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Abstract
Kinodynamic planning explores the collision-free configuration space by constructing a tree
on-the-fly. The process terminates when the tree expands into a specified neighborhood of
the goal configuration. Often, the resultant path does not reach the goal accurately enough,
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between the tree and the goal. This is the non-trivial steering problem. Aiming to balance
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solutions; and development of a custom solver based on the these structures. Simulations
demonstrate the PMP-based custom solver achieves better accuracy than a PID feedback
controlbased approach, and is more computationally efficient than a gradient descent-based
numerical optimization approach.
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Abstract— Kinodynamic planning explores the collision-free
configuration space by constructing a tree on-the-fly. The
process terminates when the tree expands into a specified
neighborhood of the goal configuration. Often, the resultant
path does not reach the goal accurately enough, which raises the
question: how does one make an accurate, kinematically feasible
connection between the tree and the goal. This is the non-trivial
steering problem. Aiming to balance computational efficiency
and position accuracy, this work solves an approximate steering
problem through applying Pontryagin’s Maximum Principle
(PMP). The main contributions of this work are: establishment
of an exhaustive set of possible structures of optimal control so-
lutions; and development of a custom solver based on the these
structures. Simulations demonstrate the PMP-based custom
solver achieves better accuracy than a PID feedback control-
based approach, and is more computationally efficient than a
gradient descent-based numerical optimization approach.

I. INTRODUCTION
Path planning arises in numerous applications, such as

autonomous vehicles [1] and robotics [2]. Established results
include graph-based A* [3]–[6] and D* [2], [7]; navigation
functions and potential fields [8]; sampling-based algorithms
such as probabilistic roadmaps (PRM) [9], expansive-space
trees [10], and rapidly-exploring random trees (RRT) [11]
and their variants RRT* and PRM* [12], particle RRT [13],
and anytime RRT [14], [15].

Sampling-based approaches are attractive to high-
dimensional applications, since they relieve the curse of
dimensionality. A sampling-based algorithm typically in-
volves sampling either a configuration space [11] or control
input space [10]. By sampling the configuration space, the
planning algorithm achieves probabilistic completeness [9],
whereas making a connection between a tree and the new
sample requires solving a steering problem [12], [16]. The
steering problem is hard and computationally expensive to
solve for most of robotics, where dynamics are nonlinear,
nonholonomic, or under-actuated. By sampling the control
input space, the planning algorithm circumvents the steering
problem, and is at most resolution-complete [17], [18], which
means the resultant path is ε-distance away from the goal.
Another key limitation of the sampling-based approach is its
random nature, i.e., every run of the algorithm likely takes
a different time period and gives a different path.

Hybrid A [19], Anytime D [20], [21], and A-search
guided tree [6] address the randomness of sampling-based
approaches by exploiting the idea of A-search algorithm [3],
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where the node selection is guided according to deterministic
criteria. Given a selected node, its expansion for child
nodes typically follows pre-defined rules. These algorithms
possess deterministic characteristics as well as resolution-
completeness, i.e., a resultant path is ε-distance away from
the goal. Ideally, one would like to have ε as small as possible
for accuracy purposes,but a smaller ε dramatically increases
the scale of the tree and thus the computational burden. How
to choose the ε which strikes a balance between computa-
tional efficiency and position accuracy is tricky. Other ideas
such as using motion primitives with adaptive lengths have
been proposed to balance efficiency and accuracy [21], which
increases the tree complexity in the proximity of the goal.

The contributions of this paper address the balance of com-
putational efficiency and position accuracy for autonomous
parking systems by solving an approximate steering prob-
lem. Our work differentiates from the state-of-the-art in the
following aspects. By avoiding solving the exact steering
problem, the computational burden is greatly reduced, at the
expense of a slight loss in accuracy. By solving approximate
steering problem in the optimal control framework, we can
improve positioning accuracy and land a smoother path over
various feedback control-based path generation approaches.

