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Abstract
Reference governors (RGs) provide an effective method for ensuring safety via constraint
enforcement in closedloop control systems. When the parameters of the underlying systems
are unknown, but constant or slowly-varying, robust formulations of RGs that consider only
the worst-case effect may be overly conservative and exhibit poor performance. This paper
proposes a parameter-adaptive reference governor (PARG) architecture that is capable of
generating safe trajectories in spite of parameter uncertainties without being as conservative
as robust RGs. The proposed approach leverages on-line data to inform algorithms for robust
parameter estimation. Subsequently, confidence bounds around parameter estimates are fed
to supervised machine learners for approximating robust constraint admissible sets leveraged
by the PARG. While initially, due to the absence of on-line data, the PARG may be as
conservative as a robust RG, as more data is gathered and the confidence bounds become
tighter, such conservativeness reduces, as demonstrated in a simulation example.
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Learning-based Parameter-Adaptive Reference Governors

Ankush Chakrabarty†, Karl Berntorp, Stefano Di Cairano

Abstract—Reference governors (RGs) provide an effective
method for ensuring safety via constraint enforcement in closed-
loop control systems. When the parameters of the underlying
systems are unknown, but constant or slowly-varying, robust
formulations of RGs that consider only the worst-case effect may
be overly conservative and exhibit poor performance. This pa-
per proposes a parameter-adaptive reference governor (PARG)
architecture that is capable of generating safe trajectories in
spite of parameter uncertainties without being as conserva-
tive as robust RGs. The proposed approach leverages on-line
data to inform algorithms for robust parameter estimation.
Subsequently, confidence bounds around parameter estimates
are fed to supervised machine learners for approximating
robust constraint admissible sets leveraged by the PARG. While
initially, due to the absence of on-line data, the PARG may be
as conservative as a robust RG, as more data is gathered and
the confidence bounds become tighter, such conservativeness
reduces, as demonstrated in a simulation example.

Index Terms—Reference governors, machine learning, uncer-
tain systems, adaptive systems, particle filtering, invariant sets,
robust control, learning for control.

I. INTRODUCTION

Due to their ability to enforce constraints without requiring
a full re-design [1], [2], and with a relatively low com-
putational burden, reference governors (RGs) have proven
useful in multiple application domains, including vehicles,
aerospace, manufacturing, and energy systems [3]–[6].

Despite being relatively common in real-world applica-
tions, there are relatively few designs for RGs when the
parameters of the underlying systems are uncertain. To the
best of our knowledge, the load governor approach proposed
in [7] is the only parameter-adaptive reference governor
(PARG) formulation in the literature. A major reason for
the dearth of PARG frameworks is that the computation of
robust constraint admissible sets under parameter uncertainty
is extremely difficult due to complex geometries of these sets
and inherent non-convexity, even for linear systems. Recently
proposed sampling-driven machine learning approaches may
provide computationally tractable and efficient frameworks
for estimating these robust invariant sets on-line [8], [9] by
offloading simulation and trajectory generation off-line.

In order to construct robust constraint admissible sets,
one requires not only the point estimates of the parameters
themselves, but also regions in the parameter space within
which the true parameter lies with high probability. To this
end, we propose the use of recursive parameter estimators
that have demonstrated excellent performance in a wide
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range of estimation problems [10], [11]. For nonlinear sys-
tems, these approaches are generally intractable, and particle
filtering provides an effective alternative [12], [13], where
the state space is estimated by predicting state trajectories
(particles) and weighting them according to the likelihood of
the measurements.

In this paper, we describe a PARG framework that is ca-
pable of enforcing constraints in parameter-uncertain closed-
loop systems without modifying the control algorithm di-
rectly. As a specific realization of this PARG framework, we
consider two components: (i) a recursive statistical parameter
estimator based on Bayesian update laws for generating
confidence intervals around a point estimate of the unknown
parameter; and (ii) a support vector machine (SVM) algo-
rithm that dynamically learns constraint admissible sets by
combining off-line data based on sampling, and on-line data
provided by the parameter estimator. An advantage of using
interval-based estimates rather than point estimates of the
parameter, is that the intervals can exhibit certain properties
such as monotonicity that are crucial to ensure performance
guarantees on the PARG. Another advantage of our proposed
method is that learners with good approximation properties,
such as with universal kernels [8], [9], can be employed
to represent highly non-convex robust constraint admissible
sets for black-box systems using simulations and systematic
sampling; this is challenging via analytical methods.

