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Abstract—This paper focuses on an application of dynamic
mode decomposition (DMD) identification methods and robust
estimation theory to thermo-fluid systems modelled by the
Boussinesq equations. First, we use Dynamic Mode Decompo-
sition with control (DMDc) to construct a reduced order linear
model for the Boussinesq equations. Due to inherent model
uncertainties in real applications, we propose robust estimators
that minimize an H∞ norm from disturbance to estimation
error. The disturbances we consider here stem from uncertainty
in boundary conditions and unknown inputs acting on walls.
Numerical simulations on a challenging turbulent flow, of the
2D Boussinesq equations, is used to demonstrate the potential
of our approach.

I. INTRODUCTION

Buildings contribute 40% of energy consumption in the
United States. Building simulation, composed of a cou-
pled dynamics of heating, ventilation and air-conditioning
(HVAC) equipment and airflow within the built environment,
is essentially complex, multi-scale, multi-physics, and subject
to a wide variety of disturbances and uncertainties [1].
Designing computationally tractable tools for analysis and
synthesis of controllers and estimators for energy-efficient
buildings is a challenging problem due to inherent complexity
of airflow models. A reasonable mathematical model for
the airflow dynamics is described by Boussinesq equations,
which are partial differential equations (PDEs) [2], [3].
Boussinesq equations are a combination of the Navier-Stokes
(NS) equation and heat transfer. The numerical simulation of
PDEs is carried out by means of discretization, which results
in a large-scale discrete system of the order of 104 − 106

states. The challenge is to develop scalable computational
algorithms, this requires using reduced-order model approx-
imation for estimation and control.

Several observers have been proposed for the NS equation,
see for example [4]–[6]. For the Boussinesq equation, far
fewer estimation results are available due to the presence
of a coupling nonlinearity between the NS equation and
the thermal equation; this nonlinearity makes the estimation
problem more challenging. In [7], the authors proposed a
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learning-based robust observer design for the 2D Boussinesq
equation under model parametric uncertainties. They proved
that the closed loop system for the observer error state satis-
fies an estimate of L2 norm in a sense of locally input-to-state
stability (LISS) with respect to parameter uncertainties. Then
they proposed to learn the uncertain parameters estimate
using a data-driven extremum seeking (ES) algorithm. In [8],
the authors introduced a method for designing robust, proper
orthogonal decomposition (POD)-based, low-order observers
for a class of spectral infinite-dimensional nonlinear systems,
with application to the 2D Boussinesq equation. Robustness
to bounded model uncertainties was incorporated using the
Lyapunov reconstruction approach from robust control the-
ory. The gains of the observer were optimized online using
a data-driven learning approach.

In this paper, we adopt the method of DMDc to model
such complex and high-dimensional systems. The obtained
model is then used to estimate the airflow and the temperature
in whole space, based on localized sensing points. Due
to inherent uncertainties in the obtained data-driven model,
originating from uncertain boundary conditions and unknown
disturbances on the wall, we propose to use robust observers
for estimation. Robust estimators have proven useful not
only in providing robustness against uncertainties but in
estimating dynamical information without strong statistical
assumptions [9], [10]. Finally, we test the obtained DMD-
based model and the associated robust observers on a chal-
lenging turbulent flow case.

II. PROBLEM STATEMENT

We consider the problem of data-driven modeling and
robust estimation of the airflow velocity and temperature in a
built environment based on a two-dimensional turbulent flow.
Fig. 1 illustrates a schematic of a representative case study in
a built environment along with the corresponding boundary
conditions. Specifically, cold air of larger density enters the
room through a distributed inlet at the top vent Γi, subject
to Dirichlet boundary condition of prescribed inlet velocity
and temperature and leaves the room through the exhaust
located at the top left corner of the domain Γo, subject to
zero-Neumann boundary condition. The exterior serves as
the heat load of the domain at boundaries Γw,1–Γw,4. In
practice, the wall temperature is not known and is modeled
as a disturbance input as demonstrated in the following.

The governing equations are turbulent transient Boussinesq
equations, which are incompressible Navier-Stokes equations



Fig. 1. Exemplar solution of the 2-D Boussinesq equation in a representative
built environment. Streamlines of velocity field superposed by temperature
pseudo-color at long-time simulation (from red to blue, the temperature
varies from hot to cold).

coupled with the heat transfer equations, and are given below,
using Einstein notation
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with u, p, θ denoting scaled ensemble-averaged velocity, pres-
sure, and temperature; δij is the Kronecker delta. Non-
dimensional numbers in (1) are given by
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where subscript ‘in’ denotes the values at the inlet. The
effective viscosity and diffusivity are νeff and κeff , respec-
tively, and are computed by unsteady Reynolds-averaged
Navier Stokes (URANS) approach with k-ε closure model.
A finite-volume solution to Eq. 1 with appropriate boundary
conditions in turbulent flow regime has been extensively
validated in previous studies, e.g. [11]–[13] for both steady
and transient scenarios.

