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Abstract
This paper presents a novel approach for obstacle avoidance in autonomous driving systems,
based on a hierarchical software architecture that involves both a lowrate, long-term motion
planning algorithm and a high-rate, highly reactive predictive controller. More specifically, an
integrated framework of a particle-filter based motion planner is proposed in combination with
a trajectory-tracking algorithm using nonlinear model predictive control (NMPC). The motion
planner computes a reference trajectory to be tracked, and its corresponding covariance is used
for automatically tuning the time-varying tracking cost in the NMPC problem formulation.
Preliminary experimental results, based on a test platform of small-scale autonomous vehicles,
illustrate that the propose approach can enable safe obstacle avoidance and reliable driving
behavior in relatively complex scenarios.

American Control Conference (ACC) 2020

c© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139





Integrated Obstacle Detection and Avoidance in Motion Planning and
Predictive Control of Autonomous Vehicles

Rien Quirynen1, Karl Berntorp1, Karthik Kambam1, Stefano Di Cairano1

Abstract— This paper presents a novel approach for ob-
stacle avoidance in autonomous driving systems, based on a
hierarchical software architecture that involves both a low-
rate, long-term motion planning algorithm and a high-rate,
highly reactive predictive controller. More specifically, an inte-
grated framework of a particle-filter based motion planner is
proposed in combination with a trajectory-tracking algorithm
using nonlinear model predictive control (NMPC). The motion
planner computes a reference trajectory to be tracked, and its
corresponding covariance is used for automatically tuning the
time-varying tracking cost in the NMPC problem formulation.
Preliminary experimental results, based on a test platform of
small-scale autonomous vehicles, illustrate that the proposed
approach can enable safe obstacle avoidance and reliable
driving behavior in relatively complex scenarios.

I. INTRODUCTION

Autonomous vehicles are complex decision-making sys-
tems that require the integration of advanced and inter-
connected sensing and control components. At the highest
level, a sequence of destinations is computed through the
road network by a route planner. A discrete decision-making
layer is responsible for determining the local driving goal
of the vehicle. Each decision could be any of turn right,
stay in lane, turn left, or come to full stop in a particular
lane at an intersection. A sensing and mapping module uses
various sensor information, such as radar, LIDAR, camera,
and global positioning system (GPS) information, together
with prior map information, to estimate the parts of the
surroundings relevant to the driving scenario.

An implementation of high-level mapping and decision
functionalities is not discussed further in the present paper,
but more information can be found, e.g., in [1]. Here, we
focus on the integration of the motion planning algorithm and
the vehicle controller, see Figure 1a. The motion planner is
responsible for determining a safe, desirable and dynamically
feasible trajectory that the vehicle should follow based on
the outputs from the sensing and mapping module. A vehicle
control algorithm then aims to track this reference motion, at
a relatively high sampling frequency, by issuing commands,
e.g., steering angle, wheel torque and brake force. Finally,
an actuator control layer regulates the actuators to achieve
these requested commands.

The motion-planning problem in autonomous vehicles
shares many similarities with the standard robotics setup [2],
and optimal solutions are in most cases intractable due to
non-convexity of the problem. In order to deal with this
non-convexity, motion planning is often performed using
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sampling-based methods such as rapidly-exploring random
trees (RRTs) [2], or graph-search methods such as A*,
D* and other variations [3]. In previous work [4], [5], we
developed and demonstrated a probabilistic method for mo-
tion planning, using particle filtering for approximating the
involved probability density functions (PDFs). The driving
requirements, such as staying on the road, right-hand traffic,
and obstacle avoidance, are formulated as measurements for
the nonlinear filtering problem.

Any technique can be used in the vehicle control layer to
track the reference motion that is computed by the motion
planner. However, as discussed also in [6], the particular
future information in the long-term motion plan can be ef-
fectively used in a model predictive control (MPC) algorithm
for reference tracking. Many recent publications have shown
the potential benefits of using nonlinear MPC (NMPC) in
autonomous driving systems, e.g. [7], [8] based on simulation
results and [9], [10] based on real-world experiments. A
popular approach to implement NMPC in a computationally
efficient manner, is based on the real-time iteration (RTI)
scheme [11], [12], which typically combines a direct multiple
shooting type optimal control discretization with an online
variant of sequential quadratic programming (SQP).