In terms of technical contributions, we first formulate the
approximate steering problem as a constrained optimal con-
trol problem, and employ Pontryagin’s Maximum Principle
(PMP) to obtain necessary optimality conditions. Rigorous
analysis of these conditions is carried out to establish an
exhaustive set of possible structures for optimal control
solutions of the approximate steering problem. Based on
the complete set of possible structures, we further develop
a custom solver to save computation time for solving the
approximate steering problem. Finally, we compare the re-
sults of this custom optimal control-based solver with results
from a gradient descent (GD) solver and a PID feedback
control-based solver. It is shown in terms of accuracy of
the final solution, the custom solver is more accurate than
the PID solver, but the GD solver is more accurate than
the custom solver. In terms of computational efficiency, the
custom solver is faster than the GD solver as the number of
time steps increases above 50.

II. PROBLEM FORMULATION
Consider a robot with the following dynamics

Ẋ = f(X) + g(X)u, (1)
where X ∈ X ⊂ Rnx is state, u ∈ U ⊂ Rm the control,
f a smooth vector field (the drift), and g = [g>1 , · · · , g>m]>

with gi a smooth vector field. A configuration of (1) is a
complete specification of the position of every point in that



system. The configuration space C ⊂ Rnc is a compact
set representing all possible configurations of the system.
A collision-free configuration space Cfree is the set of
configurations at which the robot has no intersection with
obstacles in the environment, the complement of this is the
collision configuration space, Cobs = C\Cfree. An admissible
trajectory Xt is a solution of (1) with given initial and final
conditions and u ∈ U . An admissible path Pt is the image
of an admissible trajectory on C. For brevity, an admissible
path, if additionally collision-free, is termed a feasible path.
Whenever (1) represents its kinematics, nx = nc and C = X ,
which is assumed in this work.

Now, consider a front wheel drive vehicle. Its kinematics
are modeled as follows [22]:

ẋ = v cos(θ), ẏ = v sin(θ), θ̇ = vs/R, (2)

where (x, y) are the coordinates of the midpoint of the rear
wheels, θ is the vehicle orientation, v is the longitudinal
velocity, s is a normalized steering control, and R is the min-
imum turning radius. The system state space X = (x, y, θ)>

coincides with the configuration space, i.e., C = X ⊂ R3.

A. Path Planning Problem
A typical path planning problem is given as follows.
Problem 2.1: Given an initial configuration X0 ∈ Cfree,

a goal configuration Xf ∈ Cfree, and system (2), find a
feasible path Pt : [0, 1]→ Cfree which:

(I) starts at X0 and ends at Xf , while satisfying (2); and
(II) lies in the collision-free configuration space Cfree.

Let J(·) be a cost function assigning to each non-trivial
path a non-negative cost. Optimal path planning is to find
a feasible path P∗t : [0, 1]→ Cfree that minimizes J(·).

Most path planning algorithms do not solve Problem 2.1
exactly: a path ends at a configuration X̃f 6= Xf , and thus
violates condition (I). However, path planning algorithms
ensure X̃f lies in an ε-neighborhood of Xf :

Bε(Xf ) , {X|d(X,Xf ) ≤ ε,∀X ∈ X},
where d(·, ·) is a distance metric. Designing smooth motion
of the vehicle from X̃f to Xf is the focus of this paper.

B. Exact and Approximate Steering Problems

Denote p(t) = [x(t) y(t) θ(t)], and let u(t) = [s(t) v(t)]
be the control input. The exact steering problem can be
formulated as the following optimal control problem.

Problem 2.2: Given p0 the initial configuration, pf the
goal configuration, tf the fixed final time, and a cost function
L(p, u), find control s(t) ∈ [−bs, bs],∀t ∈ [0, tf ], and v(t) ∈
[bv,l, bv,u],∀t, satisfying:

min
s(t),v(t)

∫ tf

0

L(p, u)dt

subject to ṗ =

 v(t) cos(θ(t))
v(t) sin(θ(t))
v(t)s(t)/R

 ,
p(0) = p0, p(tf ) = pf ,

− bs ≤ s(t) ≤ bs, bv,l ≤ v(t) ≤ bv,u,

where and bs, bv,u and −bs, bv,l are the upper and lower
bounds of the steering and speed, respectively.