II. MOTIVATION

A. Problem Statement

We consider the class of parametric discrete-time nonlinear
systems

xt+1 = f(xt, vt) + θ>g(xt, vt), (1a)
yt = h(xt, vt), (1b)

where t ∈ Z+ denotes the time-index, xt ∈ X ⊂ Rnx is the
measured system state, vt ∈ V ⊂ R is the reference input,
yt ∈ R is the output that should track the reference, and f ,
g, h are nonlinearities that represent the model and output
dynamics. The vector θ ∈ Θ ⊂ Rnθ models a set of system
parameters. The output yt must satisfy constraints described
by the set Y ⊂ R for each instant of time, that is

yt ∈ Y for every t ≥ 0. (2)

Assumption 1. The sets X, V, Y and Θ are compact and
known to the designer. The sets X, V, and Y contain the
origin in their interiors. The set V is convex.

Note that Assumption 1 is mild. Although the classi-
cal reference governor literature does not require explicit



boundedness of the state-space X, we make this an explicit
assumption because we will use sampling-based methods to
characterize constraint admissible sets in this paper. In order
to make these set approximations accurate, the domain over
which the samples are drawn must be bounded, and known to
the designer. Furthermore, the reference v is assumed to be
scalar, which is the standard formulation for the reference
governor. The results of this manuscript can be extended
almost directly to vector-valued v, which is the case for
vector reference governor and command governor; see for
example, [6].

An implicit assumption made in the description above is
that in the unconstrained setting, that is Y = R, the closed-
loop system (1) exhibits good tracking performance. Thus,
the closed-loop system (1) is asymptotically stable and for
each r ∈ V, when vt = rt ≡ r for all t ≥ 0, yt → r as
t→∞. The objective of a reference governor is to select vt
as close as possible to rt while ensuring that (2) is enforced.
In the literature [6], the commonly treated cases are when θ is
known or when it is unknown and constantly varying within
a given range. In this paper, we consider the case when the
parameter vector θ ∈ Θ ⊂ Rnθ is unknown, but constant.

Our proposed PARG is given by the control law

vt = Ḡ(vt−1, xt, Θ̂t, rt)

= vt−1 + G(vt−1, xt, Θ̂t, rt)(rt − vt−1), (3)

where Θ̂t ⊂ Θ is a bounded interval of parameter values,
computed by a parameter estimator with the functional form

Θ̂t = E(vt−1, xt, Θ̂t−1). (4)

Our objective is to design G and E such that the closed-
loop system (1), (3), and (4) satisfies constraints (2) in
spite of parametric uncertainty and, when possible, tracks
the desired reference rt. A schematic diagram representation
of the proposed PARG architecture is shown in Figure 1.

Parameter Estimator

Parameter-Adaptive  
Reference Governor

System

Fig. 1. Block diagram representation of the parameter-adaptive reference
governor (PARG) added-on to the unconstrained system.

Remark 1. In many applications such as industrial mo-
tors [14], autonomous vehicles [15], and buildings [16], exact
model parameters are not always known, although the set Θ
is known from experience or archived literature.

B. Proposed Solution

Constructing PARGs for the uncertain system (1) poses
two major difficulties. First, parameter estimators generally
converge asymptotically to the true parameters, implying that

the current estimate of the parameter at any arbitrary finite
time t is not necessarily correct. Thus, designing references
with point estimates θ̂t 6= θt does not guarantee constraint
satisfaction for any finite t. Second, estimating parameter
invariant sets on-line for employment in a reference governor
using model-based analytical methods is computationally
challenging, because the underlying constraint admissible
invariant sets are typically non-convex with respect to the
parameters and analytical methods do not always scale well
into high-dimensional state-spaces.