In this paper, we propose a tailored integration between
the particle-filtering based motion planner and NMPC-based
vehicle control layer in order to enable a reasonable sharing
in the burden of ensuring safe obstacle avoidance and reli-
able driving behavior in relatively complex scenarios. The
planning algorithm computes a reference trajectory to be
tracked, and its corresponding covariance matrices are used
for automatically tuning the time-varying trade off in the cost
function of the NMPC problem formulation. In fact, the co-
variance associated to the trajectory indicates how much the
path planner believes that its computed trajectory is effective.
We aim to allow more deviations when such belief is low,
and less deviations when such belief is relatively high. We
experimentally validate our approach using a test platform
of small-scale autonomous vehicles [13], in which the ego
vehicle performs advanced in-lane swaying maneuvers for
safe and reliable obstacle avoidance.

The paper is organized as follows. Section II introduces
the overall problem formulation and modeling choices. Sec-
tions III and IV briefly summarize the particle filtering based
motion planner and NMPC based tracking algorithm, and
their implementation of obstacle avoidance requirements.
The automatic tuning of the reference tracking cost is de-
scribed in Section V, followed by the experimental validation
in Section VI. Section VII concludes the paper.



II. MODELING AND EXPERIMENTAL SETUP
Let us briefly describe the vehicle dynamics and problem

formulation, before presenting our proposed algorithms and
the corresponding experimental results in the next sections.

A. Dynamic Model for Vehicle Planning and Control

Under the assumption of normal driving conditions, i.e.,
not at-the-limit maneuvers, the modeling can be based on a
single-track model in which the two wheels on each axle
are lumped together. Although a dynamic vehicle model
based on force-torque balances is generally more accurate
than a kinematic model, differences are small for regular
driving [14], and model errors are corrected for by feedback
action of the controller. Furthermore, a dynamic model
depends on several more states and parameters, such as wheel
radii, tire stiffness, vehicle mass and inertia, slip angles and
slip ratios, that are challenging to precisely estimate in real-
time with automotive grade sensors. Hence, for simplicity,
we use the kinematic single-track model

ẋ =



ṗX
ṗY

ψ̇

δ̇f
v̇x
δ̇

 =



vx cos(ψ + β)

vx sin(ψ + β)
vx
L tan(δf) cos(β)

1/td(δ + δ0 − δf)
u1
u2

 , (1)

where pX, pY is the longitudinal and lateral position in the
world frame, ψ is the heading angle and ψ̇ the heading rate
of the vehicle, vx is the longitudinal velocity of the vehicle,
δ and δf are, respectively, the desired and actual front wheel
steering angle, L := lf + lr is the wheel base, and β :=
arctan (lr tan(δf)/L) is the body-slip angle. A first order
front steering equation is included in Eq. (1) which models
that, due to the steering mechanism, the wheel angle response
is not immediate. In addition, we estimate the offset value
δ0 for the steering angle online. The inputs u1, u2 are the
acceleration and steering rate, respectively. This choice of
control inputs results in smooth velocity and steering profiles
and allows constraining the rate of change of the vehicle
velocity and front steering wheel angle.

B. Problem Formulation and Research Contributions

In prior work [5], [13], we demonstrated how a particle-
filtering based motion planner and an NMPC algorithm
for trajectory tracking can be integrated successfully into a
control and estimation software architecture for autonomous
driving capabilities. The present paper aims to improve
the integration of the motion planning and vehicle control
layer of Figure 1a, by leveraging implementation details
from both the motion planning and vehicle control layer.
In particular, our motion planning produces both a first
and a second moment of the statistics for the trajectory.
We use the first moment as reference for the controller,
similar to [5], [13], and the second moment to determine the
uncertainty of such reference. Thus, if the second moment
shows a small uncertainty, the trajectory must be tracked
more closely than if such uncertainty is large (see Figure 1b).

(a) Hierarchical autonomous driv-
ing software that involves map-
ping, sensing, planning, decision
making, estimation and control.

(b) Motion planning algorithm
computes covariance (dashed line)
for automatic tuning of tracking
cost in NMPC controller.

Fig. 1. Integrated software design for autonomous driving systems.

We exploit this to enable an automatic tuning mechanism in
the NMPC controller for trading off competing objectives,
e.g., achieving high tracking performance while satisfying
safe obstacle avoidance requirements.

