
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Time-Varying Continuous-Time Optimization with
Pre-Defined Finite-Time Stability

Romero, Orlando; Benosman, Mouhacine

TR2020-088 July 01, 2020

Abstract
In this paper we propose a new family of continuous-time optimization algorithms based on
discontinuous second order gradient optimization flows, with finite-time convergence guaran-
tees to local optima, for locally strongly convex (time-varying) cost functions. To analyze
our flows, we first extend a well-know Lyapunov inequality condition for finite-time stability,
to the case of (time-varying) differential inclusions. We then prove the convergence of these
second-order flows in finite-time. In some particular cases, we can show that the finite-time
convergence can be pre-defined by the user. We propose a robustification of the flows to
bounded additive uncertainties, and extend some of the results to the case of constrained op-
timization. We show the performance of these flows on well-know optimization benchmarks,
namely, the Rosenbrock function, and the Rastringin function.

International Journal of Control

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in
whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all
such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric
Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all
applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require
a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Copyright c© Mitsubishi Electric Research Laboratories, Inc., 2020
201 Broadway, Cambridge, Massachusetts 02139

Time-Varying Continuous-Time
Optimization with Pre-Defined
Finite-Time Stability

Orlando Romero† Mouhacine Benosman‡

ARTICLE HISTORY

Compiled April 13, 2020

ABSTRACT
In this paper we propose a new family of continuous-time optimization algorithms
based on discontinuous second order gradient optimization flows, with finite-time
convergence guarantees to local optima, for locally strongly convex (time-varying)
cost functions. To analyze our flows, we first extend a well-know Lyapunov inequality
condition for finite-time stability, to the case of (time-varying) differential inclusions.
We then prove the convergence of these second-order flows in finite-time. In some
particular cases, we can show that the finite-time convergence can be pre-defined by
the user. We propose a robustification of the flows to bounded additive uncertainties,
and extend some of the results to the case of constrained optimization. We show
the performance of these flows on well-know optimization benchmarks, namely, the
Rosenbrock function, and the Rastringin function.

1. Introduction

In continuous-time optimization, an ordinary differential equation (ODE) or a partial
differential equation (PDE) is designed in such a way that its solution convergences
over time to an optimal value of the cost function. There has been a recent surge in
research papers in this direction, arguably starting with the pioneer work by Brockett,
in Brockett (1988), e.g., Ariyur & Krstić (2003); (2015); Attouch et al. (2015, 2018);
Cortes (2006); Faybusovich (1991); Franca et al. (2019a,b); Franka et al. (2018); Guay&
Zhang (2003); Grushkovskaya et al. (2018); Helmke & Moore (1996); Krstić (2000);
Poveda & Teel (2017); Scieur et al. (2017); Scheinker & Krstić (2016); Su et al. (2016);
Wang & Elia (2011); Wang & Lu (2017); Wilson et al. (2016); Wang & Elia (2010);
Zhang & Ordónez (2012); Zhang et al. (2018), Grune & Karafyllis (2013); Karafyllis
& Krstic (2017); Karafyllis (2014)

An important class of continuous optimization algorithms are the so-called ex-
tremum seeking (ES) controllers, which deal with static cost functions, as well as dy-
namic cost functions, modeled as the output of a dynamical system. Most importantly,
ES algorithms are often based only on the cost function measurements, i.e., zero-order
optimization methods, whereas the higher order derivatives of the cost function, e.g.,
gradient and Hessian, are estimated from the cost function measurements using feed-

†Department of Industrial and Systems Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA,

E-mail: rodrio2@rpi.edu.
‡Mitsubishi Electrics Research Laboratories, Cambridge, MA 02139, USA, E-mail: m benosman@ieee.org.

back filters, e.g., Ariyur & Krstić (2003); Guay& Zhang (2003); Grushkovskaya et
al. (2018); Krstić (2000); Poveda & Teel (2017); Scheinker & Krstić (2016); Zhang
& Ordónez (2012). Since we are not considering zero-order methods in this work, we
will not discuss specifically ES results, and we will focus on the more general class of
continuous-optimization algorithms, including higher order methods.

For instance, in Su et al. (2016), the authors derive a second-order ODE as the
limit of Nesterov’s accelerated gradient method, when the gradient step sizes go to
zero. This ODE is then used to attempt to analyze Nesterov’s scheme, particularly
in an larger effort to better understand acceleration without substantially increasing
computational burden. Thanks to the ODE continuous-time approximation of the
algorithm, the authors also obtain a family of schemes with similar convergence rates
as Nesterov’s algorithm.

In Franka et al. (2018), The differential equations that model the continuous-time
limit of the sequence of iterates generated by the alternating direction method of
multipliers (ADMM), are derived. Then, the authors employ Lyapunov theory to an-
alyze the stability of critical points of the dynamical systems and to obtain associated
convergence rates.

In Franca et al. (2019a), non-smooth and linearly constrained optimization prob-
lems are analyzed by deriving equivalent (at the limit) non-smooth dynamical systems
related to variants of the relaxed and accelerated ADMM. In particular, two new
ADMM-like algorithms are proposed, one based on Nesterov’s acceleration and the
other inspired by Polyak’s heavy ball method, and derive differential inclusions mod-
eling these algorithms in the continuous-time limit. Using a non-smooth Lyapunov
analysis, results on rate-of-convergence are obtained for these dynamical systems in
the convex and strongly convex setting.

In Franca et al. (2019b), the authors study the crucial problem of structure-
preserving discretizations of continuous-time optimization flows. More specifically, the
authors focus on two classes of conformal Hamiltonian systems whose trajectories lie
on a symplectic manifold, namely a classical mechanical system with linear dissipation
and its relativistic extension. One of the most noticeable claims in this paper is that
conformal symplectic integrators can preserve convergence rates of the continuous-time
system up to a negligible error. As a by product of this, the authors show that the
classical momentum method is a symplectic integrator. Finally, a relativistic general-
ization of classical momentum called relativistic gradient descent is introduced, and it
is argued that it may result in more stable/faster optimization for some optimization
problems.

In Cortes (2006), two normalized first-order gradient flows are proposed. Their
convergence is rigorously analyzed using tools from non-smooth dynamics theory, and
conditions guaranteeing finite-time convergence are derived. Finally, the proposed non-
smooth flows are applied to problems in multi-agent systems and it is shown they
achieve consensus in a finite-time. The finite convergence time’s upper bound is given
as function of the gradient value at the initial point as well as the minimum eigenvalue
of Hessian at the initial point.

More recently, in Poveda & Li (2019), the authors establish uniform asymptotic
stability and robustness properties for the continuous-time limit of the Nesterov’s
accelerated gradient method, by using resetting mechanisms that are modeled by well-
posed hybrid dynamical systems.

In Karafyllis & Krstic (2017); Karafyllis (2014), the authors propose a new family of
dynamical systems to solve several nonlinear programing (NLP) problems. Feedback
stabilization methods are used for the explicit construction of interior-point dynam-

2

ical NLP solvers in Karafyllis (2014), and exterior-point dynamical NLP solvers in
Karafyllis & Krstic (2017). These dynamical systems are derived from an extension
of the control Lyapunov function methodology, based on new extensions of LaSalle’s
theorem. The cases of equality as well as inequality constraints are treated, and the
proposed flows are proven to lead to asymptotic, and in some cases exponential, con-
vergence results to strict local minima.

In this work, we want to focus on the specific class of continuous-time optimization
algorithms with finite-time convergence, for static as well as time-varying cost func-
tions. We propose a new family of discontinuous second-order flows, which guarantee
local convergence to an optimum, in a desired pre-defined finite-time. We use some
ideas from Lyapunov-based finite-time state control to an invariant set, proposed by
one of the current authors in an early paper Benosman & Lum (2009), in the context of
aerospace applications, to design a new family of discontinuous flows, which ensure a
desired finite-time convergence to the invariant set containing a unique local optima.
Furthermore, due to the discontinuous nature of the proposed flows, we propose to
extend one of the existing Lyapunov-based inequality condition for finite-time con-
vergence of continuous-time dynamical systems, to the case of differential inclusions.
We also propose a robustification of these flows w.r.t. time-varying bounded additive
uncertainties. Finally, we extend part of the results to the case of constrained optimiza-
tion, by using some recent results from barrier Lyapunov functions control theory, e.g.,
Liu & Tong (2016); Yang et al. (2019). The proposed continuous-time optimization
algorithms are tested on well-known optimization testbeds, namely, the Rosenbrock
function, and the Rastringin function.

This paper is organized as follows: Section 2 is dedicated to recalling some prelim-
inaries about continuous-time optimization and finite-time stability in the context of
differential inclusions. Our main results are presented in Section 3, where we first es-
tablish an extension to (time-varying) differential inclusions of a well-know Lyapunov-
based inequality condition for finite-time stability. We then propose and analyze our
second-order discontinuous flows, including a flow for time-varying cost functions, and
its robustification w.r.t. additive uncertainties. Finally, we extend these results to the
case of constrained optimization, using ideas from barrier Lyapunov function control
theory. In Section 4, we show the efficiency of this continuous-time optimization flow on
some well established optimization benchmarks. The paper ends with a summarizing
conclusion and a discussion of our ongoing investigations, in Section 5.

2. Preliminaries

Consider an unconstrained nonlinear optimization problem of the form

minimize
x∈Rn

f(x), (1)

where f : Rn → R is the nonlinear objective function. One of the most popular
numerical schemes to solve (1) is through the gradient descent algorithm, given by

xk+1 = xk + ηk∇f(xk), (2)

for k ∈ Z+ = {0, 1, 2, . . .}, where ∇(·) denotes the gradient operator and ηk > 0
denote the step sizes (also known as the learning rate), which are usually chosen as

3

small values. It is well-known that, provided that the objective function is sufficiently
regular (e.g. twice continuously differentiable), the initial approximation x0 ∈ Rn is
sufficiently close to a sufficiently regular local minimizer (e.g. strict local minimum
and isolated stationary point), and the step sizes are sufficiently small (e.g. smaller
than the inverse of a Lipschitz constant of the gradient of f), then the sequence {xk}
given by (2) will converge to that local minimum under a sublinear convergence rate.