In order to address the first difficulty, we propose us-
ing parameter estimators that generate not only a point-
estimate θ̂t, but also an interval Θ̂t which contains the
true θ with certainty (in deterministic estimators) or with
high probability (in stochastic estimators). The advantage of
using confidence intervals instead of point estimates is that
they can be made to exhibit certain useful properties such
as non-expansivity as more data becomes available. Unlike
point estimates, which can be time-varying and unpredictable,
confidence intervals can be designed to exhibit predictable
dynamics, making them effective for constraint enforcement.
Unfortunately, replacing a point-estimate with a confidence
interval exacerbates the second difficulty as one now needs
to estimate robust parameter invariant sets for the system (1)
with varying confidence bounds. One of the contributions
of this paper is to estimate these sets in a computationally
efficient manner by exploiting supervised learning machines.

More formally, let H = {(x, v) ∈ X × V : h(x, v) ∈ Y}
denote the set of state and reference inputs for which the
output y satisfies the constraint (2). We present the following
definition for parameter-robust constraint admissible sets.

Definition 1. The set O(Θ̂) ⊂ H is a parameter-robust
constraint admissible set for (1) if, for every initial condition
(x, v) ∈ O(Θ̂), when x0 = x and vt = v for all t ≥ 0,
(xt, vt) ∈ H for every θ ∈ Θ̂ and for all t > 0. The set
O(Θ̂) is invariant.

In order to generate estimates of parameter-robust con-
straint admissible sets, we will adopt an off-line sampling-
driven approach to collect data for learning the sets on-line
as operational data becomes available.

An estimate of a parameter-robust constraint admissible
set can subsequently be used to evaluate the control law (3)
by solving for

G(vt−1, xt, Θ̂t, rt) := arg min
γt

(vt − rt)2 (5a)

subject to: (vt, xt) ∈ O(Θ̂t), (5b)
vt = vt−1 + γt(rt − vt−1), (5c)
0 ≤ γt ≤ 1, (5d)

vt ∈ Vε(Θ̂t) (5e)

at each time instant t. Note that Vε(Θ̂t) denotes the set of
references v such that a ball of radius ε > 0 centered at the
corresponding steady state xss(v, θ) and v lies inside O(Θ̂t),

Vε(Θ̂t) ,
{
v ∈ V : Bε(xss(v, θ), v) ⊂ O(Θ̂t),∀ θ ∈ Θ̂

}
.



III. DESIGN OF LEARNING-BASED PARG

In this section, we discuss the off-line data collection
phase, the on-line parameter estimation phase, and the on-
line learning phase of the proposed PARG.

A. Off-line data generation for on-line learning

As in [9], we will simulate trajectories of the closed
loop system (1) off-line, from different initial states sampled
from X, reference inputs sampled from V, and parameters
within Θ. At the end of each off-line simulation, if an
initial condition xi ∈ X tracks a desired reference input
vi ∈ V without violating the constraint (2) at any time
in the simulation, for a parameter θi sampled within Θ,
then the combination (xi, vi) is labeled ‘+1’ to indicate it
resides within the parameter-robust constraint admissible set
O({θi}). Contrarily, if the constraint is violated at any time
point in the simulation, the feature (xi, vi) is labeled ‘−1’
to indicate it resides outside O(θi). This sets up a binary
classification problem which can be solved via supervised
machine learning. This is stated more formally herein.

We extract Nx unique samples from X and construct grids
(not necessarily equidistantly spaced) on V and Θ with Nv
and Nθ nodes, respectively. Let xi denote the i-th sampled
state, vj the j-th sampled reference input, and θk the k-th
sampled parameter. For each (xi, vj , θk), we simulate the
model (1) forward in time over a finite horizon Ts with
a constant reference vj and parameter θk. The horizon Ts
is chosen long enough that the tracking error is small (for
example, < 10−6) by the end of the simulation. For each
simulation, we check whether yt ∈ Y for every simulation
time-point. We set the corresponding label of the sample xi
as follows:

`j,ki =

{
+1, if yt ∈ Y for every t ∈ {0, 1, . . . , Ts},
−1, otherwise.

