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Fail-safe Rendezvous Control on Elliptic Orbits using Reachable Sets

Daniel Aguilar Marsillach1, Stefano Di Cairano2, Avishai Weiss3

Abstract— In this paper, a fail-safe control policy is developed
for rendezvous on generic elliptic orbits using backwards reach-
able sets and model predictive control (MPC). The backwards
reachable sets are computed as unsafe regions of state space
that, in the event of total thruster failure, would lead to a
collision between the chaser spacecraft and the rendezvous
target. The backwards reachable sets are incorporated as pas-
sive safety constraints in the MPC online trajectory generation
in order to guide the chaser to rendezvous with its target
through an inherently safe approach. Simulations demonstrate
the effectiveness of the passive safety constraints in altering a
nominally unsafe rendezvous to one that is passively safe.

I. INTRODUCTION
A critical criteria for spacecraft rendezvous is the main-

tenance of passive safety [1], that is, the ability to avoid
a collision between a chaser spacecraft and its target in
the event of a complete loss of control. Passive safety is
imperative as it impedes the necessity for collision avoidance
maneuvers until much later in the approach. This not only
saves fuel but also provides safety with respect to worst-case
spacecraft navigation and control failures. Typically, classic
approaches guarantee passive safety through the trajectory
generation process, completed in open-loop. Recent advances
have been made in online generation of passively safe
trajectories by using convex and non-convex constraints in a
receding-horizon control strategy [2], [3]. In [4] a guidance
and control strategy for spacecraft swarms is developed using
relative orbital elements, yielding passively safe and bounded
relative motion.

An alternative approach to verify the safety of a system
is the concept of reachability, which aims to compute the
exact or approximate set of states that can be reached by a
system, given initial or final states, a time-horizon, inputs,
and the model parameters. For linear systems, sets can
be represented using n-dimensional geometric objects such
as zonotopes [5] , polyhedra [6], or ellipsoids [7]. Such
representations are useful for linear systems because they
are closed under affine transformations [8]. For nonlinear
systems, a variety of analyses can be performed. In [5]
the nonlinear dynamics are approximated to a given order
and the approximation error is used to inflate zonotope sets.
Another method uses optimal control to solve the Hamilton-
Jacobi partial differential equation to compute reachable sets,
but remains computationally intractable for high dimensional
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systems [9]. Reachable sets can also be approximated by
sampling the initial or final set boundary and solving optimal
control problems [10].

Reachability has been used in prior work related to space-
craft rendezvous and docking to verify the viability and
safety of an active control strategy. In [11] backwards reach-
able sets using the linear time-invariant (LTI) Clohessey-
Wiltshire (CW) equations, that describe the relative motion
dynamics on a circular orbit, are used to determine which
initial conditions lead to a successful docking maneuver.
The work in [12] computes reach-avoid sets to obtain
trajectories that reach the target while avoiding a line-of-
sight set, whereas [12], [13] focus on stochastic reachable
set computation, and then use the constructed sets for a
spacecraft rendezvous and docking simulation [14].

In this work, we combine concepts from reachability
and receding-horizon control to design an online trajectory
generation algorithm that produces passively safe rendezvous
trajectories for a chaser spacecraft to its target on generic
elliptic orbits. For achieving passive safety, we compute the
backwards reachable set over a time interval (BRSI) from the
target to determine the regions of state space corresponding
to unsafe areas in which, in the absence of control, a
chaser spacecraft would collide with the target within a
specified time-horizon. For computational tractability, we
linearize the nonlinear relative equations of motion about
the target’s generic orbit, resulting in a set of linear time-
varying (LTV) equations. Due to the LTV nature of the
system, exact computation of the BRSI is impossible [15],
hence we conservatively approximate the unsafe region with
offline computation of the union of BRSI along the target’s
entire orbit. The union of BRSI determines the region to be
avoided, which is formulated as passive safety constraints for
the online trajectory generation process. We develop a model
predictive control (MPC) policy that enforces the constraints,
thus ensuring that the spacecraft remains outside of the union
of BRSI, and hence guaranteeing collision free trajectories
in the event of thruster failure. MPC has previously been
applied for spacecraft rendezvous under nominal propulsion
conditions, see [16]–[18] and references therein, however,
passive safety was never addressed.