The effectiveness of our proposed approach is illustrated
in Section VI based on experimental results in a scenario
where the autonomous vehicle needs to perform an in-lane
swaying maneuver for obstacle avoidance. The latter can
be necessary when it is impossible to safely stay in the
middle of the current lane, because of either static or dynamic
obstacles on the side of that lane (e.g., bicycles or parked
cars), and impossible or undesirable to change to another
lane, e.g., when the other lanes may be currently blocked.
We first describe the particle-filtering based motion planner
and the NMPC tracking algorithm, including their respective
approaches to deal with obstacle avoidance constraints.

III. OBSTACLE AVOIDANCE IN MOTION
PLANNING WITH PARTICLE FILTERING

In [4], we developed a motion planner based on particle
filtering for generating complex and dynamically feasible
trajectories. Particle filtering is a sampling-based technique
for solving the nonlinear filtering problem. Based on a
probabilistic system model, the particle filter numerically
approximates the PDF of the variables of interest given the
measurement history, by generating N random trajectories
and assigning a weight qi to each trajectory i according
to how well it predicts the observations. The planner relies
on the fact that driving requirements, such as staying on
the road, right-hand traffic, and avoid obstacles, are known
ahead of planning. The driving requirements are modeled as
measurements generated by a system subject to uncertainty.
An interpretation is that the particle-filter based motion
planner finds the trajectory that best achieves a trade off of
the driving requirements, when there is both modeling and



sensing uncertainty. In each planning phase, the particle filter
approximates the joint PDF of the state trajectory conditioned
on the decision and driving requirements.

The motion planner considers the following discrete-time
model for the ego vehicle (EV)

xk+1 = f(xk) + g(xk)uk, (2)

with state xk ∈ Rnx and input uk ∈ Rnu , where k is the
time index corresponding to time tk. This includes many of
the common vehicle models, such as the kinematic single-
track model in (1) or more advanced dynamic models [4]. In
our approach, the input vector uk is modeled as an input
disturbance distributed according to pu. The EV driving
requirements yk are modeled by

yk = h(xk) + ek, (3)

where h(·) is a function relating the driving requirements
to the vehicle state. The term ek is regarded as a sample
from some noise distribution pe, ek ∼ pe(x), where pe(·) is
in general state dependent, and the interpretation is that pe
is the tolerated deviation from the requirements considering
the uncertainties. Possible driving requirements can include
a nominal velocity profile, mid-lane tracking and ensuring a
safety distance to obstacle vehicles (OV) [4].

In a Bayesian setting, (2) and (3) can be formulated as

xk+1 ∼ p(xk+1|xk), yk ∼ p(yk|xk), (4)

where xk+1 and yk are regarded as samples. Modeling the
vehicle dynamics and driving requirements probabilistically
may be important for several reasons, e.g., to account for un-
certainties from state and map estimation algorithms, and to
avoid infeasibility in trying to fulfill all driving requirements
exactly. By considering the planning problem in a proba-
bilistic framework, we naturally integrate the inherent uncer-
tainties into the motion-planning problem. In this paper, we
model the input disturbance uk and tolerated deviation from
driving requirements ek as zero-mean Gaussian distributed,
that is, uk ∼ pu = N (0, Qk) and ek ∼ pe = N (0, Rk).
Using the Bayesian formulation (4), the motion planner [4]
constructs the posterior density function p(x0:T |y0:T ) of the
state trajectory over the T planning steps, given the driving
requirements y0:T as a weighted set of N state trajectories,

p(x0:T |y0:T ) ≈
N∑
i=1

qiT δ(x0:T − xi0:T ), (5)

where qiT is the importance weight for the ith particle and
δ(·) is the Dirac delta mass. From the density function (5),
the motion plan can be extracted, for instance, as the mini-
mum mean-square estimate

x0:T ≈
1

N

N∑
i=1

qiTx
i
0:T . (6)

The motion planner in [4] naturally integrates safe obstacle
avoidance. By leveraging a tailored proposal density in the
particle filter, the particles will tend to obey the driving

requirements, and if Qk and Rk are chosen wisely, the risk
of generating a trajectory that will lead to collision is kept to
a minimum. The reason is that the weights qik corresponding
to the particles that violate, or are close to violating, the
constraints, will become small and therefore will be rejected
in the resampling procedure of the particle filter.

Since the particle-filter based motion planner computes
the PDF of the state trajectory, higher-order moments than
the weighted mean (6) can be determined. For instance, by
computing the covariance (i.e., the second moment) along the
weighted mean, we can determine a Gaussian approximation
N (xk, Pk) at each time step k of (5) in which

xk ≈
1

N

N∑
i=1

qikx
i
k, (7a)

Pk ≈
N∑
i=1

qik(xk − xik)(xk − xik)T . (7b)

This approximation is exploited for integrating the motion
planner and NMPC algorithm in Section V.