(6)

At the end of this off-line data generation procedure, we have
a fixed collection of initial {xi}Nxi=1, and each initial condition
xi has a corresponding Nv ×Nθ matrix of labels

`i =

 `
1,1
i · · · `1,Nθi
...

. . .
...

`Nv,1i · · · `Nv,Nθi

 ,
from which a labeled set will be generated on-line for robust
invariant set estimation using supervised learning. Note that
every element in `i is either +1 or −1 by (6).

B. Obtaining confidence intervals from parameter estimators

The proposed approach leverages confidence intervals
around parameter estimates to learn parameter-robust con-
straint admissible sets. An efficient way of determining such
confidence intervals is by using Kalman filters [10], [11],
[17], [18] (for the linear case) and adaptive particle filters [19]
(for the nonlinear case). We do this by reformulating (1) in
a probabilistic framework where θ is treated as an unknown
disturbance with stochastic properties. In the current work,
since xt is known, we exploit the linearity of the system (1)

with respect to θ and use a Kalman filter for estimating θ
and its confidence interval Θt. Note that the approach can be
extended to the case when the state vector is not completely
known and has to be estimated together with the parameter.

Specifically, we reformulate (1a) as

θt = θt−1 + wt, (7a)

ȳt = g(xt−1, vt−1)>θt + et, (7b)

where ȳt = x>t − f>(xt−1, vt−1), that is, the dynamical
system (1a) for xt now plays the role of the measurement
(output) equation in the Kalman filter.

The reason to address the parameter estimation problem
in a Bayesian framework is that even if the state xt is
known, for instance, from measurements, such knowledge
is typically imperfect due to inherent noise in the sensors
measuring the state, even though we do not model the
uncertainties explicitly in (1) for simplicity. Furthermore,
a Bayesian framework provides a systematic approach to
work with confidence intervals in recursive estimators. In a
Bayesian context, we reformulate (7) as θt+1 ∼ p(θt) and
ȳt ∼ p(θt). We address the parameter estimation problem by
recursively estimating the posterior density function of the
parameter θt, given by

p(θt|ȳ0:t). (8)

using the measurement history ȳ0:T = {ȳ0, · · · , ȳT }.
The Bayesian updates for solving (8) can be summarized

in the prediction and update equations

p(θt|ȳ0:t−1) =

∫
p(θt|θt−1)p(θt−1|ȳ0:t−1) dθt−1, (9a)

p(θt|ȳ0:t) =
p(ȳt|θt)p(θt|ȳ0:t−1)

p(ȳt|ȳ0:t−1)
, (9b)

where p(ȳt|ȳ0:t−1) is a normalization constant. If the process
noise wt and measurement noise et are Gaussian distributed
then the Bayesian update recursions (9) result in the Kalman
filter equations that estimate the parameter mean θ̂t and
associated covariance Pt. Using the covariance, we estimate
the confidence interval Θ̂ as

Θ̂j
t = [θ̂jt − βP

j,j
t , θ̂jt + βP j,jt ]

for each element j in the parameter vector θt and β > 0.
In order to provide theoretical guarantees on the PARG,

we need to ensure that our confidence intervals do not expand
with more available data, that is, Θ̂t+1 ⊆ Θ̂t. While this is a
natural consequence of applying Kalman filters to linear-in-
parameter systems [20] such as (7), in general, exploration
using nonlinear filters such as in particle filters could result in
a violation of this condition. In such scenarios, we explicitly
enforce contraction of confidence intervals. Specifically, if
the filter computes an updated confidence interval Θ̃t+1, we
set

Θ̂t+1 :=

{
Θ̂t ∩ Θ̃t+1 if Θ̃t+1 ∩ Θ̂t 6= ∅
Θ̂t, otherwise.

(10)

This forces non-expansion of Θ̂t for all t ≥ 0.



Remark 2. If the state vector is available at every t, one can
use a linear estimator to provide the confidence intervals, and,
therefore, a more general approach using Bayesian recur-
sions (9) is not needed. However, if the state is unavailable,
the updates (9) can be employed to generate joint estimates of
states and parameters via nonlinear recursive estimators.