The proposed approach is applied to a mission staged
into three phases. The first phase constrains the controller to
maintain passive safety with respect to an approach ellipsoid
(AE) around the target. Once the command to enter the AE
is issued, the second phase maintains passive safety with
respect to a keep-out ellipsoid (KOE). Finally, once the final
approach is engaged, the chaser spacecraft may enter the
KOE, at which point passive safety is no longer enforced.



Fig. 1 provides an illustration of the AE and KOE, and a
backwards reach set projected onto the orbital frame.

Fig. 1. Representation of backward reachable set projected onto the target
orbital frame. Approach ellipsoid (AE) in green, the keep-out ellipsoid
(KOE) in light blue.

II. SPACECRAFT MODEL

Consider a target and a chaser in orbit around Earth. The
frame Fe is the Earth-Centered Inertial (ECI) frame, e is
an unforced particle, and it is assumed that e is collocated
with the center of the Earth. The chaser’s center of mass is
denoted by c and has a chaser-fixed frame Fc. The target’s
center of mass is denoted by t and has a target-fixed frame
Ft. In this work we assume the target is aligned with its
orbital frame such that it has the radial, along-track, and
cross-track basis vectors: Ft = {ı̂r, ı̂θ, ı̂h}. A derivative with
respect to the inertial frame is denoted by e ˙(·) whereas a
derivative with respect to another frame is denoted by ˙(·).
The target orbital frame’s angular velocity with respect to
the inertial frame is ωt/e. Both the target and chaser’s bodies
are assumed to be rigid and all external forces acting on the
spacecraft are assumed to act on the center of mass of their
respective bodies.

The translational equations of motion for the target and
chaser relative to the inertial frame Fe are given by

er̈t = −µ rt
||rt||3

+
ft
mt

, (1)

er̈c = −µ rc
||rc||3

+
fc
mc

(2)

where rt, rc are the position vectors of the target and
chaser center of mass relative to the center of their central
body, mt,mc are the target and chaser masses, µ is the
gravitational constant of the central body, and ft, fc represent
perturbing forces acting on the target and chaser, respectively.
These perturbations include orbital perturbations as well as
control. In this study, the target is assumed to follow Keple-
rian motion, i.e. ft = 0, and we neglect orbital perturbations
on the chaser.

Given a target and chaser, the relative distance between
their centers of mass is given by

rrel = rc − rt =
[
δx δy δz

]T
. (3)

For the purposes of rendezvous, it is of interest to resolve
relative positions and velocities of the chaser in the target’s

orbital frame. Taking the derivative of the relative position
(3) with respect to the target’s orbital frame Ft yields

ṙrel = eṙt − eṙc − ωt/e × rrel. (4)

Taking the derivative of the relative velocity (4) with respect
to the target’s orbital frame Ft yields

r̈rel = er̈t−er̈c−ω̇t/e×rrel+ωt/e×(ωt/e×rrel)−2ωt/e×ṙrel.
(5)

Finally, substituting (1), (2) into (5) yields the full nonlinear
relative equations of motion. For

||rrel|| << ||rt||, (6)

the equations of relative motion (5) can be linearized with
respect to the target’s trajectory, yielding [19]

δẍ−
(

2µ
r3t

+ h2

r4t

)
δx+

(
2eṙ>t rt
r4t

h
)
δy −

(
2h
r2t

)
δẏ = u1

mc
,

δÿ +
(
µ
r3t
− h2

r4t

)
δy −

(
2ėr>t rt
r4t

h
)
δx+

(
2h
r2t

)
δẋ = u2

mc
,

δz̈ +
(
µ
r3t

)
δz = u3

mc
,

(7)
where rt = ||rt||, h = ||rt×e ṙt|| is the inertial specific angu-
lar momentum of the target’s orbit, and fc =

[
u1 u2 u3

]T
is the control input applied to the chaser.