The autonomous (time-invariant) state-space dynamical system known as the gra-
dient flow, given by

ẋ(t) = −∇f(x(t)) (3a)

x(0) = x0, (3b)

serves as a “smoothed” continuous-time variant of the gradient descent algorithm (2).
From now on, the independent time variable t will be left implicit in x(t), except when
it could lead to ambiguity. Convergence of (3a) can be established by proving that suffi-
ciently regular local minima are locally assymptotically stable equilibria of the dynam-
ical system. This, in turn, can be readily done through a suitable Lyapunov function
such as V (x) = 1

2‖x− x
?‖2, V (x) = f(x)− f(x?) or V (x) = 1

2‖∇f(x)‖2, where x? = 0
denotes one of the aforementioned local minima, e.g., Benosman & Lum (2009); Cortes
(2006).

2.1. Filippov Differential Inclusion for Time-Invariant Systems

First recall that a solution to an initial value problem

ẋ(t) = F (x(t)) (4a)

x(0) = x0 (4b)

with F : Rn → Rn can only be garanteed to exist and be unique if F (·) is
Lipschitz continuous. When F (·) is not Lipschitz continuous (e.g. due to singulari-
ties or discontinuities), but nevertheless assuming it to be Lebesgue measurable and
locally essentially bounded, we understand (4a) as the differential inclusion

ẋ(t) ∈ K[F](x(t)), (5)

almost everywhere (a.e.) in t ≥ 0, with x(·) absolutely continuous. More precisely,
K[F](·) denotes the Filippov set-valued map Paden & Sastry (1987) given by

K[F](x)
def
=
⋂
δ>0

⋂
µ̃(S)=0

co(F (Bδ(x) \ S)), (6)

where µ̃(·) denotes the Lebesgue measure and co(·) the convex closure (i.e. closure of
the convex hull). In Theorem 1 of Paden & Sastry (1987), the authors proved that, if
F is locally bounded, then (11) can be computed as

K[F](x) =

{
lim
k→∞

F (xk) : xk 6∈ NF ∪ S, xk → x

}
(7)

4

for some set NF ⊂ Rn of measure zero and any other set S ⊂ Rn of measure zero. In
particular, if F is continuous at a fixed x, then K[F](x) = {F (x)}. For instance, for the
gradient flow (3a) we have K[−∇f](x) = {−∇f(x)} for every x ∈ Rn, provided that
f is continuously differentiable. Furthermore, if f is only Lipschitz continuous, then
K[−∇f](x) = −∂f(x), where ∂f(·) denotes Clarke’s generalized gradient; see Clarke
(2001).

2.1.1. Finite-Time Stability for Time-Invariant Differential Inclusions

Consider a general differential inclusion Bacciotti & Ceragioli (1999)

ẋ(t) ∈ K(x(t)) (8a)

x(0) = x0 (8b)

where K : Rn → 2R
n

is a set-valued map 1, assumed to be upper semi-continuous with
compact and convex values. In Filippov & Arscott (1988), the authors proved that
K(·) = K[F](·) is indeed upper semi-continuous, with nonempty, compact, and convex
values.

We say that x : [0, τ] → Rn with τ > 0 is a solution to (8) if x(·) is absolutely
continuous on any closed subinterval of [0, τ], (8a) is satisfied a.e. in t ∈ [0, τ], and
x(0) = x0. We say that x? ∈ Rn is an equilibrium of (8) if x(t) = x? on some small
enough non-degenerate interval is a solution to (8). In other words, if and only if
0 ∈ K(x?).

We say that an equilibrium point x? ∈ Rn of (8) is Lyapunov stable if for every ε > 0
there exists δ > 0 such that, for every solution x(·) of (8), we have ‖x0− x?‖ < δ =⇒
‖x(t)− x?‖ < ε for every t ≥ 0 in the interval where x(·) is defined. Furthermore, we
say that x? ∈ Rn is (locally) asymptotically stsble if it is Lyapunov stable and there
exists some δ > 0 such that, for every solution x(·) of (8), if ‖x0 − x?‖ < δ then x(t)
will converge to x?. Finally, x? ∈ Rn is said to be (locally) finite-time stable if it is
asymptotically stable and there exists some δ > 0 and T : Bδ(x

?)\{x?} → (0,∞) such
that, for every solution x(·) of (8) with x0 ∈ Bδ(x?)\{x?}, we have x(t) ∈ Bδ(x?)\{x?}
for every t ∈ [0, T (x0)) and x(t)→ x? as t→ T (x0).

2.2. Filippov Differential Inclusion for Time-Variant Systems

Similarly to the time-invariant case, a solution to an initial value problem

ẋ(t) = F (t, x(t)) (9a)

x(0) = x0 (9b)

with F : R+ × Rn → Rn is typically guaranteed to exist and be unique by ensuring
that F (·, x) is continuous near x = x? and F (t, ·) is Lipschitz continuous near t = 0.
When F (t, ·) is not Lipschitz continuous (e.g. due to singularities or discontinuities),
we understand solutions to (9a) in the sense of Filippov. More precisely, x : [0, τ)→ Rn
with 0 < τ ≤ ∞ is a Filippov solution to (9) if it is absolutely continuous, x(0) = x0,
and

ẋ(t) ∈ K[F](t, x(t)) (10)

12X denotes the power set of a set X

5

holds almost everywhere (a.e.) within every compact subinterval of [0, τ), where K[F]
denotes the Filippov set-valued map Cortes (2008); Paden & Sastry (1987) given by

K[F](t, x) ,
⋂
δ>0

⋂
µ(S)=0

coF (t, Bδ(x) \ S), (11)

where µ denotes the Lebesgue measure and co the convex closure. Furthermore, x(·) :
[0, τ)→ Rn is a maximal Filippov solution if it cannot be extended, i.e. if no Filippov
solution exists over an interval [0, τ ′) with τ ′ > τ .

Assumption 1. F is Lebesgue measurable and locally essentially bounded, i.e. given
any (t, x), F is bounded a.e. on every bounded neighborhood of (t, x).

Under Assumption 1, at least one Filippov solution to (9) must exist Cortes (2008);
Paden & Sastry (1987). Furthermore, the Filippov set-valued map (11) can be com-
puted as

K[F](t, x) = co

{
lim
k→∞

F (t, xk) : NF ∪ S 63 xk → x

}
(12)

for some set NF ⊂ Rn of measure zero and any other set S ⊂ Rn of measure zero. In
particular, if F (t, ·) is continuous at a fixed point x, then K[F](t, x) = {F (t, x)}. For
instance, for the gradient flow, we have K[−∇f](t, x) = {−∇f(x)} for every x ∈ Rn,
provided that f is continuously differentiable. Furthermore, if f is only Lipschitz con-
tinuous, then K[−∇f](t, x) = −∂f(x), where ∂f denotes Clarke’s generalized gradi-
ent Clarke (2001).

2.2.1. Finite-Time Stability for Time-Variant Differential Inclusions

Consider a general time-varying differential inclusion Bacciotti & Ceragioli (1999)

ẋ(t) ∈ K(t, x(t)) (13a)

x(0) = x0 (13b)

where K : R+ × Rn ⇒ Rn is an arbitrary set-valued map.

Assumption 2. K : R+ × Rn ⇒ Rn is an upper semi-continuous set-valued map,
with nonempty, compact, and convex values.

For instance, in Filippov & Arscott (1988) the authors proved that, under Assump-
tion 1, K = K[F] satisfies Assumption 2.

We say that x : [0, τ) → Rn with 0 < τ ≤ ∞ is a Carathéodory solution to (13) if
x(·) is absolutely continuous on any closed subinterval of [0, τ), (13a) is satisfied a.e.
within every compact subinterval of [0, τ), and x(0) = x0.

Proposition 1. Under Assumption 2, at least one Carathéodory solution to (13) must
exist. In particular, under Assumption 1, at least one Filippov solution to (9) must
exist.

We say that x : [0, τ)→ Rn is a maximal Carathéodory solution of (13) if it cannot
be extended, i.e. if no solution exists over an interval [0, τ ′) with τ ′ > τ . In particular,

6

(maximal) Filippov solutions to (9) are nothing but (maximal) Carathéodory solutions
to the Filippov differential inclusion (10) with initial condition x(0) = x0.

Furthermore, we say that x? ∈ Rn is an equilibrium of (13) if x(t) ≡ x? over
(0,∞) is a Carathéodory solution to (13). In other words, if 0 ∈ K(t, x?) holds a.e. in
t ≥ 0. We say that (13) is (strongly) Lyapunov stable at x? ∈ Rn if, for every ε > 0,
there exists δ > 0 such that, for every Carathéodory solution x(·) of (13), we have
‖x0 − x?‖ < δ =⇒ ‖x(t) − x?‖ < ε for every t ≥ 0 in the interval where x(·) is
defined. Furthermore, we say that (13) is (locally and strongly) asymptotically stable
at x? ∈ Rn if it is Lyapunov stable at x? and there exists some δ > 0 such that every
maximal Carathéodory solution x(·) to (13) is defined over [0,∞) and, if ‖x0−x?‖ < δ
then x(t)→ x? as t→∞. Finally, we say that (13) is (locally and strongly) finite-time
stable at x? ∈ Rn if it is asymptotically stable at x? and there exist some δ > 0 and
positive definite function (w.r.t. x?) T : Bδ(x

?)→ R+ (called the settling time) such
that, for every Carathéodory solution x(·) of (13) with x0 ∈ Bδ(x?) \ {x?}, we have
x(t) ∈ Bδ(x?) \ {x?} for every t ∈ [0, T (x0)) and x(t)→ x? as t→ T (x0)

3. Main results

To establish finite-time stability, first we will propose an extension to the case of (time-
variant) differential inclusions of a well-know Lyapunov-based result for the case of
systems of the form (9), with Lipschitz continuous flow F (.), e.g., see (Lemma 1 in
Benosman & Lum (2009)). Next, we will use these results to analyze the stability of
our discontinuous gradient-like flows for continuous-time optimization.