Remark 2.3: If L(p, u) = 1, Problem 2.2 is reduced to
the Reeds-Shepp problem, and its analytical solution can
be obtained as a Reeds-Shepp path [22]. A drawback of
Reeds-Shepp path is the discontinuity of steering control.
Aiming to produce a smooth movement of the vehicle, we
take L(p, u) = s(t)2 to ensure that the resultant path is
continuous. A similar problem has been studied in [23],
where the optimal solution could be challenging to find.

In practice, solving the exact steering problem with cost
function L(p, u) = s(t)2 is unnecessary as it is impossible
for a vehicle to reach the goal. Considering the path gener-
ated by a path planner is ε-distance away from the goal, what
we need is how to move the vehicle toward the goal with a
simple manoeuvre. It is realistic to consider an approximate
steering problem, where the feasible control set is restricted.
Specifically, to enforce the constraint v > 0 or v < 0 to
reflect the desire that the movement from X̃f to pf does not
involve the change of gear, because X̃f ∈ Bε(Xf ). Enforcing
this directional constraint on longitudinal velocity reduces (2)
to a Dubins car [24].

With the additional constraint on the direction of lon-
gitudinal velocity v, one can reparameterize the kinematic
model (2) in terms of path length, l. Without loss of
generality, assume v is fixed and always positive. The speed
along the path is exactly the longitudinal velocity v, i.e.,
dl(t)/dt = v. As a result, (2) can be rewritten:

dp

dl
= f(p, u, t) ,

 cos θ(l)
sin θ(l)
s(l)/R

 . (3)

The approximate steering problem is given as follows.
Problem 2.4: Given the initial configuration p0, the goal

configuration pf , and a cost function L(p, u) = s(l)2,
find a finite path length lf and continuous control s(l) ∈
[−bs, bs], l ∈ [0, lf ] satisfying:

min
s(l),lf

∫ lf

0

s(l)2dl

subject to (3),
p(0) = p0, p(lf ) = pf ,

− bs ≤ s(l) ≤ bs.

(4)

Remark 2.5: Problem 2.4 is a free final “time” (path
length) problem. From [24], it admits at least one feasible
solution: Dubins path. On the other hand, similar to the
Reeds-Shepp path, a Dubins path between two arbitrary
configurations comprises of circular and straight arcs, and
thus suffers from discontinuous steering control.

Instead of imposing the boundary condition p(lf ) = pf ,
one can augment the cost function

∫ lf
0
s2dl with a terminal

cost |p(lf ) − pf |2Q with Q being a weighted matrix. It is
apparent that the optimal solution to an approximate steering
problem with the new cost function always exists. Playing
with boundary conditions or the cost function does not
affect main results established in this work. We focus on
Problem 2.4 for illustrative purpose.



Fig. 1. Solution forms from simulation results. Only upper bound solutions
for steering control are shown, lower bound solutions are also viable.

C. Numerical Optimization Approach
Problems 2.2 - 2.4 are continuous-time constrained opti-

mal control problems. A prevailing approach to solve these
problems is numerical optimization, where the control is
parameterized over time or functional space, and state, cost
function, and system dynamics are discretized over time or
arc length to cast the continuous-time problem into a nu-
merical optimization problem. Interested readers are referred
to [25]–[28] and references therein for details.

Following a numerical optimization approach, Problem 2.2
was solved directly using Matlab’s fmincon, which proved
to be computationally expensive as the number of time steps
were increased. To reduce the computation time to less than
1s, the maximum number of iterations was restricted to 50;
this resulted in a significant drop in accuracy. To reduce
computation time while maintaining accuracy, a GD numer-
ical optimization approach was developed. In this solver,
the problem was re-written as an unconstrained optimization
problem using penalty terms with cost function:

κ1||p(lf )− pf ||2Q +

∫ lf

0

s(l)2+

κ2
(
max(s(l)− bs, 0)2 + max(−bs − s(l), 0)2

)
dl,

where κ1, κ2 are weighting terms.
Simulation of the GD solver revealed an optimal steering

control trajectory admits 10 possible structures. They can be
characterized by the piecewise equation:

s(l) =

 ±bs l ∈ [0, l1)
ρ(l, θ(l)) l ∈ [l1, l2)
∓bs l ∈ [l2, lf ]

, (5)

where ρ(l) is a function defining the motion of θ(l), and l1, l2
are where s(l) switches from constrained to unconstrained, or
vice versa. As an example, Figure 1 summarizes five cases
where the steering control hits the upper bound. The goal
is to show rigorously the steering control can only take on
forms given by (5), under certain assumptions on pf . This
can be done by showing the steering control can only pass
through zero (s(l) = 0) once, and cannot consecutively hit
and leave the same boundary.

D. Assumptions and Notation
A path planner [6] is cascaded with our approximate

steering solver. With goal Xf , the path planner will stop
at X̃f if it satisfies the following stop criteria:

|X̃f −Xf |Q ≤ 1, |Prs(X̃f , Xf )| ≤ 1,

where Q = diag(1, 1, R2) and |Prs(X̃f , Xf )| represents the
length of the Reeds-Shepp path between X̃f and Xf . Solving
the approximate steering problem with initial p0 = X̃f and

goal pf = Xf is equivalent to solving the same problem with
p0 = 0 and pf = Xf − X̃f . The first stop criteria avoids
the presence of a large orientation error, represented by θf
in pf . Particularly, −1/R < θf < 1/R. For parking tasks,
the orientation error is necessarily small due to the tightness
of the parking space and the fact that a large orientation
error likely leads to a collision. Additionally, the second stop
criteria keeps the lateral error, yf , small. This reflects the fact
that a small lateral error requires a long Reeds-Shepp path to
connect. Without loss of generality, we assume pf is located
in the first quadrant (xf > 0, yf > 0) and 0 ≤ θf < 1/R.
Additionally, we assume xf < R for a small adjustment.

A dot over a symbol, ż, indicates a derivative with respect
to t or l, whichever is consistent with the expression.

III. MAIN RESULTS
In this section we apply PMP to Problem 2.4 and analyze

necessary optimality conditions to establish that the steering
control will only ever cross zero (s(l) = 0) once. This
guarantees the solutions will be of the form in (5).

A. Pontryagin’s Maximum Principle Set-up

It can be verified that Problem 2.4 satisfies Assumptions
3.1-3.3 of Chapter V-3 in [29], and it satisfies the set of
feasible controls is fixed. Thus, we can use the point-wise
maximum principle in [29]. Hamiltonian for Problem 2.4 is:

H(l, p, s, λ0, λ) =λ0s(l)
2

+ λ1(l) cos θ(l) + λ2(l) sin θ(l) + λ3(l)
s(l)

R
,

(6)

where λ0 = {0,−1}. Necessary optimality conditions are:
1) Vector (λ0, λ(l)) satisfies (λ0, λ(l)) 6= 0 for l ∈ [0, lf ].
2) For almost every l ∈ [0, lf ], the costate dynamics are:

dλ

dl
=−

(
∂H

∂p

)>
=

 0
0
λ1(l) sin θ(l)− λ2(l) cos θ(l)

 ,
which admits the following analytical solution:

λ1 = c1,
λ2 = c2,

λ̇3 = c1 sin θ(l)− c2 cos θ(l).

3) For any feasible control s̄(l),

H(l, p, s, λ0, λ) ≤ H(l, p, s̄, λ0, λ),

where s is the optimal solution.
4) If the cost function and state dynamics are continuous

at l = 0 and l = lf , the transversality condition
says the vector (H(0),−λ(0), H(lf ), λ(lf )) is orthog-
onal to the set of boundary conditions given by B =
{(l0, p0, lf , pf )}. Since lf is the only free variable in
B then it must be that H(lf ) = 0, which means
H(l) = 0 for all l, because the Hamiltonian is not
directly dependent on l [29].

For notational simplicity we drop the arguments p, s, λ0, λ
and write the Hamiltonian as H(l).