The linear time-varying equations of motion (7) are written
in state space form as

ẋ(t) = A(t)x(t) +Bu(t), (8)

where x =
[
δx δy δz δẋ δẏ δż

]T
, and u = fc.

For simplifying computations, we consider a discrete time
formulation of (8) obtained by sampling with period ∆t,

xt+1 = f(t, xt, ut) = Ad(t)xt +Bd(t)ut. (9)

The homogeneous solution of (9), i.e., ut = 0 for all t, will
be used in the next section to compute backwards reachable
sets for passive safety.

III. REACHABLE SETS AND PASSIVE SAFETY

For passive safety, we compute backward reachable sets
(BRS) under no control input, ut = 0 for all t, of a final
ellipsoidal set. Given a target set Sf and a target time tf , the
backward reachable set under no control action from tj ≤ tf
to tf is defined recursively by [6]

Rb(tf ;Sf , tf ) = Sf , (10a)
Rb(tj−1;Sf , tf ) = {x ∈ Rn : (10b)

f(tj−1,x,0) ∈ Rb(tj ;Sf , tf )},

where Rb(tj ;Sf , tf ) describes the set of all the states at tj
that end up in Sf at tf without any control. We define the
backwards reachable set over a time interval (BRSI) as the
union of all BRS in the time-interval [t, tf ]

R̃[t,tf ](t;Sf , tf ) =

tf⋃
τ=t

Rb(τ ;Sf , tf ). (11)



A. Ellipsoidal Set Representations

In this paper we consider the target set Sf to be repre-
sented by ellipsoids. An ellipsoid centered at d ∈ Rn with
shape matrix D, is defined as [7], [20]

E(d, D) , {x ∈ Rn : (x− d)>D−1(x− d) ≤ 1}. (12)

Ellipsoids are closed under affine transformations. Given
E(d, D), A ∈ Rn×n and b ∈ Rn×1

AE(d, D) + b = E(Ad + b, ADA>). (13)

The AE and KOE are ellipsoids centered at d = 0, with
shape matrix P at time tf , such that

Sf = {x ∈ R6, x>P−1x ≤ 1}, (14)

where the shape matrices for the AE and KOE are P =
{PAE, PKOE}.

Since Sf are ellipsoids and the discrete-time dynamics
(9) are linear time-varying, with u(t) = 0, the BRS (10) are
also ellipsoids. In fact, given the ellipsoidal final set (14) and
defining for the sake of simplicity the tj-to-th state transition
matrix1 Φ(th, tj) = Πh

i=jAd(ti), the BRS is

R(tk;Sf , tf ) = {x ∈ Rn :

x>Φ(tf , tk)> P−1 Φ(tf , tk) x ≤ 1}. (15)

B. Union of BRSI

Given the ellipsoidal final set (14), defined by a shape
matrix P , the N-step BRSI is defined as

R̃[tf−N,tf ](tf −N ;Sf , tf ) =

tf⋃
ti=tf−N

{x ∈ Rn :

x>Φ(tf , ti)
> P−1 Φ(tf , ti) x ≤ 1}, (16)

The BRSI (16) is not an ellipsoid, but it is the union of a
finite set of ellipsoids.

Due to the LTV nature of the dynamics, the BRSI vary
across different portions of the target’s orbit. Hence, to main-
tain safety for a duration on the order of an orbital period, or
higher, several BRSI are computed with respect to numerous
target sets along the target’s orbit. Computing the N-step
BRSI given rt results in a discrete-time representation2 of
the N-step BRSI of the LTV system. The approximation of
the full LTV BRSI is obtained by taking the union of such
sets,

R̄(tk;Sf , tf ) =

2tp⋃
tf=tp+1

tf⋃
tk=tf−N

{x ∈ Rn :

x>Φ(tf , tk)>P−1Φ(tf , tk)x ≤ 1}, (17)

1Even if not stated explicitly, matrices with larger step indices are added
to the left, as matrix product is not commutative.