C. Solving (5) by learning robust invariant sets

We will solve the problem (5b) efficiently (albeit approx-
imately) using machine learning and gridding V. Placing a
grid on V, along with the constraints (5c) and (5d), imply
that the solution to (5) is contained within the sub-grid of V
defined by

Ṽt :=
[

min{rt,k, vt,k},max{rt,k, vt,k}
]
. (11)

Then, we can recast the problem (5) as a grid search,

vt := arg min
v∈Ṽt

(v − rt)2 (12a)

subject to: (v, xt) ∈ O(Θ̂t), (12b)

v ∈ Vε(Θ̂t). (12c)

Note that in order to solve the problem (12), we require an
estimate of the set O(Θ̂t), which is obtained by posing the
estimation of this set as a supervised learning problem with
concept drift.

In learning with concept drift, the features remain constant,
but the labeled set changes with time [21]. In this work, the
robust parameter invariant set changes with time because Θ̂t

is time-varying. Therefore, a state xi that was infeasible for
Θ̂t may become feasible in the shrunken set Θ̂t+1, even if
vt is fixed. This corresponds to a change in an element of
the labeled set. If vt 6= vt+1, this could incur more drastic
changes in Θ̂t+1 and the labeled set.

We set up the learning problem as follows. At time instant
t, consider a Θ̂t provided by the parameter estimator. Then,
for each vj ∈ Ṽt described in (11), and each xi ∈ {xi}Nxi=1

sampled off-line, we assign the label

zi,j(Θ̂t) = min
k∈Ii,j(Θ̂t)

`j,ki , (13)

where
Ii,j(Θ̂t) :=

{
k : θk ∈ Θ̂t

}
is the index set of parameters contained in the current
confidence interval Θ̂t. Taking the minimum in (13) ensures
that the estimated set is robust to all parameters within Θ̂t.
That is, if even one θt is infeasible for the particular vj and
xi, then xi does not belong to the robust parameter invariant
set corresponding to Θ̂t.

With the training data D := {(xi, vj), zi,j}, we construct
classifiers ψj , where j = 1, . . . , |Ṽt|. For each vj , a classifier
is trained on features {xi} and their corresponding labels
{zi,j}. These classifiers need to represent inner approxima-
tions of the robust parameter invariant sets; to this end, one
may select sub-level sets of the decision boundary ψk = 0
of the classifier until no infeasible sample is contained in
the interior of the sub-level set [8]. Solving the problem (12)

then becomes identical to selecting the node vj on the grid Ṽt
that minimizes the cost (12a) while ensuring that ψj(xt) > 0;
that is, the current state is predicted by the j-th classifier to
belong to the robust parameter invariant set induced by Θ̂t.

As an exemplar classification algorithm, consider a 2-norm
soft margin support vector machine (SVM) classifier trained
on a dataset D by solving the optimization problem

(w?j , b
?
j , ξ

?
j ) := arg min

w,b,ξ
w>w + c ξ>ξ (14a)

subject to: zi,j (w>ϕ(xi) + b) ≥ 1− ξi,
∀ i = 1, . . . , Nx.

Here, c > 0 is a regularization constant, w quantifies the
margin of separation, b is a bias term, ξ are slack variables,
and ϕ is a feature map into a reproducing kernel Hilbert
space for a kernel function K. The decision function of the
SVM is given by

ψj(x) = sign
(
(w?j )>ϕ(x) + b?j

)
, (14b)

where the inner product (w?j )>ϕ(x) can be expressed effi-
ciently by the kernel function K. In the following section, we
will provide probabilistic guarantees of the learning quality of
this classification algorithm when used for estimating O(Θ̂t).

IV. THEORETICAL GUARANTEES

A. Guarantees on the parameter estimator

We begin with the following lemma, which ensures that
the true parameter lies in each confidence interval Θ̂t with
high probability.