Robust estimation strategies typically require knowledge
of a state-space model for the underlying dynamics of the
flow. A state-space of representation of (1) needs to express
the PDEs in the form of an operator. Unfortunately, the sys-
tem (1) is highly nonlinear. Furthermore, the lack of explicit
dynamical characterizations of pressure necessitates that the
pressure term has to be removed for operator extraction.
While eliminating pressure has been investigated in laminar
and linearized flows [14], this task is extremely difficult
when the flow is turbulent due to numerical challenges.
Dynamic mode decomposition methods provides a data-
driven framework for obtaining state-space representations
of highly-nonlinear large-scale dynamical systems [15], [16]
such as turbulent flows as in (1); this is discussed next.

III. DATA-DRIVEN MODELING VIA DMD

A. Motivation

Dynamic mode decomposition (DMD) can be thought
of as a combination of proper orthogonal decomposition
(POD) with Fourier transforms in time [15]. We consider
an ordered time-series of snapshots {xk,uk}mk=0 obtained

from a thermo-fluid system, where k is a time index. The
k-th snapshot is comprised of column-vectors of measured
outputs xk ∈ Rnx and inputs uk ∈ Rnu , and (m + 1) ∈ N
denotes the total number of snapshots. With these data points,
one can construct a discrete-time model of the form

xk+1 = Axk + Buk (2)

such that the approximation error

‖xk+1 −Axk −Buk‖F (3)

is minimized over all snapshots for k = 1, . . . ,m. In (2), the
system matrix A is of size nx × nx and the input matrix B
is of size nx × nu.

The model (2) may not always be amenable to controller
or estimator design, for example, when nx is large. This is
typically the case in PDE systems due to the resulting large
dimension incurred by discretization in space. Therefore, it
becomes necessary to design models that provide good fits to
the snapshot data and resides in a lower-dimensional state-
space rx ≤ nx. To this end, we will construct a reduced-order
model of the form

x̂k+1 = Âx̂k + B̂ûk, (4)

where x̂ ∈ Rrx , û ∈ Rnu , are reduced-order states and
inputs, respectively. The reduced-order system matrices Â
and B̂ have dimensions rx × rx and rx × nu, respectively.

B. DMD With Control (DMDc)
In order to construct the model (4), we need to define a

few quantities. Let

X+ =
[
x1 x2 · · · xm

]
,

X =
[
x0 x1 · · · xm−1

]
,

U =
[
u0 u1 · · · um−1

]
denote data matrices constructed using the available snap-
shots. By construction of these matrices, and by the recur-
rence relation (2), we obtain

X+ = AX + BU, (5)

which can be rewritten as

X+ =
[
A B

] [X
U

]
=: ĀX̄. (6)

Note that the augmented matrix X̄ is of size (nx + nu) ×
m. We deduce from (5) that minimizing the approximation
error (3) is tantamount to minimizing ‖X+ − ĀX̄‖F.

To this end, we employ DMDc, as reported in [17], with
unknown state and input matrices. We begin by taking a
truncated SVD of X̄ up to a truncation value of r′ > rx,
that is X̄ ≈ ŪΣ̄V̄>, where Σ̄ has r′ non-zero diagonal
entries. This yields

Ā ≈ X+V̄Σ̄−1Ū>.

This can be partitioned into the state and input matrices A
and B described in (2) as follows:[

A B
]

=
[
X+V̄Σ̄−1Ū>1 X+V̄Σ̄−1Ū>2

]
, (7)



where Ū1 ∈ Rnx×r′ and Ū2 ∈ Rnu×r′ .
As explained earlier, the ambient state space nx may

be prohibitively large for estimator and controller design.
Therefore, we need an additional projection step to bring this
state-dimension down to rx. Unlike conventional DMD, we
cannot use Ū to find the projection subspace basis because Ū
contains both state and input data. Instead, we find the basis
from the pure state data matrix X+. This involves computing
another truncated SVD, that is,

X+ = ÛΣ̂V̂>,

where Σ̂ has rx non-zero diagonal elements due to trunca-
tion.