B. Analysis of Necessary Optimality Conditions
To show the steering control can only take the forms in

(5), we prove s(l) can only ever cross 0 once.
Let c1 =k cos(α) and c2 =k sin(α), then k=

√
c21 + c22 ≥

0 and α = arctan( c2c1 )+mπ ∈ (−π2 +mπ, π2 +mπ), m ∈ Z.
Write the Hamiltonian and the costate dynamics as:

H(l) = λ0s(l)
2 + k cos(θ(l)− α) + λ3(l)

s(l)

R
,

λ̇3(l) = k sin(θ(l)− α).

Proposition 1: The costate λ3(l) from Problem 2.4 can
only cross through λ3(l) = 0 once.

Proof: Begin by examining the unconstrained steering
control solution. When the control s(l) is unconstrained, it
should solve the equation ∂H

∂s = 0,
∂H

∂s
= 0 = 2λ0s(l) +

1

R
λ3(l). (7)

If we were to have λ0 = 0, then (7) would give λ3(l) =
0. If λ3(l) = 0 for any interval in l then it must be k =
0 ⇒ c1 = c2 = 0, which results in λ(l) = 0, but we know
(λ0, λ(l)) 6= 0, thus if there exists an unconstrained portion
of the control, we must have λ0 = −1. With this, we can
now rearrange (7) for s(l):

s(l) =
1

2R
λ3(l). (8)

Substituting this into the Hamiltonian gives:

H(l)=−
(

1

2R
λ3(l)

)2

+k cos(θ(l)−α)+λ3(l)

(
1

2R2
λ3(l)

)
=0,

which can be solved for λ3(l) as:
λ3(l) = ±

√
−4kR2 cos(θ(l)− α). (9)

To check this equation for λ3(l) satisfies the costate
dynamics, take the derivative with respect to l:

dλ3
dl

= ± d
dl

√
−4kR2 cos(θ(l)− α)

=
±1

2

−4kR2(− sin(θ(l)− α))dθdl√
−4kR2 cos(θ(l)− α)

=
±2kR s(l) sin(θ(l)− α)√
−4kR2 cos(θ(l)− α)

.

We know dλ3

dl = k sin(θ(l) − α), substituting this into the
above equation and rearranging for s(l) gives:

s(l) =
±1

2R

√
−4kR2 cos(θ(l)− α). (10)

Now, note λ3(l) = ±
√
−4kR2 cos(θ(l)− α). Thus:

s(l) =
λ3(l)

2R
,

which is exactly what we get from differentiating the Hamil-
tonian! Thus, (9) satisfies the costate dynamics.

Now, consider λ3(θ(l)) = 0. This requires 0 = cos(θ(l)−
α), which is satisfied when:

θ(l)− α = nπ − π

2
, n ∈ Z.

Thus, sin(θ(l)− α) does not change sign when λ3(l) = 0.
In order to have a real-valued solution we must have

cos(θ(l)−α) < 0. This gives 2πn+π
2 ≤ θ(l)−α ≤ 2πn+ 3π

2 ,

Fig. 2. Left: λ3(l) (light blue), and λ̇3(l) (dark blue), as functions of
θ(l)−α. The dashed portion of λ3(l) shows where λ3(l) is negative. The
dashed red line shows the range where θ(l) can exist based on α. Right: A
visualization of what λ3(l) might look like for a steering control solution
when the steering control hits the boundary, given by the dotted red line.

which needs to hold for all θ(l). In particular, consider when
θ(l) = 0, then 2πn + π

2 ≤ −α ≤ 2πn + 3π
2 which, for

n = −1, gives: π
2 ≤ α ≤

3π
2 . This has non-zero intersection

with the range of α given before when m = 1, therefore
α ∈ (π2 ,

3π
2 ).

Now, show λ3(l) can only cross 0 once. To do so, we
analyse the behaviour of λ3(l) immediately before and after
it touches 0. Consider Figure 2, there are two cases to
examine: λ3(l) → 0 from the positive side, and λ3(l) → 0
from the negative side.

