solution of the
stochastic NMPC problem and it can be observed that
ADJ leads to a local convergence rate that is faster than
ADJ-IN but slower than EX, for this case study.

6.3 Closed-loop Performance for Stochastic NMPC

From now on, we further refer to our proposed stochastic
MPC (SMPC) approach in Algorithm 1 as ADJ-SMPC. Sim-
ilarly, we refer to the same stochastic NMPC controller
using either of the alternative SQP variants in the RTI
framework as EX-SMPC and IN-SMPC. In addition, we used
IPOPT to implement the SMPC in IPOPT-SMPC and the ex-
act Jacobian based RTI algorithm for certainty-equivalent
MPC, EX-MPC. All Newton-type variants (EX, ADJ and IN)
perform only one SQP iteration per control time step,
while IPOPT-SMPC solves each OCP to a high accuracy. Our
aim is to compare the closed-loop performance of these
NMPC controllers for the case study in Figure 2, given the
normally distributed external disturbance δ0 ∼ N (0,Σ).

Figure 3 presents a comparison of the closed-loop perfor-
mance for the five implementations of the NMPC con-
troller for the vehicle control case study in Figure 2, under
1000 random realizations of the trajectory of external
disturbances. Figure 3 shows the total area of violation
for the vehicle position outside the road boundaries in
blue and the total closed-loop tracking cost in green, as
well as the relative difference for each algorithm compared
to IPOPT-SMPC. It can be observed that EX-MPC achieves
the best tracking performance since no robustness infor-
mation is taken into account, but it simultaneously leads

Fig. 2. Illustration of the predicted uncertainty propaga-
tion in the stochastic NMPC formulation for a sharp
lane change maneuver of an autonomous vehicle.

to the largest amount of constraint violations. On the
other hand, IPOPT-SMPC reduces considerably the total
area of violations at the cost of a relatively small increase
in the tracking cost. The trade off between robustness and
tracking performance can be clearly observed.

Focusing on the online Newton-type SQP algorithms for
stochastic NMPC in Figure 3, it can be observed that our
ADJ-SMPC implementation outperforms both IN-SMPC and
the certainty-equivalent EX-MPC. In addition, the inexact
ADJ-SMPC exhibits a closed-loop performance that is very
close to that of the EX-SMPC method, in terms of both
violations and tracking cost, even though the ADJ-SMPC
implementation in Algorithm 1 has a much lower compu-
tational complexity, as discussed next.

36.52 (0%) 36.46 (-0.16%) 36.16 (-0.97%) 36 (-1.43%) 34.95 (-4.28%)

1.18 (+0%)

1.38 (+17.5%) 1.39 (+17.9%)
1.46 (+23.8%)

1.58 (+34.2%)

Fig. 3. Closed-loop performance of five different NMPC
implementations for the vehicle control case study for
1000 random realizations of the external disturbances:
tracking cost in green and violations in blue (relative
difference compared to IPOPT-SMPC in parentheses).

6.4 Computational Timing Results

Table 1 summarizes the average and worst-case timing
results per call to the different Newton-type implemen-
tations of NMPC. The required computational effort for
the QP preparation step is deterministic, corresponding
to the evaluation of nonlinear functions and derivatives.
On the other hand, since the number of iterations can
be different for each control time step, Table 1 shows
both the average and worst-case timings for the entire
QP solution by PRESAS. In addition, the timing results



for IPOPT-SMPC have been included as a reference, even
though this implementation can be considered unsuited
for a real-time application in our case study.

Table 1. Average and worst-case computation
times per iteration of the NMPC algorithms. 1

IPOPT EX ADJ IN EX

SMPC SMPC SMPC SMPC MPC

QP preparation − 3.69 ms 1.28 ms 0.82 ms 0.57 ms

QP solution (A) − 1.83 ms 0.32 ms 0.32 ms 0.32 ms
Total time 534 ms 5.52 ms 1.60 ms 1.14 ms 0.89 ms

QP solution (W) − 8.74 ms 1.72 ms 1.71 ms 1.71 ms
Total time 973 ms 12.43 ms 3.00 ms 2.53 ms 2.28 ms

Each QP subproblem in EX-SMPC has 14 state variables (10
for the covariance) and 2 control inputs, versus the original
4 states and 2 inputs in the algorithms ADJ-SMPC, IN-SMPC
and EX-MPC. Therefore, the QP solution in the latter in-
exact methods is about 5 times faster than in EX-SMPC,
resulting in an overall speedup of factor 4− 5. The use of
the reverse mode of AD in calculating the gradient correc-
tion (19) leads to a computationally efficient preparation
phase in ADJ-SMPC, which is about 50 % more expensive
than that of IN-SMPC. An important observation to be
made is that ADJ-SMPC leads to an increase of the total
computation time of only 30 % compared to EX-MPC and
20 % compared to the IN-SMPC controller, even though
ADJ-SMPC leads to convergence in Figure 1 and consider-
ably improved robustness in Figure 3.

7. CONCLUSIONS

We proposed a real-time stochastic NMPC algorithm using
an inexact adjoint-based Newton-type method that ex-
ploits the particular problem structure. The method enjoys
standard Newton-type convergence results and preserves
positive definiteness of the covariance matrices at each
iteration. We presented a software implementation and il-
lustrated its convergence properties, its computational effi-
ciency and closed-loop control performance on a stochastic
NMPC implementation for a vehicle control case study.
Our adjoint-based stochastic NMPC algorithm was shown
to require only 30 % more computations than nominal
NMPC and resulted in a speedup of factor 4 compared
to an exact Jacobian based implementation.
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