IV. OBSTACLE AVOIDANCE IN NONLINEAR
MODEL PREDICTIVE CONTROLLER

The NMPC tracking objective is formulated based on a
smooth approximation of the reference motion plan at each
control time step, parameterized with respect to a time-
dependent path variable τ for which the change rate dτ

dt = τ̇
is an additional control input [15]. In continuous time, the
NMPC cost function therefore consists of the following terms∫ T

0

(
‖F (x(t))− yref(τ, d)‖2W (t) + ‖u(t)‖2R + rs s(t)

)
dt,

(8)
including a term for tracking the reference trajectory and
regularization terms for penalizing control variables, where
W (t) ∈ Rny×ny and R ∈ Rnu×nu are the corresponding
weighting matrices. In Eq. (8), W (t) for all t ∈ [0, T ] is
a time-varying tracking weight matrix, as opposed to the
constant weights used in [5], [13], that allows for auto-tuning
based on the second moment information provided by the
motion planner (see Section V). The definition of a positive
slack variable s(t) ≥ 0 allows for an easy implementation
of an exact L1 soft constraint penalty in the objective [16],
i.e., |s(t)| = s(t). Note that rs > 0 in (8) denotes the weight
value for the slack penalty. The reference motion plan x0:T
is approximated by a smooth function yref(τ, d) that depends
on the path variable τ as well as on additional parameters
d. Let us define the tracking function in the objective based
on a polynomial approximation of the reference trajectories

F (x(t))− yref(τ, d) =
pX(t)− prefX (τ, dX)
pY (t)− prefY (τ, dY )
ψ(t)− ψref(τ, dψ)
vx(t)− vrefx (τ, dv)

 =


pX(t)−

∑nX
i=0 d

i
Xτ

i

pY (t)−
∑nY
i=0 d

i
Y τ

i

ψ(t)−
∑nψ
i=0 d

i
ψτ

i

vx(t)−
∑nv
i=0 d

i
vτ
i

 . (9)

The inequality constraints in the NMPC formulation include
hard bounds on the control inputs and soft constraints for



limiting the distance to the parameterized reference trajec-
tory, the vehicle velocity and the front steering wheel angle:

τ̇ ≤ τ̇ ≤ ¯̇τ, −¯̇
δ ≤ δ̇ ≤ ¯̇

δ, −¯̇vx ≤ v̇x ≤ ¯̇vx,
(10a)

−ēY ≤ eY + s, −δ̄f ≤ δf + s, −v̄x ≤ vx + s, (10b)
eY ≤ ēY + s, δf ≤ δ̄f + s, vx ≤ v̄x + s. (10c)

where eY = cos(ψref)
(
pY − prefY

)
− sin(ψref)

(
pX − prefX

)
is the path tracking error, which is defined as the orthogonal
distance to the parameterized reference trajectory and s(t) ≥
0 denotes the slack variable. The obstacles are modeled
as ellipsoidal sets, including uncertainty around the spatial
extent of the (rectangular) OVs. Therefore, the obstacle
avoidance constraints are formulated as

1 ≤
(
δx,j(t)

ax,j

)2

+

(
δy,j(t)

ay,j

)2

, (11)

where
[
δx,j
δy,j

]
= R(eψ,j)

>
[
pX − ex,j
pY − ey,j

]
is the rotated dis-

tance, (ex,j , ey,j , eψ,j) denotes the pose of the obstacle, and
(ax,j , ay,j) denotes the lengths of the principal semi-axes
of the ellipsoid that defines the safety margin around each
obstacle. The time-varying ellipsoidal inequality constraint
in (11) is defined for the j = 1, . . . ,M nearest static or
dynamic obstacles. This information can be obtained in real
time, e.g., from an (extended) Kalman filter that is based on
LIDAR measurements.

The resulting nonlinear optimal control problem (OCP)
formulation includes nx = 7 differential states, nu = 4
control inputs and N = 80 control intervals with a sampling
period of Ts = 25 ms over a T = 2 s horizon length. The
NMPC controller is implemented with a sampling frequency
of 40 Hz, using the direct multiple shooting discretization
method in combination with the RTI algorithm in the ACADO
code generation tool and the PRESAS QP solver that was
recently proposed in [17], [18].