Lemma 1. If the estimator (7) uses the update (10), then

Pr[θ ∈ Θ̂t,∀t ≥ 0] ≥ πθ. (15)

B. Guarantees on the learning algorithm

The parameter estimator is not the only statistical method
used in this paper. For certain classes of learners used
to approximate O(Θ̂t), one can also provide probabilistic
guarantees of approximation quality.

We require the following definition from [22] before we
can present the lemma.

Definition 2. A continuous kernel K is universal in X if the
space of all functions induced by K is dense in the space of
all continuous functions defined on X.

Remark 3. The Gaussian radial basis function kernel used in
nonlinear SVM is an example of a commonly used universal
kernel.

Suppose the SVM learner (14) used for estimating the
parameter-robust constraint admissible set comprises a kernel
K that is universal in the feature space X. Let Φ denote
the set of decision functions induced by the kernel K. Let
φj ∈ Φ be the decision function generated by solving (14)
with Nx data samples for each j = 1, . . . , |Ṽt|. We define



the empirical risk of φj on the feature set X and the labeled
set Z by

R(φj , Nx, c) :=

∫
X×Z

1{φj(x)6=z}µ(df, dz),

where µ(·, ·) is a probability measure on X× Z.
The following lemma states that as long as the two sets

of features corresponding to opposite labels are a strictly
positive distance from each other and the true decision
boundary is not pathological, they can be separated with a
given margin at zero empirical risk by solving (14), given a
sufficiently large number of data points, as long as the SVM
learner employs a universal kernel.

Lemma 2. For any t ≥ 0, suppose that the training set be
partitioned into two compact sets D+ and D− containing only
positive and only negative labels, respectively, and suppose
the true separating boundary has bounded curvature and
finite perimeter. If the distance between these two sets is
strictly positive, then the universal kernel K separates D+

and D− with margin γ > 0. Furthermore, for any regularizer
c > 0 of the SVM, there exists a decision function ψj of the
form (14b) and scalar πγ ∈ (0, 1) such that

Pr [R(ψj , Nx, c) = 0] ≥ πγ (16)

for sufficiently large Nx and every j = 1, . . . , |Ṽt|.

As argued in [8], one can make the learner more conser-
vative to ensure that (for a given finite dataset) no infeasible
point is labeled as feasible (for safety). In terms of the
true learning problem (e.g. as the dataset grows to infinity),
one can shrink the decision boundary in such as way that
the probability of labeling an infeasible point as feasible is
arbitrarily small at the expense of asymmetrically labeling
feasible points as infeasible.

Remark 4. A lower bound on Nx for a given πγ can be
computed using the value of c, γ, and the covering number
of the space X.

C. Guarantees on the PARG

The following lemma ensures that the parameter-robust
constraint admissible sets do not contract for a fixed reference
input, as long as the confidence intervals are non-expansive.

Lemma 3. The update (10) implies that O(Θ̂t) ⊇ O(Θ̂t−1)
and O(Θ̂t) ⊆ H for all t ≥ 0.

Lemmas 1–3 enable the following guarantees on the
constraint satisfaction performance of the PARG-in-the-loop
system.

Theorem 1. Suppose Assumption 1 hold. Let πθ and πγ
be as defined in (15) and (16), respectively. Let t0 ≥ 0
denote a time instant at which (xt0 , v) ∈ O(Θ̂t0) for some
v ∈ Vε(Θ̂t0). Then, and for any r(t) ∈ V, the closed-loop
system (1), (5), (10) satisfies the constraints (2) for all t ≥ t0,
with probability at least πθπγ .

Theorem 2. Let the conditions of Theorem 1 hold. Let r(t) =
r for all t ≥ 0, and let there be a finite time t̂ such that r ∈

Vε(Θ̂t̂). Then, there exists a finite t̄ ≥ t̂ such that v(t̄) = r,
with probability at least πθπγ .