Theorem 1 (Finite-time stability condition for time-invariant differential inclusions).
Let x? ∈ Rn be an equilibrium point of (8) and let V : D → R be a continuously
differentiable and positive definite function w.r.t. x?, where D ⊂ Rn is an open and
positively invariant neighborhood of x?. Suppose that K(x) is nonempty a.e. in x ∈ D.
Let

V̇ (x) = {∇V (x) · v : v ∈ K(x)}, ∀t > 0, ∀x ∈ D (14)

If there exist constants c > 0 and α ∈ (0, 1) such that

sup V̇ (x) ≤ −c[V (x)]α (15)

a.e. in x ∈ D, then x(t)→ x? in finite-time for every solution x(·) of (8) with x0 ∈ D,
and the settling time t? is upper bounded by

t? ≤ V (x0)1−α

c(1− α)
. (16)

Furthermore, if V̇ (x) contains a single point a.e. in x ∈ D and (15) is exact, then so
is (16).

Proof 1. Since V is continuously differentiable, then V̇ (x) = {∇V (x) ·v : v ∈ K(x)}.
Therefore, a.e. in x ∈ D, we have

∇V (x) · v ≤ −c V (x)α (17)

7

for every v ∈ K(x). In particular, given a solution x(·) of (8) with x(0) = x0 ∈ D, we
have x(t) ∈ D, and thus

∇V (x(t)) · ẋ(t) ≤ −c V (x(t))α (18)

a.e. in t ≥ 0. Notice that, since x(·) is absolutely continuous and V (·) is continuously
differentiable (and thus Lipschitz continuous), then the composition t 7→ V (x(t)) is
absolutely continuous as well. Therefore, (18) can be rewritten as

d

dt

[
V (x(t))1−α

1− α

]
≤ −c (19)

a.e. in t ≥ 0. Therefore, integrating (19), we find that

V (x(t))1−α

1− α
− V (x0)1−α

1− α
≤ −ct (20)

everywhere in t ≥ 0 (not just a.e.). The result follows by setting x(t?) = x? and
rearranging the terms. Finally, in the case of V̇ (x) containing a single point a.e. in
x ∈ D and (15) being exact, then (17) through (20) are exact as well, which leads
to (16) being exact.

We will now consider time-varying differential inclusions (13).

Theorem 2 (Finite-time stability condition for time-variant differential inclusions).
Let x? ∈ Rn be an equilibrium point of (13) and let V : R+ × D → R be a continu-
ously differentiable and positive definite function w.r.t. x?, where D ⊂ Rn is an open
and positively invariant neighborhood of x?. Suppose that K(t, x) = K[F (t, ·)](x) is
nonempty for every x ∈ D. Let

V̇ (t, x)
def
=

{
∂V

∂t
(t, x) +∇V (t, x) · v : v ∈ K(t, x)

}
(21)

for t ≥ 0 and x ∈ D, where ∇V (t, x) denotes the gradient of V (t, x) w.r.t x. If there
exist constants c > 0 and α ∈ (0, 1) such that

sup V̇ (t, x) ≤ −c[V (t, x)]α (22)

a.e. in t ≥ 0 and x ∈ D, then x(t)→ x? in finite-time for every solution x(·) of (13)
with x0 ∈ D, and the settling time t? is upper bounded by

t? ≤ V (0, x0)1−α

c(1− α)
. (23)

Furthermore, if V̇ (t, x) contains a single point a.e. in x ∈ D and (22) is exact, then
so is (23).

Proof 2. The proof follows the same basic reasoning of the proof conducted for Theo-
rem 1. Indeed, since t 7→ V (t, x(t)) is absolutely continuous (Appendix, Lemma 3) due

8

to V (·) being continuously differentiable, from (22) we note that

d

dt
V (t, x(t)) ≤ −cV (t, x(t))α, (24)

a.e. in t ≥ 0, for every solution x(·) of (13). The rest of the proof follows by integrating
and setting x(t?) = x?.

We will now present a general inequality condition for time-varying flows as in (13),
to design finite-time optimization dynamics. Subsequently, we will introduce several
flows that satisfy this condition.

First, let us state a basic assumption on the cost function.

Assumption 3. f : R+ × Rn → R is twice continuously differentiable in both vari-
ables, with f(t, .) strongly convex (respectively, strongly concave) in a convex open
set D ⊂ Rn, and xopt : R+ → D s.t., for each t, xopt(t) is a strict local minimizer
(respectively, maximizer) and isolated stationary point of f(t, ·).

Proposition 2. Under Assumption 3, any Filippov solution x(·) of (13), where F
satisfies the condition

∂‖∇f(t, x)‖2

∂t
+ 2∇f(t, x)T [∇2f(t, x)]F (t, x) ≤ −c‖∇f(t, x)‖2α, (25)

with c > 0, α ∈ (0, 1), for all t ≥ 0 and x ∈ D, with x(0) = x0 sufficiently close to
xopt(t) for a given t ≥ 0, will converge in finite-time to xopt(.) with a settling time

t? ≤ ‖∇f(0,x0)‖2(1−α)

c(1−α) .

Proof 3. The proof relies on using the results of Theorem 2 with the Lyapunov func-
tion

V (t, e) = ‖∇f(t, e+ xopt(t))‖2, (26)

where e = x−xopt(t) defines the tracking error. Indeed, if we compute the time deriva-
tive of (26) along the solutions of (13), we can write2

supV̇ (t, e) = sup{∂V (t,e)
∂t + ∂V (t,e)

∂e v, : v ∈ K(t, e)}
= ∂‖∇f(t,e+xopt(t))‖2

∂t + 2∇f(t, e+ xopt(t))T [∇2f(t, e+ xopt(t))]ė

= ∂‖∇f(t,e+xopt(t))‖2
∂t + 2∇f(t, e+ xopt(t))T [∇2f(t, e+ xopt(t))](ẋ− ẋopt)

= ∂‖∇f(t,x)‖2
∂t + 2∇f(t, e+ xopt(t))T [∇2f(t, e+ xopt(t))](ẋopt)

+2∇f(t, e+ xopt(t))T [∇2f(t, e+ xopt(t))](ẋ− ẋopt)
= ∂‖∇f(t,x)‖2

∂t + 2∇f(t, x)T [∇2f(t, x)]F (t, x),
(27)

which together with (22) leads to the condition (25), and the finite-time convergence
result follows from the statement of Theorem 2.

2In the remaining of this paper, for simplicity, we will not repeat the exact set definition of V̇ (t, x) as introduced

in (21). Indeed, in this paper the sets K(t, e) are all defined as singletons K(t, e) = {F (t, e+ xopt)− ẋopt} due
to the continuity of the flows F , a.,e., except at the optimal point, i.e., e = 0.

9

Remark 1. Condition (25) is in the form of a PDE inequality, and hence is difficult
to solve numerically. However, we intend to use this condition to design a familly of
flows which satisfy it in closed-form, avoiding any need for numerical integration of
the PDE inequality itself.

We are ready to propose some optimization flows which satisfy the general condition
of Proposition 2. The first family of flows is in the form of Newton-like discontinu-
ous flows with pre-defined finite settling time, for static cost function optimization.
These flows are then extended to the case of time-varying cost function. Finally, a
robustification of the flows is proposed, for the case of bounded additive uncertainties.

Assumption 4. f : Rn → R is twice continuously differentiable, with f(.) strongly
convex (respectively, strongly concave) in a convex open set D ⊂ Rn, and xopt ∈ D is
a strict local minimizer (respectively, maximizer) and isolated stationary point of f(·).

Proposition 3 (Family of flows for pre-defined finite-time optimization). Under As-
sumption 4, any Filippov solution x(·) of

ẋ = −‖∇f(x0)‖2(1−α)

2T (1− α)

‖∇f(x)‖2α

∇T f(x)[∇2f(x)]r+1∇f(x)
[∇2f(x)]r∇f(x), α ∈ [0.5, 1), r ∈ R

(28)
with x(0) = x0 sufficiently close to xopt will converge in finite-time to xopt with an
exact settling time t? = T .

Proof 4. Let D be an open neighborhood of xopt, where xopt is the only stationary point
of f and ∇2f(x) is positive definite for every x ∈ D (respectively, negative defnite for
every x ∈ D). Let V : D → R be given by V (x) = ‖∇f(x)‖2. Clearly, V is continuously
differentiable and positive definite w.r.t. xopt. Furthermore, if x ∈ D \ {xopt}, then

sup V̇ (x) = ∇V (x) ·

(
− ‖∇f(x0)‖2(1−α)

2T (1−α)
‖∇f(x)‖2α

∇T f(x)[∇2f(x)]r+1∇f(x) [∇2f(x)]r∇f(x)

)
= −‖∇f(x0)‖2(1−α)

T (1−α)
‖∇f(x)‖2α

∇T f(x)[∇2f(x)]r+1∇f(x)∇
T f(x)[∇2f(x)]r+1∇f(x)

= −‖∇f(x0)‖2(1−α)

T (1−α) V (x)α.

(29)

The result follows by invoking Theorem 1.