V. REAL-TIME AUTOMATIC TUNING OF NMPC
BASED REFERENCE TRACKING

It is important to note that the particle-filtering based
motion planner in Section III computes a long-term, highly
predictive reference trajectory but it typically needs to run at
a relatively low sampling frequency, i.e., it has a relatively
slow update rate (every ∼1 s) and therefore rather low
reactivity. Instead, NMPC in Section III typically uses a
much shorter prediction horizon but it runs at a much
higher sampling frequency (every ∼25 ms), such that the
controller can be highly reactive to local deviations, e.g., due
to uncertainties in the pose estimation for the ego vehicle as
well as for the surrounding obstacles. It is therefore important
to share the responsibility between the planning and control
layer in Figure 1a for ensuring safe and reliable driving
behavior, especially in order to satisfy real-time obstacle
avoidance requirements under uncertainty.

Our proposed approach involves an integrated software
framework where the motion planner provides a reference

trajectory (6) as well as its time-varying covariance (7b)
to the NMPC controller. As illustrated in Figure 1b, this
allows the reference tracking algorithm to automatically
adapt the trade off that exists between competing control
objectives such as, e.g., achieving high tracking performance
while satisfying safe obstacle avoidance requirements. More
specifically, one could expect the uncertainty of the reference
motion plan to increase when the vehicle is predicted to
become relatively close to surrounding obstacles, such that
the penalization of deviations from the reference trajectories
should decrease, and vice versa. This in turn allows larger, or
lower, deviations of the NMPC trajectory from its reference,
i.e., the motion planning trajectory.

This inverse proportional relation between the uncertainty
of the motion planner and the tracking cost in the NMPC
problem, can be used to explicitly compute a time-varying
sequence of weighting matrices Wk for k = 0, . . . , N in
Eq. (8), where N denotes the number of control intervals in
the discrete time OCP formulation. Let us define the covari-
ance matrices Pk in (7b) that correspond to the reference
trajectory xk in (7a) at a sequence of time points tk for
k = 0, . . . , N . The time-varying tracking cost is defined as

Wk = P
−1/2
k Qk P

−1/2
k , (12)

using the square root of the inverse of the covariance matrix
Pk � 0, given a symmetric nominal scaling matrix Qk �
0. The above expression becomes computationally much
cheaper to evaluate when ignoring off-diagonal elements in
the covariance matrices, i.e.,

Wk(i, i) =
Qk(i, i)

max(ε, Pk(i, i))
, for i = 1, . . . , nx, (13)

where the nominal scaling matrix Qk � 0 has additionally
been assumed to be diagonal and a regularization parameter
ε > 0 has been included for ensuring good numerical
conditioning. As the motion planner operates at a lower rate
than the controller, the reference trajectories, in combination
with the corresponding covariance matrices, are shifted from
one control time step to the next, until a new reference
trajectory is computed by the motion planner. The resulting
integrated planning and control strategy for autonomous
driving is summarized in Algorithm 1.

Algorithm 1 Automatic Tuning for NMPC Reference Track-
ing Cost using Particle Filtering based Motion Planner.

Input: Time-varying trajectories of reference values{
yrefk
}
k=0,...

and covariance matrices {Pk}k=0,....
1: while true do . Control loop
2: if new reference motion plan then
3: Reset trajectories:

{
yrefk
}
k=0,...

and {Pk}k=0,....

4: Smooth approximation yref(·) of reference motion.
5: for k = 0, . . . , N do
6: Automatic tuning: Wk, given Pk in (12) or (13).
7: Wait for next time step after Ts = 25 ms.
8: end while



Fig. 2. The Ackermann-steered Hamster robot used in experiments. The
markers are used to track the robot via an OptiTrack motion-capture system.

VI. EXPERIMENTAL RESULTS

We use a test platform of small-scale autonomous vehicles,
based on the Hamster robots as illustrated in Figure 2,
for testing and validating our complete planning, control
and estimation software stack before deploying in full-scale
vehicle experiments [5], [13].

A. Scaled Vehicle Experimental Platform

The Hamster is a 25 × 20 cm mobile robot for research
and prototype development, see Figure 2. It is equipped with
scaled versions of sensors commonly available on full-scale
research vehicles, such as a 6 m range mechanically rotating
360 deg LIDAR, an inertial measurement unit (IMU), GPS
receiver, HD camera, and motor encoders. It uses two Rasp-
berry Pi 3 computing platforms, each with an ARM Cortex-
A53 processor. The robot has Ackermann steering and is
therefore kinematically equivalent to a full-scale vehicle,
and its dynamic behavior, such as the suspension system,
resembles that of a vehicle. It has built-in mapping and
localization capabilities, and object detection and tracking
can be done with the onboard LIDAR and/or camera.