2All discrete time representations of BRS and BRSI are in fact approx-
imations for the actual system behavior that is continuous-time, yet some
approximations are necessary for the case of time varying systems [21].
However, these approximations can be made sufficiently accurate by an
appropriate choice of the sampling period ∆t.

where tp is the orbital period of the target and we have
assumed N∆t << tp. The union operator on the left ensures
the target state is evaluated at discrete points along an orbital
period, yielding a set of final states

Xf = {x(tf ), x(tf + ∆T ), . . . , x(tf + tp)}, (18)

which is equivalent to evaluating rt,
eṙt at different true

anomalies θ ∈ [0, 2π], since t ∝ θ. The BRSI (17) ensures
safety for a time horizon N from the current time.

C. Passive Safety

Passive safety ensures that with natural free-drift dynam-
ics, the chaser spacecraft does not intersect the AE or KOE
in the event of total control loss. Safety is defined only
by the relative position; the velocity at which the chaser
spacecraft enters the AE or KOE is immaterial. As such,
the shape matrix P is defined as a degenerate ellipsoid with
unbounded velocity minor/major axes. Thus, P{AE,KOE} is
a rank deficient shape matrix

P{AE,KOE} =

[
Pp 03×3

03×3 03×3

]
∈ R6×6. (19)

The only difference between PAE and PKOE is the block
matrix Pp. Matrix (19) is used to constrain the positions on
a 3D ellipsoid, while leaving the velocities unconstrained.
When (19) is used in the BRSI computations, the resulting
set represents all possible positions and velocities that enter
the target set in some time-horizon. All of the resulting BRS
are also (degenerate) ellipsoids.

Thus, given a union of BRSI, computed with (17), passive
safety can be achieved by remaining in the safe set, x ∈
Xsafe, where

Xsafe = R̄(tk;Sf , tf )c, (20)

is the complement of the LTV BRSI (17). Clearly, enforcing
the safe set directly as a constraint in an MPC problem,
results in a non-convex optimization problem. In this work,
R̄(tk;Sf , tf ) is avoided by using separating hyperplanes
near the exterior surface of the computed LTV BRSI. The
hyperplanes are then used as linear constraints in an MPC
policy which maintains the chaser spacecraft inside the safe
set, i.e.,

x ∈ Xsafe, ∀t. (21)

IV. FAIL-SAFE RENDEZVOUS CONTROL

Next, we develop a fail-safe MPC policy that exploits the
LTV BRSI (17). In particular, the MPC will use constraints
to maintain the trajectory outside the BRSI while minimizing
an appropriate cost function, for instance to reduce fuel
consumption.

A. Constraints

In this work the MPC policy only enforces constraints
that ensure passive safety. Additional constraints, e.g., on
the control inputs, are straightforward to include. The con-
straints enforcing LTV BRSI (17) avoidance are non-convex,
since they require avoiding a union of ellipsoids, i.e., x /∈
R̄(t;Sf , tf ). This significantly complicates the finite-horizon



MPC optimal control problem. In fact, even the avoidance
of each ellipsoid is described by non-convex constraints,

x>P−1i x ≥ 1. (22)

Thus, here we implement a local convexification approach,
based on computing a tangent to the constraints in the form
of (22), and then enforcing half-space constraints to ensure
that x ∈ Xsafe.

The tangent hyperplanes are computed by projecting the
state x radially onto the ellipsoids. The radial distance from
the state to the surface of the ellipsoid Ei is

ρ2 = x>P−1i x. (23)

Normalizing the state x by ρ, results in the closest state on
the ellipsoid surface

xsi =
x

ρ
. (24)

The tangent hyperplane to the ellipsoid surface at xsi is
defined by the normal vector

ai = 2P−1i xsi , (25)

since Pi = P>i , so that the tangent hyperplane is

{x ∈ R6 : ai
>
x = bi}, (26)

where bi = ai
>
xsi .