Remark 2. Note that, in Proposition 3 we selected the parameter α ∈ [0.5, 1) ⊂ (0, 1),
the reason for this choice is to ensure that the flow remains bounded for all x ∈ Rn,
including at x = xopt. To see the boundedness of the right hand side of the flow (28)

with c = −‖∇f(x0)‖2(1−α)

2T (1−α) , we can write the following:

‖F (x)‖ = c‖∇f(x)‖2α ‖[∇2f(x)]r∇f(x)‖
∇f(x)>[∇2f(x)]r+1∇f(x)

≤ c‖∇f(x)‖2α λmax(∇2f(x))r‖∇f(x)‖
λmin(∇2f(x))r+1‖∇f(x)‖2

≤ c λmax(∇2f(x))r

λmin(∇2f(x))r+1
‖∇f(x)‖2α−1,

(30)

which is bounded for 2α − 1 ≥ 0, the upper-bound on α, i.e., α < 1 is still needed to

10

ensure the finite-time convergence result.
In practical implementation, if we want to keep all the remaining range of α, i.e.,

α ∈ (0, 0.5), we could simply add a regularization term in the flow (28) , as ẋ =

−‖∇f(x0)‖2(1−α)

2T (1−α)
‖∇f(x)‖2α

ε+∇T f(x)[∇2f(x)]r+1∇f(x) [∇2f(x)]r∇f(x), where ε ∈ R is a very small

non-zero scalar term, used to regularize the flow when x → x∗.Theoretically, this
implementation ‘fix’ will simply change the finite-time convergence, to a finite-time
practical convergence, i.e., convergence to an ε-neighborhood of x∗.

Next, we extend this results to the case of time-varying cost function, i.e., a func-
tional optimization problem.

We first introduce the following assumption.

Assumption 5. Let f : R+ × Rn → R be twice continuously differentiable, in both
variables, let xopt : R+ → D s.t., for each t, xopt(t) be a strict local optima and isolated
stationary point of f(t, ·), where D ⊂ Rn is an open set s.t. xopt(t) ∈ D, ∀t ≥ 0. Then,
there exists a continuous function l : R+ × Rn → R, such that

‖ ∂
∂t

[∇f(t, x)]‖ ≤ l(t, x),∀t ≥ 0, ∀x ∈ D. (31)

Proposition 4 (Discontinuous flow for finite-time time-varying optimization). Let
f : R+ × Rn → R be twice continuously differentiable, in both variables, let xopt :
R+ → D s.t., for each t, xopt(t) be a strict local minimizer (respectively, maximizer)
and isolated stationary point of f(t, ·), where D ⊂ Rn is an open set s.t. xopt(t) ∈ D,
∀t ≥ 0. Consider the flow given by

ẋ = −1

2

[∇2f(t, x)]r∇f(t, x)

∇f(t, x)T [∇2f(t, x)]r+1∇f(t, x)

(
2l(t, x)‖∇f(t, x)‖+ c‖∇f(t, x)‖2α

)
, (32)

with c > 0, α ∈ [0.5, 1), r ∈ R, and where l : R+ × Rn → R satisfies Assumption
5. Then, under Assumption 3, any Filippov solution x(·) of (32), with x(0) = x0

sufficiently close to xopt(t) for a given t ≥ 0, will converge in finite-time to xopt(.) with

a settling time t? ≤ ‖∇f(0,x0)‖2(1−α)

c(1−α) .

Proof 5. Let us define the tracking error as e = x − xopt(t), we then consider the
Lyapunov function V (t, e) = ‖∇f(t, e+ xopt(t))‖2, and write its derivative as follows,
for e ∈ {x− xopt : x ∈ D} \ {0}:

sup V̇ (t, e) = ∂
∂t [∇f(t, e+ xopt(t))T∇f(t, e+ xopt(t))]

+ ∂
∂e [∇f(t, e+ xopt(t))T∇f(t, e+ xopt(t))]ė,

= ∂
∂t [∇f(t, e+ xopt(t))T∇f(t, e+ xopt(t))]

+2∇f(t, x)T [∇2f(t, x)](ẋ− ẋ∗(t)),
= ∂

∂t [∇f(t, x)T∇f(t, x)] + ∂
∂x [∇f(t, x)T∇f(t, x)]ẋ∗(t)

+2∇f(t, x)T [∇2f(t, x)](ẋ− ẋ∗(t))
= ∂

∂t [∇f(t, x)T∇f(t, x)] + 2∇f(t, x)T [∇2f(t, x)]ẋ,

(33)

11

next, by using (32), we can write

sup V̇ (t, e) = ∂
∂t [∇f(t, x)T∇f(t, x)]− 2l(t, x)‖∇f(t, x)‖ − c‖∇f(t, x)‖2α

≤ −c‖∇f(t, e+ xopt(t)‖2α = −cV (t, e)α,
(34)

which, by Theorem 2, leads to the desired finite-time convergence result.

Remark 3. Condition (31) might seem restrictive, however, it is an assumed upper-
bound on the norm of the partial derivative of the cost’s gradient function, which
could be precisely computed if the closed-form of the cost is known. Alternatively, it
can simply be selected as an arbitrarily large positive defined function, which enforces
this condition, e.g., a large positive constant can be used if no a-priori knowledge of
the cost function is available. This point will be demonstrated via numerical examples
in Section 4.

Remark 4. It is clear from equation (34) that if instead of using an upper-
bound l(t, x) of the norm of ∂

∂t [∇f(t, x)] in the flow (32), one uses the exact term

− ∂
∂t [∇f(t, x)T∇f(t, x)] , we can obtain an exact value of the finite-time convergence,

i.e., t∗ = ‖∇f(0,x0)‖2(1−α)

c(1−α) . However, this will not be very practical, since it is difficult

to be able to obtain the term ∂
∂t [∇f(t, x)T∇f(t, x)] in closed-form is any meaningful

application, and its numerical approximation will induce numerical errors, implying a
lack of robustness of this solution, since it is based on an exact cancellation of this
time-varying term.

3.1. Robustification of the flow w.r.t. additive time-varying uncertainties

First, we assume that residual computational errors can appear in the flow as bounded
additive uncertainties. We then propose to modify the flow, based on robust nonlinear
control, i.e., Lyapunov reconstruction technique, to reject the effect of these bounded
uncertainties, and regain the nominal finite-time stability.

Indeed, consider the flow (32) with additive uncertainties, as follows:

ẋ = −1

2

[∇2f(t, x)]r∇f(t, x)

∇f(t, x)T [∇2f(t, x)]r+1∇f(t, x)

(
2l(t, x)‖∇f(t, x)‖+ c‖∇f(t, x)‖2α

)
+ ε1(t, x),

(35)
with c > 0, α ∈ [0.5, 1), r ∈ R, and where the function ε1 : R+×Rn → R represents

bounded multiplicative uncertainties, which satisfies the following assumption.

Assumption 6. ε1 : R+ × Rn → R, satisfies ‖ε1(t, x)‖ ≤ ε̄1, ∀t > 0, ∀x ∈ Rn.

To compensate for the effect of ε1 in (35), we introduce an extra robustifying term
vrob(x) as follows

xopt
ẋ = −1

2
[∇2f(t,x)]r∇f(t,x)

∇f(t,x)T [∇2f(t,x)]r+1∇f(t,x)

(
2l(t, x)‖∇f(t, x)‖+ c‖∇f(t, x)‖2α + vrob(x)

)
+ε1(t, x), r ∈ R, c > 0, α ∈ [0.5, 1)

(36)
We then use Lyapunov reconstruction theory, e.g., Benosman & Lum (2010) to

design a robustifying term vrob which cancels the effect of the uncertainty ε1 on the
finite-time stability. This result is formalized in the following proposition.

12

Proposition 5 (Flow robustification w.r.t. bounded additive uncertainties). Let f :
R+×Rn → R be twice continuously differentiable, in both variables, let xopt : R+ → D
s.t., for each t, xopt(t) be a strict local minimizer (respectively, maximizer) and isolated
stationary point of f(t, ·), where D ⊂ Rn is an open set s.t. xopt(t) ∈ D, ∀t ≥ 0.
Consider the flow given by (36), where l satisfies Assumption 5, ε1 satisfies Assumption
6, and where vrob is given by

vrob(x) = −‖∇f(t, x)T [∇2f(t, x)]‖k, k ≥ ε̄1. (37)

Then, under Assumption 3, any Filippov solution x(·) of (36), with x(0) = x0 suffi-
ciently close to xopt(t) for a given t ≥ 0, will converge in finite-time to xopt(.) with a

settling time t? ≤ ‖∇f(0,x0)‖2(1−α)

c(1−α) .

Proof 6. Let us define the tracking error as e = x − xopt(t), we then consider the
Lyapunov function V (t, e) = ‖∇f(t, e+ xopt(t))‖2, and write its derivative as follows,
for e ∈ {x− xopt : x ∈ D} \ {0}:

sup V̇ (t, e) = ∂
∂t [∇f(t, e+ xopt(t))T∇f(t, e+ xopt(t))]

+ ∂
∂e [∇f(t, e+ xopt(t))T∇f(t, e+ xopt(t))]ė,

= ∂
∂t [∇f(t, e+ xopt(t))T∇f(t, e+ xopt(t))]

+2∇f(t, x)T [∇2f(t, x)](ẋ− ẋ∗(t)),
= ∂

∂t [∇f(t, x)T∇f(t, x)] + ∂
∂x [∇f(t, x)T∇f(t, x)]ẋ∗(t)

+2∇f(t, x)T [∇2f(t, x)](ẋ− ẋ∗(t))
= ∂

∂t [∇f(t, x)T∇f(t, x)] + +2∇f(t, x)T [∇2f(t, x)]ẋ,

(38)

Next, by using (36) and (37), we write

sup V̇ (t, e) = ∂
∂t [∇f

T∇f]− 2l(t, x)‖∇f(t, x)‖ − c‖∇f(t, x)‖2α + vrob(x)
+∇f(t, x)T [∇2f(t, x)]ε1(t, x),

≤ −c‖∇f(t, x)‖2α + vrob(x) + ‖∇f(t, x)T [∇2f(t, x)]‖ε̄1
≤ −c‖∇f(t, x)‖2α − ‖∇f(t, x)T [∇2f(t, x)]‖k + ‖∇f(t, x)T [∇2f(t, x)]‖ε̄1
≤ −c‖∇f(t, x)‖2α + ‖∇f(t, x)T [∇2f(t, x)]‖(−k + ε1)
≤ −c‖∇f(t, e+ xopt(t))‖2α = −cV (t, e)α,

(39)

which, by Theorem 2, leads to the desired finite-time convergence result.