1) If λ3(l) > 0 approaches 0, then θ(l) is increasing
and we must have dλ3

dl < 0. Since dλ3

dl does not
change sign when λ3(l) does, then λ3(l) will continue
to decrease after touching 0. Since λ3(l) < 0 now, θ(l)
will decrease, which shows λ3(l) will follow clockwise
the right half of the loop in Figure 2: Left.

2) If λ3(l) < 0 approaches 0, then θ(l) is decreasing and
we must have dλ3

dl > 0. By the same argument as above,
λ3(l) will continue to increase after touching 0, and θ(l)
will begin to increase. Thus, λ3(l) will follow clockwise
the left half of the loop in Figure 2: Left.

This shows λ3(l) will follow the loop in the left plot of
Figure 2 clockwise, and without getting stuck at 0.

The relationship between λ3(l) and θ(l) determines the
only way λ3(l) can pass through 0 more than once is if it
passes through first at θ(l)−α = 3π

2 and then at θ(l)−α =
π
2 , or in the opposite order; λ3(l) cannot pass through 0
consecutively at the same value of θ(l)− α.

Now, knowing α ∈ (π2 ,
3π
2 ), consider the range around α

where θ(l) can exist - this is shown by the red dashed line
in Figure 2: Left. If α > π or α < π, θ(l) has no chance
of passing through 0 twice. If α = π, λ3(l) still cannot pass
through 0 twice because θ(l) ∈ (−π2 ,

π
2 ) the open interval,

since it is not physically possible for |θ(l)| ≥ π/2 if xf < R.
Thus, we have shown λ3(l) cannot pass through 0 twice.

Using Proposition 1, we can state the following result
about the steering control.

Proposition 2: The steering control solution, s(l), for
Problem 2.4 cannot pass through s(l) = 0 more than once,
nor can it consecutively hit and leave the same boundary.

Proof: From Proposition 1 and the costate dynamics,
we can conclude if s(l) starts on a boundary, see the right
plot in Figure 2 for the corresponding λ3(l) visualization,
that s(l) cannot go back to the same boundary. Consider
the case of consecutively hitting the upper boundary: to do
so, λ3(l) would need to decrease off the boundary and then
increase back toward the boundary, all the while remaining



positive because λ3(l) cannot pass through zero more than
once. This is not possible given the λ3(l) dynamics. A similar
argument can be made for the lower boundary. Thus, s(l)
cannot consecutively hit the same boundary.

Additionally, from (8) and Proposition 1 we have s(l) can
only pass through zero once. Therefore, we have shown s(l)
it will only take on the form claimed in (5).

C. The Custom Solver

Now that we have the form of λ3(l) and how it is related
to s(l), via (10), the general form of s(l) is:

s(l) =


±bs l ∈ [0, l1)

±
√
−k cos(θ(l)− α) l ∈ [l1, l2)

∓bs l ∈ [l2, lf ]
.

This can be substituted into the θ(l) dynamics and integrated
to solve for θ(l) as:

θ(l) =


± bsR l l ∈ [0, l1)

α+ π − 2am[
√
k

2R (Rc1 ∓ l)|2] l ∈ [l1, l2)

∓ bsR l l ∈ [l2, lf ]

,

where am is the Jacobi amplitude function φ = am(z|m)
with parameter m = k̄2, where k̄ is the modulus, and c1
is an integration constant. But, due to the possibility that
the steering control may need to switch sign during the
unconstrained portion, using the differential equation system
with costate dynamics was chosen over using the exact
solution for the unconstrained segment.

The general forms of the systems of equations the custom
solver solves are:

θ(l) = ± bsR l
x(l) = ∓ R

bs
sin(± bsR l)

y(l) = ± R
bs

cos(± bsR l)

 for l ∈ [0, lf ] s.t s(l) = ±bs,

and

λ̇3(l) = k sin(θ(l)− α)

θ̇(l) = λ3(l)
2R2

ẋ(l) = cos(θ(l))
ẏ(l) = sin(θ(l))

 for l ∈ [0, lf ] s.t |s(l)| < bs.