Hence, the platform is a good test setup for verifying
the dynamic feasibility and performance of vehicle control
and estimation software in a realistic setting, with a sensor
setup similar to the one expected in full-scale autonomous
vehicles. The Hamster communicates and connects to ex-
ternal algorithms using the robot operating system (ROS).
In order to be able to accurately evaluate the control and
estimation algorithms in terms of performance in a controlled
environment, we use an OptiTrack motion capture system.
The OptiTrack system is a flexible camera-based six degrees-
of-freedom tracking system that can be used for tracking
drones, ground vehicles, and industrial robots.

B. Experimental Validation Results

We use three Hamsters in the experimental validation, one
acts as the ego vehicle (EV) and two act as obstacles. For
simplicity of illustrating the performance of our proposed
algorithmic framework, both obstacle vehicles (OVs) are
restricted to be static in these experiments, even though
results with dynamic obstacles have been presented in [4],
[5], and our modified approach also works in those scenarios.
Our objective is to avoid the obstacles while circulating a
two-lane closed circuit in the counter-clockwise direction,

3

1

2

Autonomous

Obstacle

Fig. 3. Illustration of EV circulating a two-lane closed circuit in counter-
clockwise direction (blue trace), while safely avoiding two static OVs.

with the inner lane as preferred lane, see Figure 3. The OVs
in this scenario could represent, e.g., two parked vehicles on
the side of each of the two lanes on the road. The position
of the EV is obtained from the OptiTrack system. As for
the OVs, their position is estimated in real-time using the
onboard LIDAR measurements.

Figure 4 shows results of three separate experiments in
which the integration between the particle-filtering based
motion planner and the NMPC is based on either the auto-
tuning method in Algorithm 1 or a fixed high (low) tracking
cost weight W (t) = Whigh, or W (t) = Wlow, for all t in
Eq. (8). The closed-loop time trajectories show the lateral
tracking error and the average weighting matrix value on
tracking of the vehicle position, in order to illustrate the
corresponding driving behaviors. The EV passes in between
the static obstacles along the two-lane closed circuit (see
Figure 3) at t = 75 and t = 120 s, corresponding to the
highlighted time windows in Figure 4. As expected, it can be
observed that the auto-tuning based implementation results in
an automatic balancing of the trade off between high tracking
performance, similar to the results when using a fixed but
relatively high tracking cost, and the larger safety margins
for obstacle avoidance that are achieved when lowering the
tracking cost weight. More specifically, in Figure 4, one can
observe that the tracking cost becomes consistently lower for
the auto-tuning method at t = 75 and t = 120 s, due to an
increase in uncertainty of the motion planner, resulting in an
increased lateral error to ensure safe obstacle avoidance.

Figure 5 shows in more detail the satisfaction of safe ob-
stacle avoidance requirements that is achieved when lowering
the tracking cost weight, which is performed automatically
in the proposed auto-tuning implementation due to the in-
creased covariance of the motion planner trajectory when
the distance to surrounding obstacles is relatively small.
The figure shows a snapshot of the computed particles and



Fig. 4. Closed-loop time trajectories showing lateral tracking error and
position tracking cost for three separate experiments: NMPC with auto-
tuning, NMPC with fixed low and fixed high tracking cost. The highlighted
time windows correspond to the EV passing in between the two OVs.

the reference trajectory from the motion planner and the
predicted trajectory from the NMPC controller at around
120 s in each of the three separate vehicle experiments.
Indeed, one can observe that the automatic spreading of
the particles when the ego vehicle is relatively close to
surrounding obstacles, leads to an increased uncertainty and
therefore an increased flexibility for the NMPC controller to
deviate from the reference motion plan.

VII. CONCLUSIONS

The present paper proposed a tighter integration of a
particle filtering based motion planner and a nonlinear model
predictive controller for real-time tracking, based on the
motion planner providing not only the trajectory but also
information about the second statistical moments. The plan-
ning algorithm computes a reference trajectory to be tracked
and the corresponding covariance matrices, which are used
for automatically tuning the time-varying tracking cost in
the NMPC formulation. Experimental results based on a test
platform of small scale vehicles are used to illustrate the
more strongly integrated hierarchical planning and control
strategy for autonomous driving systems.
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