3.2. Extension to Constrained Optimization

Consider a general constrained nonlinear optimization problem

minimize
x∈Rn

f(x)

subject to hj(x) ≥ 0, j = 1, . . . , p

gi(x) = 0, i = 1, . . . , e,

(40)

with f, h1, . . . , hp, g1, . . . , ge : Rn → R.

13

3.2.1. Static penalty barrier function formulation

First, a straightforward approach is to reformulate the constrained problem as an
approximate unconstrained problem using a static3 penalty formulation with barrier
function. For instance, we can define the auxiliary penalized cost function

fµ(x)
def
= f(x)− µ

p∑
j=1

log hj(x) +
1

2µ

i=e∑
i=1

g2
i (x) (41)

where µ > 0 denotes a penalty parameter. We then optimize fµ(x) using algorithms of
the form (28) for fµ(x). This formulation is well known to converge to a neighborhood
of a local minima for a small enough penalty parameter µ, e.g., Theorem 17.3, in
Nocedal & Wright (1999).

We formalize this result in the following proposition.

Proposition 6. Consider the optimization problem given by (40), where f : Rn → R
is twice continuously differentiable and let xopt ∈ Rn be a strict local solution of (40).
Then, under Assumption 4, any Filippov solution x(·) of (28), where fµ in (41) is
substituted for f , with x(0) = x0 sufficiently close to xopt will converge4 in finite-time
to xopt with a settling time t? = T , if µ→ 0.

Proof 7. The proof follows from the arguments of Theorem 17.3, in Nocedal & Wright
(1999), and the results of Proposition 3.

3.2.2. Exact barrier function formulation

In the case of strict inequality constraints only, a more exact solution5, follows ideas
form barrier Lyapunov functions, e.g., Liu & Tong (2016); Yang et al. (2019), where
we are interested in transforming, using an exact one-to-one mapping, the problem6

minimize
x∈Rn

f(x)

subject to hj(x) > 0, j = 1, . . . , p,
(42)

into an equivalent unconstrained optimization one, of the form

minimize
x̃∈Rn

f̃(x̃) (43)

via a change of variables x = ϕ(x̃) with ϕ : Rm → Ω and f̃ = f ◦ ϕ, where ◦ denotes
composition. Notice that, if f and T are twice continuously differentiable, then

∇f̃(x̃) = ∇(f ◦ ϕ)(x̃) = Jϕ(x̃)>∇f(ϕ(x̃)) (44)

3By static we mean using a constant penalty coefficient.
4In the sense of pointwise convergence w.r.t. µ.
5In contrast with an approximate static penalty formulation.
6Notice that we are only considering here strict inequality constraints, due to the exact change of variables,

which is not defined at the constraints’ boundaries.

14

and

∇2f̃ = J>ϕ (∇2f ◦ ϕ)Jϕ + [Im ⊗ (∇f ◦ ϕ)>]∇2ϕ, (45)

where Jϕ denotes the Jacobian matrix of T , Im denotes the m × m identity ma-

trix, ⊗ denotes the Kronecker product, and ∇2ϕ
def
=
[

∂2ϕ
∂x′i∂x

′
j

]
∈ Rmn×m. Suppose now

kerJϕ(x̃) = {0}, which clearly requires m ≤ n. This is precisely the definition of a
immersion in differential geometry7.

Assumption 7. ϕ : Rm → Ω is a twice continuously differentiable immersion.

Remark 5. Every (possibly local) diffeomorphism8 is an immersion.

Under Assumption 7, xopt ∈ Ω is an isolated stationary point of f if and only if every
x̃opt ∈ ϕ−1(xopt) is an isolated stationary point of f̃ , provided that ϕ is surjective. To
show this, we first state the following lemma.

Lemma 1. If Ω ⊆ Rn and ϕ : Rm → Ω is an immersion, then ϕ is locally injective9.

Proof 8. Refer to the Appendix Section.

Proposition 7. Let f : Rm → R be a continuously differentiable and ϕ : Rm → Ω
(Ω ⊆ Rn) a continuously differentiable immersion. Then, x̃opt ∈ Rm is an isolated
stionary point of f̃ if and only if ϕ(x̃opt) is an isolated stationary point of f .

Proof 9. We can choose ε > 0 small enough to ensure that x̃opt is the only stationary
point of f̃ in Bε(x̃

opt), and also that ϕ|Bε(x̃opt) : Bε(x̃
opt) → ϕ(Bε(x̃

opt)) is injective.

Since kerJϕ(x̃) = {0} for every x̃ ∈ Rm and ∇f̃(x̃) = Jϕ(x̃)>∇f(ϕ(x̃)), then x̃ ∈ Rm
is a stationary point of f̃ if and only if ϕ(x̃) is a stationary point of f . Therefore,
ϕ(x̃opt) is a stationary point of f . Furthermore, given any x ∈ ϕ(Bε(x̃

opt))\{ϕ(x̃opt)},
we’ll have x̃ 6= x̃opt, where x̃ = ϕ|−1

Bε(x̃opt)
(x), and thus x is not a stationary point of f .

Therefore, ϕ(x̃opt) is the only stationary point of f in the open set ϕ(Bε(x̃
opt)), and

thus it is an isolated stationary point.

Notice that if xopt is a strict local minimizer of f , then any x̃opt ∈ ϕ−1(xopt) is
also strict local minimizer of f̃ , since the first term in (45) is positive definite at x̃opt

and the second term vanishes, thus forcing ∇2f̃ to be positive definite in an open
neighborhood of x̃opt.

The construction of a suitable barrier function transformation ϕ(·), in order to
leverage our proposed Newton-like flows for unconstrained optimization problems,
needs to be done on a case by case basis, since ϕ(·) will be fundamentally dictated by
the constraints in (42).

7Let M and N be differentiable manifolds. Then, ϕ : M → N is an immersion if it is differentiable and its

differential (the Jacobian matrix for Euclidean spaces) is everywhere injective.
8Let M and N be differentiable manifolds. Then, ϕ : M → N is a local diffeomorphism if for every x ∈ M ,

there exists an open neighborhood V ⊆ M such that ϕ|V : V → ϕ(V) is differentiable, invertible, and has

differentiable inverse. In particular, ϕ : M → N is a diffeomorphism if it is differentiable, invertible, and has
differentiable inverse.
9Let M be a topological space. Then, ϕ : M → N is locally injective at x ∈ M if there exists an open

neighborhood V ⊆M of x such that ϕ|V : V → ϕ(V) is injective. Furthermore, ϕ : M → N is locally injective

if it is locally injective at every x ∈M .

15

Example: The case of box constraints
Consider the constrained optimization problem

minimize
x∈Rn

f(x)

subject to xi < xi < xi, i = 1, . . . , n
(46)

with xi, xi ∈ R such that xi < xi for every i = 1, . . . , n. To construct a suitable
transformation ϕ(·), we first recall the prototypical bijection between a bounded in-
terval and the entire real line: the tangent barrier function and its inverse, the arc-
tangent function. More precisely, recall that the tangent function defines a bijection
tan :

(
−π

2 ,
π
2

)
→ R with inverse tan−1 = arctan.

Using the arctangent function as a starting point, we can readily construct a bi-
jection between Rn and (x, x). To do this, the proposed mapping will consist of ap-
plying the arctangent function component-wise on x̃ ∈ Rm with m = n, and subse-
quently forcing that value, currently in

(
−π

2 ,
π
2

)n
, into (x, x), by applying the mapping

ψi(s)
def
=
(
s
π + 1

2

)
(xi − xi) + xi to its i-th component for i = 1, . . . , n. The affine maps

ψ1(·), . . . , ψn(·) are clearly invertible, as they have non-zero slope, and their inverses

are given by ψ−1
i (s) =

(
s−xi
xi−xi

)
π − π

2 for i = 1, . . . , n. Putting everything together,

we propose the barrier function ϕ : Rn → (x, x) given by ϕ(x̃) = (ϕ1(x̃1), . . . , ϕn(x̃n))

with ϕi
def
= ψi ◦ arctan : R → (xi, xi) for i = 1, . . . , n. Clearly, each ϕi is a smooth

diffeomorphism, and therefore so is ϕ. In other words, ϕ is smooth, invertible, and has
a smooth inverse given by ϕ−1(x) = (ϕ−1

1 (x1), . . . , ϕ−1
n (xn)) with ϕ−1

i = tan ◦ ψ−1
i :

(xi, xn)→ R for i = 1, . . . , n.

4. Numerical Examples

We will now test the proposed flows on some nonlinear cost functions.
We start by considering the Rosenbrock function f : R2 → R, which is given by

f(x1, x2) = (a− x1)2 + b(x2 − x2
1)2, (47)

with parameters a, b ∈ R. This function nonlinear and non-convex, but smooth. It
possesses exactly one stationary point (xopt1 , xopt2) = (a, a2) for b ≥ 0, which is a strict

global minimum for b > 0. If b < 0, then (xopt1 , xopt2) is a saddle point. Finally, if b = 0,
then {(a, x2) : x2 ∈ R} are the stationary points of f , and they are all non-strict global
minima.