The projected state is then given by

x̂ := Û>x. (8a)

Consequently, the reduced-order system matrices are com-
puted using

Â = Û>ĀÛ = Û>X+V̄Σ̄−1Ū>1 Û, (8b)

B̂ = Û>B̄ = Û>X+V̄Σ̄−1Ū>2 . (8c)

Therefore, the equations (8), along with û := u yields the
desired reduced-order model (4). The complete pseudocode
is provided in Algorithm 1 for convenience.

Algorithm 1 DMD with control, DMDc(X+, X̄, rx)

Require: Data, X+, X̄
Require: Target state dimension, rx
Require: Truncation value, r′ > rx
Require: Truncated SVD subroutine, [U,Σ,V] = svd(·, ·)
[Ū,∼,∼] = svd(X̄, r′)
Partition Ū =

[
Ū1 Ū2

]
Compute A and B as in (7)
[Û,∼,∼] = svd(X+, rx)
Compute Â using (8b)
Compute B̂ using (8c)

Remark 1. The target state dimension rx is a design pa-
rameter. One heuristic that is commonly used to inform the
selection of rx is by generating the spectrum of X+ and
selecting rx based on the cumulative concentration of DMD
modes, for example, by only considering singular values that
contribute 99% of the variance.

C. Randomized DMD for big data

When the number of snapshots m is large, the SVD oper-
ation becomes prohibitive. In such cases, random projections
may be used to systematically reduce the ambient space
of the data such that a subsequent SVD on the projected
data, up to a target (usually much smaller than m) rank,
is near-optimal compared to the true SVD. Thus, carefully
selecting the random projection matrices can significantly
reduce the computational expenditure of the SVD procedure.
Randomized methods for efficient DMD without control has
been studied in [18], [19].

IV. ROBUST ESTIMATION

In this section, we discuss ways in which we can use the
model (4) to synthesize estimators that are robust to model
uncertainties or disturbances.

We begin by converting the discrete-time system (4) into
continuous-time and modeling the uncertainties acting on the
system dynamics. The continuous-time model is given by

dx̂(t)

dt
= Âcx̂(t) + B̂cû(t) + w(t), (9a)

y(t) = CÛx̂(t) + v(t) (9b)

where y ∈ Rny is the measured output, Âc is an rx × rx
matrix and B̂c is an rx × nu matrix. The process noise
acting on the system is represented by w ∈ Rrx×1 and is
a manifestation of various sources of noise, discussed in the
next subsection. The v ∈ Rny×1 is the measurement noise of
the sensor. We assume that process and measurement noise
are L2[0,∞). The matrix C ∈ Rny×nx is the output matrix.
For our specific application, C is given, and ny = 1. We
define Ĉ = CÛ.

A. Need for robust estimation

We elucidate upon some sources of uncertainty arising in
built environments. As discussed in Section II, the exterior
temperature at boundaries

⋃4
k=1 Γw,k are essential to solution

of the system (1). Such temperatures dictate heat transfer to
the system, which is also a function of thermal and physical
properties of the wall, such as the thickness of the wall and
the solar gain. In absence of any physical model, one could
assume a known (e.g. Gaussian) distribution for the boundary
condition at the walls. However, in practice, the distribution
of such disturbances are not usually distributed according
to known stochastic characterizations and can be completely
unknown and unanticipated at design time.

B. Steady-state Kalman filter

As a first step in this analysis, we consider the continuous-
time Kalman filter, also known as the Kalman-Bucy filter,
see for example [20], [21]. This filter requires numerical
integration at every time step which is impractical. For this
specific application, the error covariance reaches a steady-
state value quickly. Thus, we use the steady-state counterpart
of the filter, given by,

dz(t)

dt
= Âcz(t) + B̂cû(t) + L(y(t)− Ĉz(t)) (10)

where L = PĈ>R−1
v and z is an estimate of the state x̂

in (9). Here, the matrix P = P> � 0 is the solution to

ÂcP + PÂ>c −PĈ>R−1
v ĈP + Rw = 0,

where Rw and Rv are the covariance matrices of w and v,
respectively.

C. H∞ observer

A critical assumption required in the derivation of the
Kalman filter is that both the process and measurement noise
are drawn from distributions with known sufficient statistics



(e.g. Gaussian with known mean and covariance matrix).
This assumption does not hold in many practical scenarios,
especially with humans-in-the-loop. In the next subsection,
we address this issue by designing robust observers that
minimize the energy gain of the system to w,v ∈ L2.

Concretely, the H∞ observer differs from the Kalman
filter in two different ways (i) unknown disturbances of
finite energy replace the white-noise processes that drive the
system and corrupt the observations; and, (ii) the aim of the
observer is to ensure that the maximal energy gain from the
disturbances to the estimation error is less than a pre-specified
performance level γ.