V. NUMERICAL EXAMPLE

We illustrate our proposed method on a second-order
nonlinear electromagnetically actuated mass-spring damper
system studied in [1]. The closed-loop system without the
reference governor is given by the forward Euler discretiza-
tion of

ẋ1 = x2,

ẋ2 = −c+ cd
m

x2 + θ

(
1

m
v − 1

m
x1

)
,

y = x1,

with sampling time τ = 1 ms. The parameter θ = 38.94
represents the unknown spring constant; other parameter
values are cd = 4.00, c = 0.66, and m = 1.54. The
set Y is described by the constraints x1 ≤ 8 × 10−3 and
0 ≤ u(x, v) ≤ 0.3, where

u(x, v) =
1

α
(θv − cdx2)(d0 − x1)ν

is the legacy tracking controller whose structure and parame-
ters θ, cd, α = 4.5×10−5, d0 = 1.02×10−2, and ν = 1.99,
cannot be altered. At design time, we know that θ ∈ [10, 90];
thus, we initialize Θ̂0 := [0, 90]. We also know that the
set of reference inputs V := [0.5 × 10−3, 7.5 × 10−3], and
X := [−8× 10−3, 8× 10−3]× [−4× 10−2, 4× 10−2].

For off-line data generation, we randomly select Nx =
2000 low-discrepancy samples on X, and uniformly partition
Y and V into 50 and 80 sub-intervals, respectively. For each
xi, we simulate the closed-loop dynamics forward in time
for Ts = 5 seconds, and check whether the constraints were
violated at any time point.

To perform parameter estimation, we use the recur-
sive filter described in Sec. III-B. We model the mea-
surement covariance to be diagonal according to Rf =
diag

([
10−4, 10−8

])
and set Qf = 10−8I . The 99% con-

fidence interval Θ̂t generated by the parameter estimator is
used for on-line updating of the robust parameter invariant
sets. Upon updating the label set based on Θ̂t as described
in (13), we use support vector machine (SVM) bi-classifiers
to perform invariant set estimation. The SVM kernel is
composed of radial basis functions, and default hyperparame-
ters in MATLAB’s Statistics and Machine Learning Toolbox
are assigned. In order to promote the generation of strictly
feasible sets (where no point labeled ‘-1’ is contained in the
set) we use an asymmetric cost function with cost matrix:
antidiag

( [
1 0.5

] )
. Since the computation times for updat-

ing these sets are generally larger than the sampling time, we
adopt a heuristic for skipping updates if ‖Θ̂t−Θ̂t−1‖ ≤ 0.001
and ‖rt − rt−1‖ ≤ 10−5.

In Figure 2, we compare the performance of the learning-
based PARG to a non-adaptive RG which assumes a param-
eter value of θ̃ = 45, which is the point estimate θ̂ after
0.1 s (which means 100 data points, since τ = 0.001).
The output of the parameter estimator is shown in subplot



Fig. 2. [A] Mean parameter estimate, the true parameter value, and the
99% confidence interval. [B] Measured output of closed-loop system with
conventional RG with incorrect parameter estimate. [C] Measured output of
closed-loop system with learning-based PARG. No constraints are violated.
PE = parameter estimator, RG = reference governor without adaptation,
PARG = parameter-adaptive reference governor.

[A] (dotted line) along with the true parameter value (green
continuous line). The point estimate θ̂ converges to a small
neighborhood around θ within 1 s, and the 99% confidence
intervals (blue continuous lines) start contracting to a tight
set around θ around 20 s. Note that the contractions of Θ̂t

occur when the desired reference rt jumps and vt varies.
This happens because the vt transient dynamics excite the
closed-loop system and parameter estimation is abetted by
satisfaction of weak persistence of excitation conditions. In
subplot [B] and [C], we illustrate the benefit of the learning-
based PARG. In subplot [B], we see that the non-adaptive
RG cannot satisfy constraints at all time t ≥ 0 because the
constraint admissible set is generated based on an incorrect
estimate of θ. Conversely, as evident from subplot [C], the
PARG, which uses parameter-robust constraint admissible
set, does not violate constraints anywhere.

VI. CONCLUSIONS

In this paper, we developed an adaptation mechanism for
reference governors that can handle constraint satisfaction
in systems with parametric uncertainties. We demonstrated
that machine learning and confidence interval estimation is
effective for approximating robust invariant sets in a com-
putationally tractable manner, thereby enabling the PARG to
run on-line.
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