We apply the proposed flow (28), with the coefficients α = 0.5, T = 1, r = −1.
As we can see in Figure 1, this flow converges correctly to the minimum (a, a2) =

(2, 4) from all the tested initial conditions. Furthermore, we see that it does so in
finite-time, with pre-defined settling time T = 1. It should be noted that at any given
point in the trajectory x(t), the functions t 7→ ‖x(t)−xopt‖ and t 7→ |f(x(t))−f(xopt)|
are not guaranteed to decrease or remain constant, indeed only t 7→ ‖∇f(x(t))‖ can
be guaranteed to do so, as we can see in Figure 1-(e).

Next, we consider the Rastringin function f : Rn → R given by

f(x) = 10n+

n∑
i=1

[x2
i − 10 cos(2πxi)], (48)

16

Learning with Mixtures of Trees

(a) t 2 [0, 0.3] (b) t 2 [0, 0.9] (c) t 2 [0, 1]

(a) t 2 [0, 0.95] (b) t 2 [0, 0.999] (c) t 2 [0, 1]

(d) Distance (e) Gradient (f) Cost

Theorem Let u, v, w be discrete variables such that v, w do not co-occur with u (i.e., u 6=
0) v = w = 0 in a given dataset D). Let Nv0, Nw0 be the number of data points for which
v = 0, w = 0 respectively, and let Iuv, Iuw be the respective empirical mutual information
values based on the sample D. Then

Nv0 > Nw0) Iuv Iuw

with equality only if u is identically 0.

Proof. We use the notation:

Pv(i) =
N

i
v

N
, i 6= 0; Pv0 ⌘ Pv(0) = 1�

X

i6=0

Pv(i).

3

Figure 1.: Trajectories of the proposed flow (28) for the Rosenbrock function with
parameters (a, b) = (2, 50), i.e., a unique minimum xopt = (a, a2) = (2, 4). Tests of
four different initial conditions with the same settling time T = 1.

which is also nonlinear, non-convex, and smooth. It possesses a unique global minimum
at the origin, and a countably infinite number of strict local minima, strict local
maxima, and saddle points. In Figure 2 we can see the contour of the function in two
dimensions (n = 2), and how its stationary points are distributed over the domain.

We implemented the same flow as int he first test. The corresponding results are
reported in Figure 3, where we see clear convergence in T = 1 to the minimum at (0, 0)
when starting from 4 different initial conditions close to this minima. We also note
that if we start close to another local extrema10 (blue line in Figure (3, (a)-(b)-(c)), we
converge to it in finite-time as well, this is due to the local nature of our convergence
results.

Next, we report some examples for the constrained case. First, the exact barrier
function formulation from Section 3.2.2, is tested on the Rosenbrock function under
box constraints. The results are reported in Figure 4, where we see that the solution of
the flow stays within the box constraints during the convergence time, i.e., for t ∈ [0, 1].

Second, we test the barrier function penalty formulation from Section 3.2.1, on the
Rosenbrock function, under linear inequality constraint, and where the optimum point
has been chosen on the boundary of the constraint set. We test the flow convergence
for several values of the penalty parameter µ. The results are reported in Figure 5,
where the convergence in the desired finite-time T = 1 sec is achieved when µ is chosen

10This is a well know characteristic of second order methods, which can converge to local minima or maxima
depending on the eigenvalues of the Hessian matrix. This problem has an ’implementation fix’ as reported for

example in (Nocedal & Wright (1999), Chapter 6), which could easily be implemented with our method.

17

Figure 2.: The Rastringin function in two dimensions. The blue, red, and black points
represent, respectively, strict local minima, strict local maxima, and saddle points. This
pattern repeats throughout the entire domain R2, and together exhaust all stationary
points.

Learning with Mixtures of Trees

(a) t 2 [0, 0.3] (b) t 2 [0, 0.9] (c) t 2 [0, 1]

(a) t 2 [0, 0.1] (b) t 2 [0, 0.5] (c) t 2 [0, 1]

(d) Distance (e) Gradient (f) Cost

Theorem Let u, v, w be discrete variables such that v, w do not co-occur with u (i.e., u 6=
0) v = w = 0 in a given dataset D). Let Nv0, Nw0 be the number of data points for which
v = 0, w = 0 respectively, and let Iuv, Iuw be the respective empirical mutual information
values based on the sample D. Then

Nv0 > Nw0) Iuv Iuw

with equality only if u is identically 0.

Proof. We use the notation:

Pv(i) =
N

i
v

N
, i 6= 0; Pv0 ⌘ Pv(0) = 1�

X

i6=0

Pv(i).

3

Figure 3.: Trajectory of proposed flow (28) for the the 2-dimensional Rastringin func-
tion with four different initial conditions and with the same settling time T = 1.

to be small enough, i.e. for µ = 0.01.

Learning with Mixtures of Trees

(a) t 2 [0, 0.3] (b) t 2 [0, 0.9] (c) t 2 [0, 1]

(a) t 2 [0, 0.3] (b) t 2 [0, 0.9] (c) t 2 [0, 1]

values based on the sample D. Then

Nv0 > Nw0) Iuv Iuw

with equality only if u is identically 0.
Proof. We use the notation:

Pv(i) =
N

i
v

N
, i 6= 0; Pv0 ⌘ Pv(0) = 1�

X

i6=0

Pv(i).

These values represent the (empirical) probabilities of v taking value i 6= 0 and 0 respec-
tively. Entropies will be denoted by H. We aim to show that @Iuv

@Pv0
< 0....

Remainder omitted in this sample. See http://www.jmlr.org/papers/ for full paper.

References

C. K. Chow and C. N. Liu. Approximating discrete probability distributions with depen-
dence trees. IEEE Transactions on Information Theory, IT-14(3):462–467, 1968.

Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufman Publishers, San Mateo, CA, 1988.

3

Figure 4.: Rosenbrock function with (a, b) = (2, 100), x0 = (0.75, 3.8) and box con-
straint x ∈ [x, x] with x = (1, 3.5) and x = (3, 4.5).

18

⨯⨯ ⨯⨯ ⨯⨯

Figure 5.: Constrained penalization µ = 1 (blue), µ = 0.65 (purple), µ = 0.4 (orange),
µ = 0.01 (red) over Rosenbrock function with (a, b) = (2, 100), x0 = (1.25, 0.25) and
linear constraint 2x1 + x2 ≤ 4.

Before moving to the time-varying cases, we want to report a comparative test
between one of the finite-time convergent flows proposed here and one of the state
of the art flows proposed in Karafyllis & Krstic (2017), with exponential convergence
guarantees. Indeed, we consider the following example11

Minimize f(t, x1, x2) = x2
1 + ax2

2, a > 0
s.t. h(x) = x1 − b = 0, b > 0.

(49)

To solve this constrained problem, we first use the barrier function penalty formulation
from Section 3.2.1, with the flow (28), and the coefficients α = 0.5, T = 0.005, r =
−1, µ = 1e− 6. Then, we compare the results with the fast exponentially convergent
flow, proposed in (Karafyllis & Krstic (2017), equation (7.9)), defined by

ẋ = −σ(x)

[
ψ(x1)(x1 − b)
2ax2(1 + (x1 − b)2)

]
, (50)

where, the choice σ(x) ≡ 1, and ψ(x1) = c > 0 is shown (Karafyllis & Krstic (2017),
P. 1323) to lead to exponential convergence of the solution of (50) to the minimum
(b, 0)′.

The numerical solutions are reported in Figure 6, where we labelled the solution of
the finite-time convergent flow by FF, and the solution of the exponentially convergent
flow by EF. One can see that although the exponential convergent flow can have a
very fast convergence rate, which we tuned by increasing σ to 20 and ψ to 100, it is
still relatively ‘slower’ than the finite-time convergent flow, for which we can select the
exact convergence time T to be even smaller than the convergence time obtained by a
well-tuned exponentially convergent flow. The zoom on the flows’ solutions reported
in Figure 6- bottom plots, show that the finite-time flow converges exactly at time
T (see Proposition 3), whereas the exponentially convergent flow reaches rapidly, but
smoothly, i.e., not in finite-time, the minimum point. This difference is even clearer if
we examine the phase plot reported in Figure 7-top, where we can observe that the
exponentially convergent flow reaches, following a smooth trajectory, the constraint
line, and then slides on it towards the optimal point, whereas the finite-time flow
follows a more direct trajectory towards the optimal point. Finally, the gradient of
the penalized cost fµ in (41) is shown in 7-bottom, to display the convergence of the

11Example 7.2 in Karafyllis & Krstic (2017).

19

0 1 2 3

t 10 -3

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2
x(1

)(t)
, x(

1)* (t)
x(1)(t)-FF

x(1)*(t)
x(1)(t)-EF

0 0.05 0.1 0.15

t

-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

x(2
)(t)

, x(
2)* (t)

x(2)(t)-FF

x(2)*(t)
x(2)(t)-EF

2.5 3 3.5

t 10 -3

0.999

1

1.001

1.002

1.003

1.004

1.005

1.006

1.007

1.008

1.009

zoo
m o

n x
(1)

(t),
 x(1

)* (t)

x(1)(t)-FF

x(1)*(t)
x(1)(t)-EF

0 0.005 0.01 0.015

t

-7

-6

-5

-4

-3

-2

-1

0

zoo
m o

n x
(2)

(t),
 x(2

)* (t)

10 -4

x(2)(t)-FF

x(2)*(t)
x(2)(t)-EF

Figure 6.: A numerical comparison between a flow convergent in finite-time and an
exponentially convergent flow: flows’ solutions (FF- finite-time flow, EF-exponential
flow)

gradient of the cost to zero at the predefined time T = 5.10−3 for the finite-time
convergent flow.