For notational simplicity, we define d as,

d =
[
w> v>

]>
. (11)

Let Ge : d 7→ z − x̂ denotes a transfer function from
the disturbance input to the state estimation error. We seek
an asymptotic estimator gain L such that Ge is stable and
satisfies ‖Ge‖∞ < γ. The following theorem [22] gives us
a tractable formulation to design an H∞ observer with pre-
specified performance level.

Theorem 1. Suppose the pair (Â, Ĉ) is observable. There
exists an observer of the form (10) with gain L such that the
system Ge : d 7→ (z− x̂) is stable and satisfies ‖Ge‖∞ < γ
if and only if there exist matrices P � 0 and Q � 0 such
that

ÂcP + PÂ>c −P(Ĉ>Ĉ− γ−2I)P + Q = 0 (12)

and Âc −P(Ĉ>Ĉ− γ−2I) is asymptotically stable.

The H∞ observer dynamics have the same form as the
Kalman filter, described by (10). The H∞ observer gain,
however, is different, and given by L = PĈ>. Solving (12)
implies that the energy gain is bounded in an L2 sense, that
is

‖Ge‖∞ = sup
d6=0

‖z(·)− x̂(·)‖L2

‖d(·)‖L2

< γ.

Remark 2. If there is no solution to (12) for any γ > 0,
then no H∞ estimator exists. To reduce the conservativeness
of the solution, one can solve (12) while performing a line
search for γ.

V. RESULTS AND DISCUSSION

In this section, we discuss results obtained for modeling
and estimation of 2D turbulent Boussinesq equations. First,
we investigate exact and randomized DMDc for a sufficiently
rich training dataset. Next, this trained linear model is vali-
dated against various testing datasets associated with different
initial conditions and parameters. This model is then used
to construct estimators for Boussinesq equations. Emphasis
is given to estimation in the presence of disturbances with
unknown statistical properties.

In the ensuing discussion, we select the sensor to measure
only temperature; therefore, the velocity is estimated purely
from the temperature measurements. We use a single sensor
only, the location of which is based on optimal experiment
design, which is performed offline. In practice, the location

of temperature sensor is mostly prescribed due to geometric
and practical constraints, and is typically not a design choice:
conditions that we replicate here.

A. Results for DMDc

We identify the system matrices Â and B̂ using DMDc
described in Section III. The snapshots are generated using
computational fluid dynamics (CFD) simulation software via
the OpenFOAM platform. The simulation time for a typical
case, consisting of 39600 finite volumes, is 26742 sec on a
compute node with 10 CPUs each with the maximum clock
speed of 3.00 GHz. We divide the data into training and
testing sets; to make the problem harder, we choose one
training set and multiple test sets in the locality of the training
data. The training set is generated with initial conditions
251 K and 0 m/s to replicate a common real-world condition
for quiescent rooms. The sampling time for collecting the
snapshots is chosen to be 0.5 s, in accordance with the
Nyquist-Shannon sampling theorem. Furthermore, we verify
via numerical simulations that such a sampling time is much
smaller than the initial transients for both temperature and
velocity fields to ensure that the collected snapshots capture
the relevant (e.g. fast velocity) dynamics. We set the time
horizon of simulations to be long enough time to capture all
the dominant phenomena. The CFD simulations illustrate that
a time horizon of 1500 s is well beyond the settling times of
the relevant dynamics. The snapshots from CFD simulations
are then transferred to MATLAB for further analysis using
an intermediate C++ software.

Fig. 2 shows the training error for exact and randomized
DMDc. We note that the dimension of the full-order system,
nx = 118800. Both exact and randomized DMDc show
relative errors of order 10−3 which confirms that the model is
a good fit on the training set. As expected, we see a significant
decrease in the computational time required to compute Â
and B̂ using randomized DMDc, compared with DMDc, for
the same target rank of rx = 100 states: the decrease is
≈ 100×. It remains to show that the model does not over-fit,
that is, we have good generalization capabilities.

Since the system of interest is nonlinear, we need to ensure
that our model performs well when the initial conditions
are local, but not composed heavily of training set data.
Concretely, we validate the model against CFD simulated tra-
jectories generated from different initial conditions. Figure 3
shows the relative error for three unique initial conditions
chosen either randomly within 10% of the initial conditions
for the training set or initial conditions that are solutions
to the 2-D Boussinesq equations. The latter is achieved by
first solving (1) with given input and then at the end of
time horizon, for which steady state is reached, we set the
input to zero and let the velocity and temperature evolve
freely in the domain for a given time toff . Physically, such
initial conditions mimic the environment in the room when
the air conditioner is off for a certain period of time and
then it is turned on. As shown in Fig. 3, for these three
initial cases, the relative error is consistently small (less
than 0.25), demonstrating the potential of our proposed



Fig. 2. Relative training error % over 1500 s for models constructed using
exact (black continuous line) and randomized DMD (red dashed line).

system identification approach for locally reconstructing the
dynamics for the challenging case of a turbulent flow.