Where the order in which the systems are solved and the
boundary conditions are dependent on the shape of the
control solution, which can be any of the shapes found in
Figure 1, or with the lower bounds.

IV. SIMULATION
This section conducts two comparisons. The first compares

the accuracy of the final state achieved by applying three dif-
ferent methods to solve Problem 2.4: the custom solver using
the structure of (5), a GD-based solver, and a PID feedback
control-based method; the second compares computational
efficiency of the custom solver and the GD method. For all
simulations, the values used are: R = 4.132m, bv,l = 0m/s,
bv,u = 2m/s, bs = 1, and tf = 0.5s. Except for the PID
feedback control-based method, the number of iterations of
all other solvers was capped at N = 50. This was to enforce a
shorter computation time, with the goal of eventually having
the algorithm run in real-time. Unless otherwise stated, all

Fig. 3. Comparison of path error for Case 1. The final state error for the
custom, GD, and PID methods is 0.0073, 0.0017, and 0.0593, respectively.
The red dash-dot line in each plot on the left is the goal state.

Fig. 4. Control solutions for Case 1 for each of the three methods. The
dash-dot lines indicate the control bounds.

data which involves statistics, elapsed time, and final state
error was gathered over 100 simulations, so that any trends
would be statistically significant.

The PID feedback control-based method generates a path
by solving an output regulation problem. It is illustrated by
Fig. 5, where the PID block adopts two PID controllers to
regulate longitudinal and lateral errors toward zero, respec-
tively. The longitudinal and lateral errors are defined in the
body frame attached to the measured path p(t). We take
PID control as a baseline for simplicity, which is a key
requirement in practice.

Fig. 5. Diagram for PID feedback control-based method.

In the first comparison, the final positions, pf , for three
cases are given as follows:

Case 1: pf1 = (0.8503, 0.0255, 0.1012)

Case 2: pf2 = (0.7238, 0.0498, 0.1919)

Case 3: pf3 = (0.8067, 0.0561, 0.0693).

Case 1 was picked to demonstrate a fully unconstrained
control solution; Case 2 was picked to demonstrate a fully
constrained control solution; and Case 3 was picked to
demonstrate an initially constrained, then unconstrained solu-
tion. The path generation results for three methods are shown
in Figures 3-9. Both the custom and GD solvers were run
with a final time of 0.5s. Due to the slower convergence time
of the PID feedback approach, if it were run for only 0.5s
the final state error was ≈ 0.27, many orders or magnitude
larger than the error of the custom and GD solvers. For this
reason, the PID feedback control solver was run for 5s.



Fig. 6. Comparison of path error for Case 2. The final state error for the
custom, GD, and PID methods is 0.0431, 0.0188, and 0.0960, respectively.
The red dash-dot line in each plot on the left is the goal state.

Fig. 7. Control inputs for Case 2 for each of the three methods. The dash-dot
lines indicate the control bounds.

From the figures and reported errors, it is clear the custom
method outperforms the PID method in terms of accuracy.
It should also be noted the gradient method outperforms
both the custom and PID methods in terms of accuracy in
Cases 1 and 2. In Figures 4 and 7 the steering solution of
the PID method starts off negative, which is an unnecessary
manoeuvre (based on the GD solution), but can be explained
since the PID solution does not take path quality into
account. It was observed, in general, that the GD method
performs better in terms of accuracy than the custom solver.
This is counter-intuitive, and we leave it as future work
to investigate why. But, as demonstrated below, the custom
solver is much faster than the GD method.

For the comparison of computational efficiency, the goal
configuration, pf , is chosen randomly according to

xf = 0.7 + 0.2χ, χ ∼ U(0, 1),

yf = 0.1γ, γ ∼ U(0, 1),

θf = 0.2τ, τ ∼ U(0, 1),

where χ, γ, τ are random variables having a uniform distri-
bution U(0, 1). For the results of the computational efficiency

Fig. 8. Comparison of path error for Case 3. The final state error for
the custom, GD, and PID methods is 5.305e-05, 0.0041, and 0.0421,
respectively. The red dash-dot in each plot on the left is the goal state.