Finally, we report some numerical results for the time-varying case. We consider the
time-varying Rosenbrock cost function

f(t, x1, x2) = (a(t)− x1)2 + b(t)(x2 − x2
1)2,

a(t) = 2 + sin(t),
b(t) = 50(1 + sin(t)),

(51)

We apply the flow given by (32), with different upper-bound functions l. We choose the
constants to be r = −1, α = 2/3, c = 100, and the initial condition x(0) = (4, 15)′.
We report below the numerical results for each upper-bound function l. In the first case,
we assume exact knowledge of the cost function and compute the upper-bound in (31)

in closed-form as l(x) =
√

(2 + 200(x1x2 − x3
1))2 + 200(x2 + x2

1)2. The corresponding
results are reported in Figure 8. It is clear that the flow manages to minimize the
time-varying cost function in finite-time within the expected time convergence limit
t∗ = 2.6 [sec]. This can be seen in Figure 8- bottom, where we display the norm of
the gradient, which is decreasing monotonically and reaching zero in a finite-time less

20

0.8 1 1.2 1.4 1.6 1.8 2

x1

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

x 2

(x(1),x(2))-FF
(x(1),x(2))-EF

1 2 3 4 5 6

t 10 -3

0

0.5

1

1.5

2

2.5

3

3.5

4

 f -FF

 f -EF

Figure 7.: A numerical comparison between a flow convergent in finite-time and an
exponentially convergent flow: phase plots, and gradient plot (FF- finite-time flow,
EF-exponential flow)

21

0 10 20 30 40 50
t

0.5

1

1.5

2

2.5

3

3.5

4
x(1

)(t)
, x(

1)* (t)

x(1)(t)

x(1)*(t)

0 10 20 30 40 50
t

0

2

4

6

8

10

12

14

16

x(2
)(t)

, x(
2)* (t)

x(2)(t)

x(2)*(t)

0 10 20 30 40 50
t

0

100

200

300

400

500

600

700

800

900

nor
m(

gra
dF

(t,x
))

2 2.5 3
t

0

10

20

30

40

50

60

70

80

Zo
om

 on
 no

rm
(gr

adF
(t,x

))

Figure 8.: Time-varying cost function: Flow (32) with l(x) =√
(2 + 200(x1x2 − x3

1))2 + 200(x2 + x2
1)2.

than t∗. To appreciate this result, we also report in Figure 9 the results when we force
l to zero. One can see that without the upper-bound term l the norm of the gradient
is not decreasing at all time, and although the flow solutions finally reach the true
optimal solutions, they do so after the expected finite-time convergence limit t∗, which
underlines the necessity of this term in ensuring convergence in desired finite-time, as
seen in the analysis of the results of Proposition 4.

In the previous result we used an exact upper-bound l derived from closed-from
manipulation of the cost function. However, this is not always possible in real ap-
plications, and thus we show next that any loose upper-bound suffice to ensure the
finite-time stability result. Indeed, we first report in Figure 10 the results obtained
with the positive definite function l(t, x) = 500 + t2. Then we report in Figure 11 the
results corresponding to the case l(t, x) = 500, which is the simplest upper-bound one
can choose. In both cases the flow achieves the expected finite-time convergence. This
shows that the proposed flow (32) is not very sensitive to the choice of the function l,
as long as it is a valid upper-bound, as defined in (31).

We now report some results related to the performance of the flow under additive
bounded uncertainties, as discussed in Section 3.1.

Let us first show how the previous results in the time-varying case deteriorates
when we add a small uncertainty on the flow (32). Indeed, we apply the flow (32),

22

0 10 20 30 40 50
t

0.5

1

1.5

2

2.5

3

3.5

4

x(1
)(t)

, x(
1)* (t)

x(1)(t)

x(1)*(t)

0 10 20 30 40 50
t

0

2

4

6

8

10

12

14

16

x(2
)(t)

, x(
2)* (t)

x(2)(t)

x(2)*(t)

0 5 10
t

0

100

200

300

400

500

600

700

800

900

nor
m(

gra
dF

(t,x
))

2 3 4 5 6 7
t

-100

-50

0

50

100

150

200

Zo
om

 on
 no

rm
(gr

adF
(t,x

))

Figure 9.: Time-varying cost function: Flow (32) with l(x) = 0.

0 10 20 30 40 50
t

1

1.5

2

2.5

3

3.5

4

x(1
)(t)

, x(
1)* (t)

x(1)(t)

x(1)*(t)

0 10 20 30 40 50
t

0

2

4

6

8

10

12

14

16

x(2
)(t)

, x(
2)* (t)

x(2)(t)

x(2)*(t)

0 10 20 30 40 50
t

0

100

200

300

400

500

600

700

800

nor
m(

gra
dF

(t,x
))

1 1.5 2 2.5
t

-10

0

10

20

30

40

Zo
om

 on
 no

rm
(gr

adF
(t,x

))

Figure 10.: Time-varying cost function: Flow (32) with l(t, x) = 500 + t2.

23

0 10 20 30 40 50
t

1

1.5

2

2.5

3

3.5

4

x(1
)(t)

, x(
1)* (t)

x(1)(t)

x(1)*(t)

0 10 20 30 40 50
t

0

2

4

6

8

10

12

14

16

x(2
)(t)

, x(
2)* (t)

x(2)(t)

x(2)*(t)

0 10 20 30 40
t

0

100

200

300

400

500

600

700

800

nor
m(

gra
dF

(t,x
))

0.5 1 1.5 2 2.5 3
t

0

10

20

30

40

50

Zo
om

 on
 no

rm
(gr

adF
(t,x

))

Figure 11.: Time-varying cost function: Flow (32) with l(t, x) = 500.

with l(t, x) = 500 with the same constants as the previous tests, but add the additive
uncertainty ε1(t) = −10−6(1 + sin(t)), as described in (35). The results are reported
in Figure 12, where we clearly see that this uncertainty makes the flow unstable. We
now use the robustified flow (36) and (37), with k = 102. The corresponding results
are shown in Figure 13. One can see that the robustification term compensates for this
bounded uncertainty, as expected from the results of Proposition 5.

24

0 5 10 15 20 25 30 35 40 45 50
t

0

1

2

3

4

5

6

7

8

no
rm

(gr
ad

F(t
,x)

)

#108

Figure 12.: Time-varying cost function: Nominal flow (32) with additive uncertainty
ε1(t) = −10−6(1 + sin(t)).

5. Conclusions and Future Work

We have introduced a new family of second-order flows for continuous-time optimiza-
tion of time-varying cost functions. The main characteristic of the proposed flows is
their finite-time convergence guarantees. Furthermore, some of the flows are designed
in such a way that the finite convergence time can be pre-defined by the user. To be
able to analyze these discontinuous flows, we had to first extend an exiting Lyapunov-
based inequality condition for finite-time stability in the case of smooth dynamics to
the case of non-smooth dynamics modeled by (time-varying) differential inclusions.
We have proposed a robustification of the flows w.r.t. bounded additive uncertainties,
and extended some of the results to the constrained case. These flows were tested on
two well known optimization benchmarks.

Although the obtained results are encouraging, we underline that we have used
available numerical solvers to validate the optimization performance of these flows.
For these results to be more useful to the optimization and machine learning commu-
nities, it is necessary to find appropriate discretization schemes, which lead to actual
optimization algorithms, with similar finite-time (or accelerated) convergence rates.
This is the subject of our ongoing investigations. Other points which we will inves-
tigate in the future are the extension of these results to a fully extremum seeking
version, where the cost function derivatives are estimated from direct measurements
of the cost, and the application of these flows (or their best discretization) to actual
large scale optimization problems, e.g., deep learning optimization problems.

Ackowledgements

The research for this work was largely written and conducted while at a summer re-
search internship at Mitsubishi Electrics Research laboratories (MERL), in Cambridge,

25

0 10 20 30 40 50
t

1

1.5

2

2.5

3

3.5

4

x(1
)(t)

, x(
1)* (t)

x(1)(t)

x(1)*(t)

0 10 20 30 40 50
t

0

2

4

6

8

10

12

14

16

x(2
)(t)

, x(
2)* (t)

x(2)(t)

x(2)*(t)

0 10 20 30 40 50
t

0

100

200

300

400

500

600

700

800

900

nor
m(

gra
dF

(t,x
))

-1 0 1 2 3
t #10 -3

0

100

200

300

400

500

600

700

800

Zo
om

 on
 no

rm
(gr

adF
(t,x

))

Figure 13.: Time-varying cost function: Robust flow (36),(37) with k = 102, under
additive uncertainty ε1(t) = −10−6(1 + sin(t)).

MA, from May to August of 2019.

Appendix

Proof of Lemma 1: By definition of Jacobian matrices as total derivatives, we have

‖ϕ(x̃′)− ϕ(x̃)− Jϕ(x̃)(x̃′ − x̃)‖ = o(‖x̃′ − x̃‖), (52)

for x̃, x̃′ ∈ Rm. Furthermore, the n × m Jacobian matrix Jϕ(x̃) is injective, i.e.
rank(Jϕ(x̃)) = m. Therefore, we have rank(Jϕ(x̃)>Jϕ(x̃)) = rank(Jϕ(x̃)) = m,
and thus Jϕ(x̃)>Jϕ(x̃) is invertible. Therefore, Jϕ(x̃) has a left inverse, given by
the Moore-Penrose pseudoinverse Jϕ(x̃)† = (Jϕ(x̃)>Jϕ(x̃))−1Jϕ(x̃)>. Therefore, its in-
duced Euclidean norm satisfies

‖Jϕ(x̃)†‖ ≥ ‖x̃′ − x̃‖
‖Jϕ(x̃)(x̃′ − x̃)‖

(53)

26

for every x̃′ 6= x̃, since Jϕ(x̃)†Jϕ(x̃)(x̃′− x̃) = x̃′− x̃, and Jϕ(x̃)(x̃′− x̃) 6= 0 due to the
injectivity of Jϕ(x̃). Putting everything together, we have

‖ϕ(x̃′)− ϕ(x̃)‖ ≥ ‖Jϕ(x̃)(x̃′ − x̃)‖ − ‖ϕ(x̃′)− ϕ(x̃)− Jϕ(x̃)(x̃′ − x̃)‖ (54a)

(52)
= ‖Jϕ(x̃)(x̃′ − x̃)‖+ o(‖x̃′ − x̃‖) (54b)

(53)

≥ ‖x̃′ − x̃‖
‖Jϕ(x̃)†‖

+ o(‖x̃′ − x̃‖) (54c)

=

(
1

‖Jϕ(x̃)†‖
+
o(‖x̃′ − x̃‖)
‖x̃′ − x̃‖

)
︸ ︷︷ ︸

(?)