Fig. 3. Relative testing error % for the exact and randomized DMDc models
against CFD simulations generated from multiple unique initial conditions.

The Reynolds number, Re, is a non-dimensional scalar
that quantifies the impact of input, that is, the air conditioner
velocity, on the built environment. To assess the robustness
of the identified model to changes in input conditions, we
compare the exact DMDc predictions with that of CFD
corresponding to Re values that are different from the trained
data. Fig. 4 shows that the testing error is reasonably small
when the Reynolds number is either increased by 10% or
15% more than the nominal value. When the Reynolds
number is deviated significantly, e.g. ≥ 50% compared to
Re used in the trained data, the reconstruction error becomes
large and unbounded, that is, it increases with time. This is
justified because the DMDc is a local model approximation

and more data needs to be used for DMDc constructed in
order to extrapolate to Re far from the training set.

Fig. 4. Relative testing error % for various Reynolds numbers.

Fig. 5. Comparison between Kalman and H∞ filters for reconstruction
of temperature and velocity in presence of disturbances on the wall from
multiple initial conditions for the estimators. [A] Temperature estimates at
a fixed location in the environment. [B] Velocity magnitude estimates at a
fixed location in the environment. [C] Error norm of temperature over all
locations in the environment. [D] Error norm of velocity magnitude over all
locations in the environment.

B. Results for Robust Estimation

We now present our results on robust estimation using the
identified system in the presence of uncertainties. As before,
for generating output data the measured output y, we use
CFD simulations from the case with initial condition obtained
after a long toff . Figure 5 shows the estimated temperature
and velocity at one point in the built environment when the
estimator is initialized with 20 random initial conditions such



that the estimated temperature and velocity initial conditions
are extracted from the interval [242 K, 260 K] and [0.03 m/s,
0.57 m/s], respectively; such a range is architecturally rele-
vant for ventilation in buildings exemplified by Fig. 1. The
uncertainties w and v are generated with uniform random
noise seeds with finite support; thus, w and v are bounded
and have no useful stochastic prior information associated
with them.

We compare the performance of two robust estimators in
Fig. 5. The subplots [A] and [B] show the effect of robust
estimation on temperature and velocity at a location in the
environment, as mentioned before. It is clear that the H∞
observer converges faster to a small neighborhood of the data
than the Kalman filter. In fact, for the velocity estimation
problem, the Kalman filter does not enter a 5% settling zone
even after 800 s. Conversely, the H∞ observer exhibits better
estimation properties after 500 s. The mean and standard
deviation of the estimation errors of the two robust estimators
are shown in the subplots [C] and [D] in Fig. 5. This
illustrates further that the rate of decay of the H∞ observer
to the steady-state offset is faster than the Kalman Filter.
Not only is the decay faster, but the standard deviation is
tighter for the H∞ observer, indicating improved robustness.
This behavior is not entirely unexpected: as explained in
Section IV-A, since the underlying assumptions made on
the Kalman filter do not always conform to uncertainties
seen in building systems, whereas an L2 assumption on the
uncertainty is more common since the uncertainty signals
have finite energy and typically vanish after finite time. For
example, thermal noise on the walls as an effect of incident
solar energy is going to exhibit bounded energy and vanish
after sunset and its characteristics depend on the wall whose
material composition may be unknown and other temporal
factors that are difficult to characterize.

VI. CONCLUSIONS

The problem of estimating fully turbulent flows, described
by Boussinesq equations (1) is studied in presence of uncer-
tainties such as disturbance inputs on walls and unmodeled
dynamics. Due to the large-scale system at hand, which
are in turn result of discretized PDEs, a dynamic mode
decomposition method is used for identifying a reduced-
order state-space model that enables estimator design. An
advantage of our proposed approach is that the model is
constructed directly from data, and does not require the direct
solution of Boussinesq equations which would make the
problem intractable on-line due to scalability issues. Based on
the DMDc model, we construct robust estimators and demon-
strate the effectiveness of H∞ observers over Kalman filters
when the underlying sufficient statistics of the disturbance
inputs are unknown; this is expected for buoyancy-driven
flows since disturbance inputs rarely conform to common
probability density functions. Our proposed approach can
also be used in a wide range of applications involving
large-scale systems that exhibit turbulent flows such as drag
reduction in aerospace systems and wind energy systems.
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