Given a state x at time t, we compute projections xsi

for all ellipsoids Ei ∈ R̄(t;Sf , tf ). Due to the possibly
large number of ellipsoids, rather than imposing half-space
constraints for all of them, we only enforce the one that
seems to be more conservative, i.e., the one that is most
exterior to the center of the ellipsoids, in our case the origin,
by selecting i such that

xsi∗ = arg max
i
||xsi ||. (27)

In the MPC policy, the hyperplanes are computed
based on the previously predicted state trajectory. Let
(x0|t−1 . . .xN |t−1) be the trajectory computed at time t−1,
where xk|t denotes x predicted k steps ahead from t. Then,
we can compute ak|t, bk|t from (24), (25) using xk+1|t−1 as
prediction for xk|t

−a>k|txk|t + bk|t ≤ sk|t, k = 1, . . . , N (28)

where N is the prediction horizon, and sk ≥ 0 is a slack
variable softening constraints (28) to avoid infeasibility. For
shortness we write (28) as

gt(xk|t,uk|t, sk|t) ≤ 0. (29)

B. Cost Function

The cost function of the MPC problem consists of a
stage cost integrated along the prediction horizon and a
terminal cost on the state at the end of the horizon, which
encode the MPC control objectives. In this paper, the primary
objective is for the rendezvous to occur, which amounts to
the chaser spacecraft reaching and staying at the origin of the
target orbital frame, i.e., reaching zero position and velocity.

An additional objective is to minimize the total required
propellant, since this allows for the increase of payload mass.
This objective is encoded into the MPC policy by minimizing
the thrust, u, of the propulsion system. Finally, as the
constraints derived from the LTV BRSI are softened, another
objective of the controller is to minimize the safety constraint
violations. Indeed, the safety and approach objectives are
conflicting, resulting in trade-offs in the optimal solutions.

The stage cost is given by

F (x,u, s) = x>Qx + u>Ru + wss
2, (30)

where, Q = Q> ≥ 0, R = R> > 0, ws � 0.
The terminal cost is positive definite and quadratic. It

encodes a penalty for not being at the desired zero-state by
the end of the MPC window.

E(x) = x>Mx, (31)

where M = M> ≥ 0.

C. Optimal Control Problem

The MPC policy is based on solving a receding horizon
optimal control problem of the following form

min
U(t),st

E(xN |t) +

N−1∑
k=0

F (xk|t,uk|t, sk|t)

s.t. xk+1|t = Ad(t+ k)xk|t +Bduk|t

x0|t = x(t)

gt(xk|t,uk|t, sk|t) ≤ 0

(32)

where the prediction model for the MPC policy is given by
(9), st = (s0|t . . . sN−1|t) and U(t) = (u0|t...uN−1|t). The
resulting control policy is of the form,

u(t) = κmpc(x(t)) = u∗0|t, (33)

where u∗0|t is the first optimal control vector of the solution
to (32).

D. Algorithm Overview

As mentioned earlier, the proposed approach is staged into
three mission phases.

1) Phase 1: passive safety with respect to the AE.
2) Phase 2: passive safety with respect to the KOE.
3) Phase 3: no safety, final approach.

A summary of the fail-safe rendezvous control is found in
Algorithm 1. Phase changes are triggered when the current
state x(t) enters a bounding box Xbox{AE,KOE} around the
AE or KOE, given by

Xbox{AE,KOE} =

{
x ∈ R6 : Hx ≤

[
xlim

xlim

]
{AE,KOE}

}
,

(34)
where,

H =

[
I3×3 03×3
−I3×3 03×3

]
∈ R6×6. (35)

After the current state enters the KOE bounding box, an
unconstrained ws = 0 version of the optimal control problem
(32) is solved to converge towards the target.