Fig. 9. Control inputs for Case 3 for each of the three methods. The dash-dot
lines indicate the control bounds.

TABLE I
Comparison of average elapsed time of the custom, Tel,C , and GD, Tel,G,
solvers and the percent of simulations where custom was faster than GD.

N Tel,C [s] Tel,G [s] % Custom faster
200 0.5034 1.2355 98%
150 0.5020 1.0235 97%
125 0.4020 0.7875 93%
100 0.4363 0.6544 81%
50 0.4116 0.4045 62%
25 0.3645 0.2846 38%

comparison between the custom and GD solvers see Table I.

These results show as N increases, the computation time
of the gradient method increases significantly, whereas the
computation time of the custom method changes very little.
Thus, as the number of time steps increases, the custom
method becomes more computationally efficient than the
gradient method. A detailed complexity analysis of both
solvers is left for future extension.

When a time budget of 0.5s is enforced it was found the
custom solver can work with up to N ≈ 175 time steps,
whereas the GD solver can only work with up to N ≈ 75
time steps. With the custom solver running N = 175 and
the GD solver running N = 75 time steps, it was still found
the GD solver was more accurate 86% of the time.

In addition, it was noticed in 19% of the simulations
for the custom solver, and 14.75% of the simulations for
the gradient solver, feasible solutions were produced. We
characterize a feasible solution as one where the final state
error was less than or equal to 0.001. Figure 10 offers a
comparison of the yf and θf coordinates of the end points
corresponding to feasible and infeasible end points, for the
custom solver (left) and the gradient solver (right). From
this figure, it is seen that the end points which correspond
to infeasible solutions are those related to more “extreme”
parking manoeuvres, i.e., ones involving a large yf with
a small θf , or ones involving a small yf with a large
θf . It is understandable that extreme manoeuvres would be
more difficult to find feasible solutions for, but the rate of
finding feasible solutions is still undesirable. In future work,
increasing the maximum number of iterations to examine the
effect on solution feasibility should be examined along with
improving computation time.

Table II contains the average elapsed run time, Tel, and
error in the final state, δp(tf ), of the GD solver (G) for the
approximate problem and fmincon for the exact problem
(E). The exact problem results show the average computa-
tion time does not increase significantly as the number of
times steps increases, but it should be noted for N > 25,



Fig. 10. Comparison of yf and θf feasible end points (blue ◦) and the
infeasible endpoints (red +). Data was gathered over 400 simulations.

TABLE II
Comparison of run time and accuracy of GD solver for Problem 2.4 and
fmincon for Problem 2.2. Iterations were capped at 50 for both solvers.

N δpG(tf ) δpE(tf ) Tel,G [s] Tel,E [s]
200 0.0130 0.2834 1.3737 0.7120
150 0.0160 0.2761 1.0190 0.2729
125 0.0111 0.2803 0.8699 0.1521
100 0.0132 0.2740 0.6314 0.1142
50 0.0135 0.2805 0.3857 0.0510
25 0.0135 0.1910 0.2722 0.0481

fmincon was unable to converge and produced a constant
output for both steering and speed. This is largely due to
capping the number of iterations to 50. With such a practical
restriction on iterations, the nonlinear optimization solver is
unlikely to converge and produce meaningful output.

V. CONCLUSIONS AND FUTURE WORK
This paper showed, using Pontryagin’s maximum princi-

ple, that under realistic assumptions on the goal configu-
ration, the only form the steering control can take for an
approximate steering problem is one of 10 forms where it can
only cross through zero once. This guarantee on the steering
solution form was used to develop a custom solver for the
problem, which was then compared against the solution from
a GD method, and from a PID feedback control method.
Simulations showed the custom solver was more accurate
than the PID feedback method, but less accurate than the
GD. In terms of computational efficiency, though, the custom
solver outperformed the GD method. Future work should
improve accuracy and reduce the computation time of the
custom solver so it can be implemented in real time.
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