‖x̃′ − x̃‖. (54d)

Finally, for each x̃ ∈ Rm, if ‖x̃′ − x̃‖ > 0 is sufficiently small, then (?) > 0. Therefore,
‖ϕ(x̃′)− ϕ(x̃)‖ > 0. �
Statements and proofs of Lemma 2 and 3:

Recall that a function x : I → Rn defined over an interval I ⊂ R is absolutely
continuous if, for every ε > 0, there exists some δ > 0 such that

k∑
j=1

(t′j − tj) < δ =⇒
k∑
j=1

‖x(t′j)− x(tj)‖ < ε (55)

for any disjoint subintervals [t1, t
′
1], . . . , [tk, t

′
k] ⊆ I.

Lemma 2. If x : I → Rn is absolutely continuous, then so is t 7→ (t, x(t)).

Proof 10. We start by fixing an arbitrarily small ε > 0. Since x(·) is absolutely
continuous, we can choose some δ > 0 such that (55) holds. Furthermore, we can
clearly always make δ smaller, and thus assume 0 < δ ≤ ε. Let ε′ = ε− δ. Once again
invoking the absolute continuity of x(·), we can choose some δ′ > 0 such that (55)
holds for δ′ and ε′ instead of δ and ε. Furthermore, we can choose δ′ in the interval
(0, δ]. Therefore, we have, for any disjoint subintervals [t1, t

′
1], . . . , [tk, t

′
k] ⊂ I such that∑k

j=1(t′j − tj) < δ,

k∑
j=1

‖(t′j ,x(t′j))− (tj , x(tj))‖ (56a)

=

k∑
j=1

‖(t′j − tj , x(t′j)− x(tj))‖ (56b)

≤
k∑
j=1

[(t′j − tj) + ‖x(t′j)− x(tj)‖] (56c)

< δ′ + ε′ (56d)

≤ ε. (56e)

Therefore, t 7→ (t, x(t)) is absolutely continuous in I.

As a direct corollary, we have the following result.

27

Lemma 3. If x : [0, τ] → Rn is absolutely continuous and V : [0, τ] × D → Rn is
Lipschitz continuous (in both variables), where D ⊂ Rn is an open set that contains
the trajectory x(·), then t 7→ V (t, x(t)) is absolutely continuous.

Proof 11. By Lemma 2, we know that t 7→ (t, x(t)) is absolutely continuous in [0, τ].
Therefore, given that V (·) is Lipschitz continuous, it follows that its composition with
t 7→ (t, x(t)) is absolutely continuous in [0, τ].

References

K. B. Ariyur and M. Krstić, Real-Time Optimization by Extremum-Seeking Control. Wiley,
2003.

H. Attouch and J. Peypouquet, “The rate of convergence of nesterov’s accelerated forward-
backward method is actually o(k−2),” SIAM Journal on Optimization, no. 3, pp. 1–7, 2015.

H. Attouch, J. Peypouquet, and P. Redont, “Fast convex optimization via inertial dynamics
with hessian driven damping,” Journal of Differential Equations, no. 10, pp. 5734–5783,
2016.

——, “Fast convergence of inertial dynamics and algorithms with asymptotic vanishing vis-
cosity,” Mathematical Programming, no. 168, pp. 123–175, 2018.

R. Brockett, “Dynamical systems that sort lists, diagonalize matrices and solve linear pro-
gramming problems,” in IEEE Conference on Decision and Control, 1988, pp. 799–803.

A. Bacciotti and F. Ceragioli, “Stability and stabilization of discontinuous systems and non-
smooth lyapunov functions,” ESAIM: Control, Optimisation and Calculus of Variations,
vol. 4, pp. 361–376, 1999.

M. Benosman and K.-Y. Lum, “Nonlinear control allocation for non-minimum phase systems,”
IEEE Transactions on Control Systems Technology, vol. 17, no. 2, pp. 394–404, 2009.

M. Benosman and K.-Y. Lum, “Passive actuators’ fault tolerant control for affine nonlinear
systems,” IEEE, Transactions on Control Systems Technology, vol. 18, pp. 152–163, 2010.

F. Clarke, “Nonsmooth analysis in control theory: A survey,” European Journal of Control,
vol. 7, no. 2, pp. 145 – 159, 2001.

J. Cortés, “Finite-time convergent gradient flows with applications to network consensus,”
Automatica, vol. 42, pp. 1993–2000, 03 2006.

J. Cortes, “Discontinuous dynamical systems,” IEEE Control Systems Magazine, vol. 28, no. 3,
pp. 36–73, June 2008.

L. Faybusovich, “Dynamical systems which solve optimization problems with linear con-
straints,” IMA Journal of Mathematical Control & Information, pp. 135–149, 1991.

A. F. Filippov and F. M. Arscott, “Differential equations with discontinuous righthand sides,”
in Mathematics and its Applications, Springer, 1988.

G. Franca, D. Robinson, and R. Vidal, “A dynamical systems perspective on nonsmooth
constrained optimization,” arXiv:1808.04048v2 [math.OC], 2019(a).

G. Franca, J. Sulam, D. Robinson, and R. Vidal, “Conformal symplectic and relativistic opti-
mization,” arXiv:1903.04100v3 [math.OC], 2019(b).

——, “ADMM and accelerated ADMM as continuous dynamical systems,” Proceedings of the
35th International Conference on Machine Learning, Stockholm, 2018.

M. Guay and T. Zhang, “Adaptive extremum seeking control of nonlinear dynamic systems
with parametric uncertainties,” Automatica, vol. 39, pp. 1283–1293, 2003.

V. Grushkovskaya, A. Zuyev, and C. Ebenbauer, “On a class of generating vector fields for
the extremum seeking problem: Lie bracket approximation and stability properties,” Auto-
matica, no. 94, pp. 151–160, 2018.

L. Grüne, and I. Karafyllis, “Lyapunov function based step size control for numerical ODE
solvers with application to optimization algorithms ,” Mathematical System Theory, K.
Huper and J. Trumpf, eds., CreateSpace, pp. 183–210, 2013.

28

U. Helmke and J. B. Moore, Optimization and Dynamical Systems, 1996.
I. Karafyllis, and M. krstic, “Global dynamical solvers for nonlinear programming problems,”

SIAM J. Control Optim., Vol. 55, No. 2, pp. 1302–1331, 2017.
I. Karafyllis, “Feedback stabilization methods for the solution of nonlinear programming prob-

lems ,” J. Optim. Theory Appl., No. 161, pp. 783–806, 2014.
M. Krstić, “Stability of extremum seeking feedback for general nonlinear dynamic agents,”

Automatica, vol. 36, pp. 595–601, 2000.
Y.-J. Liu and S. Tong, “Barrier Lyapunov functions-based adaptive control for a class of

nonlinear pure-feedback systems with full state constraints,” Automatica, no. 64, pp. 70–75,
2016.

J. Nocedal and S. J. Wright, Numerical Optimization. Springer, 1999.
B. Paden and S. Sastry, “A calculus for computing Filippov as differential inclusion with

application to the variable structure control of robot manipulators,” Circuits and Systems,
IEEE Transactions on, vol. 34, pp. 73 – 82, 02 1987.

E. Polak, Optimization Algorithms and Consistent Approximations. Springer, 1997.
J. I. Poveda and N. Li, “Inducing Uniform Asymptotic Stability in Non-Autonomous Accel-

erated Optimization Dynamics via Hybrid Regularization’, Proceedings of the 58th IEEE
Conference on Decision and Control (to appear), 2019.

J. Poveda and A. Teel, “A framework for a class of hybrid extremum seeking controllers with
dynamic inclusions,” Automatica, no. 76, pp. 113–126, 2017.

D. Scieur, V. Roulet, F. Bach, and A. d’Aspremont, “Integration methods and accelerated
optimization algorithms,” 31st Conference on Neural Information Processing Systems, 2017.

A. Scheinker and M. Krstić, Model-free stabilization by extremum seeking. Springer, 2016.
W. Su, S. Boyd, and E. J. Candes, “A differential equation for modeling Nesterovs accelerated

gradient method: Theory and insights,” Journal of Machine Learning Research, no. 17, pp.
1–43, 2016.

J. Wang and N. Elia, “A control perspective for centralized and distributed convex optimiza-
tion,” in IEEE Conference on Decision and Control and European Control Conference, 2011,
pp. 3800–3805.

C. Wang and Y. M. Lu, “The scaling limit of high-dimensional online independent component
analysis,” in 31st Conference on Neural Information Processing Systems, 2017.

A. C. Wilson, B. Recht, and M. I. Jordan, “A lyapunov analysis of momentum methods in
optimization,” arXiv:1611.02635, 2016.

J. Wang and N. Elia, “Control approach to distributed optimization,” in 48th Annual Allerton
Conference, 2010, pp. 557–561.

Y. Yang, K. G. Vamvoudakis, H. Modares, W. He, Y. Yin, and D. C. Wunsch, “Safety-aware
reinforcement learning framework with an actor-critic-barrier structure,” in IEEE American
Control Conference, 2019.

C. Zhang and R. Ordónez, Extremum-Seeking Control and Applications. Springer, 2012.
J. Zhang, A. Mokhtari, S. Sra, and A. Jadbabaie, “Direct runge-kutta discretization achieves

acceleration,” in 32st Conference on Neural Information Processing Systems, 2018.

29

	Title Page
	page 2

	/projects/www/html/my/publications/docs/TR2020-088.pdf
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29