Algorithm 1 Fail-safe Rendezvous Control
Offline: Compute full AE and KOE LTV BRSI (17)

AE & KOE Approach
1: input: x(t)
2: repeat
3: Project xk|t on all ellipsoids Ei ∈ R̄(t;Sf , tf ) ∀k

(24)
4: Select furthest hyperplanes from origin (27) ∀k
5: Solve optimal control problem (32)
6: Apply control policy (33) to the chaser spacecraft
7: until Spacecraft enters AE or KOE bounding Box (34)

Final Approach
8: input: x(t)
9: repeat

10: Solve optimal control problem (32)
11: Apply control policy (33) to the chaser spacecraft
12: until Converged to the target

V. SIMULATION RESULTS

To demonstrate the effectiveness of Algorithm 1 we con-
sider an ı̂θ (positive δx) approach where we compare the fail-
safe control policy to a simulation where the passive safety
constraints are removed. We measure control performance
by total change in velocity as it is independent of satellite
mass and thruster efficiency. The total ∆V of a maneuver is
given by

∆V =

N−1∑
i=0

||Bui|| ·∆t.

We consider a target in Earth-orbit with classical orbital
elements given by

[a, e, i, ω, Ω, f ]> = [7420km, 0.1, 0.01◦, 0◦, 0◦]>.

The resulting orbital period of the target body is tp =
106.02 min = 6361.2 s. We define an AE around the target
of size

[
1 2 1

]
km in the radial, along-track, and out-of-

plane directions, and a KOE of size
[
100 200 100

]
m.

The mass of the chaser spacecraft is mc = 4000 kg.
The number of steps in the MPC horizon, the sampling

period, the safety horizon, and the LTV BRSI (17) inflation
factor are Nt = 30, ∆t = 30s, tH = 2tp, and ρ = 1.3,
respectively. All phases share the same state and control
penalties in the stage cost, namely, Q = I6, R = 1.3 ·104I3.
The terminal cost weight is M = 102I6. The slack variable
penalty is ws = 106 in the AE and KOE phases and ws = 0
in the final approach phase.

In the following figure, the initial condition is represented
by a blue circle, the blue trajectory is the relative position
of the chaser with respect to the target, as seen in the
target’s orbital frame Ft. The black lines are sampled free-
drift trajectories propagated forward without control to verify
passive safety. We color the sampled free-drift trajectories
red if they intersect either the AE or the KOE.

Fig. 2. ı̂θ unsafe AE approach

Fig. 3. ı̂θ safe AE approach

We select an initial state x(0) =
[
0 5 0 0 0 0

]T
.

As a baseline, we apply the MPC policy (33) with ws = 0,
that is, we do not enforce the passive safety constraints.
The resulting maneuver is shown in Fig. 2 and requires
∆Vunsafe = 13.3631 m/s. The spacecraft enters the AE LTV
BRSI prior to reaching Xbox,AE, and thus, sampled free-drift
trajectories along the nominal rendezvous maneuver intersect
the AE and are unsafe (shown in red). Setting ws = 106, we
rerun the simulation and the resulting maneuver is shown in
Fig. 3, requiring ∆Vsafe = 20.5816 m/s. The rendezvous
maneuver is clearly modified due to the passive safety
constraints, resulting in a passively safe trajectory towards
the AE.

Once the chaser enters Xbox,AE, the maneuver proceeds
towards the target while maintaining passive safety with
respect to the KOE. The resulting maneuver is shown in Fig.
4. Figs. 5-6 show time histories of the control forces and a
test of whether or not the current state is inside the LTV
BRSI associated with the AE or the KOE. Phase switches
between maintaining passive safety with respect to the AE,
KOE, and the final approach phase are marked by vertical
black lines. As seen in Fig. 6, the initial condition is actually



inside both the AE and KOE LTV BRSI. However, the fail-
safe control policy of Algorithm 1 almost immediately guides
the spacecraft outside of the LTV BRSI in order to maintain
passive safety.

Fig. 4. ı̂θ safe KOE approach

Fig. 5. ı̂θ safe approach control

VI. CONCLUSIONS

The main contribution of this paper was the development
of a fail-safe control policy for rendezvous on generic elliptic
orbits using backwards reachable sets and model predictive
control. The proposed control policy is able to satisfy passive
safety constraints that, in the event of total thruster failure,
keep a chaser spacecraft from colliding with a rendezvous
target. In future work we will extend this method to also
guarantee the existence of active safety abort maneuvers
during final approach in the event of partial thruster failure
when passive safety can no longer be guaranteed.
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