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Continuous-Time Optimization of Time-Varying Cost Functions
via Finite-Time Stability with Pre-Defined Convergence Time

Orlando Romero† Mouhacine Benosman‡

Abstract— In this paper, we propose a new family of
continuous-time optimization algorithms for time-varying,
locally strongly convex cost functions, based on discontinu-
ous second-order gradient optimization flows with provable
finite-time convergence to local optima. To analyze our flows,
we first extend a well-know Lyapunov inequality condition
for finite-time stability, to the case of arbitrary time-varying
differential inclusions, particularly of the Filippov type. We then
prove the convergence of our proposed flows in finite time. We
illustrate the performance of our proposed flows on a quadratic
cost function to track a decaying sinusoid.

I. INTRODUCTION

In continuous-time optimization, an ordinary differential
equation (ODE) or a partial differential equation (PDE) is
designed in such a way that its solution convergences over
time to an optimal value of the cost function. There has been
a recent surge in research papers in this direction, arguably
starting with the pioneer work by Brockett in [1], such as
[2]–[4], [6], [7], [9]–[23]

An important class of continuous optimization algorithms
are the so-called extremum seeking (ES) controllers, which
deal with static cost functions, as well as dynamic cost
functions, typically modeled as the measurable output of
a dynamical system. Most importantly, ES algorithms are
often based only on the cost function measurements, i.e.,
zero-order optimization methods, whereas the higher order
derivatives of the cost function, e.g., gradient and Hessian,
are estimated from the cost function measurements using
feedback filters, e.g., [20]–[23]. Since we are not considering
zero-order methods in this work, we will not discuss specifi-
cally ES results, and will focus on the more general class of
continuous-optimization algorithms, including higher order
methods.

For instance, in [4], the authors derive a second-order
ODE as the limit of Nesterov’s accelerated gradient method,
when the gradient step sizes go to zero. This ODE is then
used to attempt to analyze Nesterov’s scheme, particularly
in an larger effort to better understand acceleration without
substantially increasing computational burden. Thanks to the
ODE continuous-time approximation of the algorithm, the
authors also obtain a family of schemes with similar conver-
gence rates as Nesterov’s algorithm. More recently, in [5], the
authors establish uniform asymptotic stability and robustness
properties for the continuous-time limit of the Nesterovs
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accelerated gradient method, by using resetting mechanisms
that are modeled by well-posed hybrid dynamical systems.

In [19], The differential equations that model the
continuous-time limit of the sequence of iterates generated
by the alternating direction method of multipliers (ADMM),
are derived. Then, the authors employ Lyapunov theory
to analyze the stability of critical points of the dynamical
systems and to obtain associated convergence rates.

In [18], non-smooth and linearly constrained optimization
problems are analyzed by deriving equivalent (at the limit)
non-smooth dynamical systems related to variants of the
relaxed and accelerated ADMM. In particular, two new
ADMM-like algorithms are proposed, one based on Nes-
terov’s acceleration and the other inspired by Polyak’s heavy
ball method, and derive differential inclusions modeling
these algorithms in the continuous-time limit. Using a non-
smooth Lyapunov analysis, results on rate-of-convergence
are obtained for these dynamical systems in the convex and
strongly convex setting.

In [17], the authors study the crucial problem of structure-
preserving discretizations of continuous-time optimization
flows. More specifically, the authors focus on two classes
of conformal Hamiltonian systems whose trajectories lie on
a symplectic manifold, namely a classical mechanical system
with linear dissipation and its relativistic extension. One of
the most noticeable claims in this paper is that conformal
symplectic integrators can preserve convergence rates of the
continuous-time system up to a negligible error. As a by
product of this, the authors show that the classical momentum
method is a symplectic integrator. Finally, a relativistic gener-
alization of classical momentum called relativistic gradient
descent is introduced, and it is argued that it may result
in more stable/faster optimization for some optimization
problems.

In [7], two normalized first-order gradient flows are pro-
posed. Their convergence is rigorously analyzed using tools
from non-smooth dynamics theory, and conditions guarantee-
ing finite-time convergence are derived. Finally, the proposed
non-smooth flows are applied to problems in multi-agent
systems and it is shown they achieve consensus in a finite-
time. The finite convergence time’s upper bound is given as
function of the gradient value at the initial point as well as
the minimum eigenvalue of Hessian at the initial point. In
[8] the authors proposed a class of discontinuous dynamical
systems, of second order with respect to the cost function,
that are continuous-time optimization algorithms with finite-
time convergence and prescribed convergence time.

In this work, we want to focus on this specific class



of continuous-time optimization algorithms with finite-time
convergence. We propose a new family of discontinuous
second-order flows, which guarantee local convergence to
an optimum trajectory of a time-varying cost function, in a
pre-defined, finite time.

We use some ideas from Lyapunov-based finite-time state
control to an invariant set, proposed by one of the current
authors in an early paper [24], in the context of aerospace
applications, to design a new family of discontinuous flows,
which ensure a desired finite-time convergence to the invari-
ant set containing a unique local optima. Furthermore, due to
the discontinuous nature of the proposed flows, we propose
to extend one of the existing Lyapunov-based inequality
condition for finite-time convergence of continuous-time
dynamical systems, to the case of differential inclusions.

This paper is organized as follows: Section II is dedicated
to some preliminaries about continuous-time optimization,
and finite-time stability in the context of differential inclu-
sions. Our main results are presented in Section III, where
we first establish an extension to (time-varying) differential
inclusions of a well-know Lyapunov-based inequality condi-
tion for finite-time stability. We then propose and analyze our
second-order discontinuous flows, including a flow for time-
varying cost functions. In Section IV, we show the efficiency
of this continuous-time optimization flow with a numerical
example. The paper ends with a summarizing conclusion and
a discussion of our ongoing investigations, in Section V.

Notation

We use the notation , to defined functions or other
mathematical objects. R and R+ denote, respectively, the
set of real numbers and set of non-negative real numbers.
Given a time-varying cost function f(t, x) : R+ ×Rn → R,
we denote its gradient and Hessian matrix with respect to x
as ∇f(t, x) and ∇2f(t, x), consecutively. Given two sets X
and Y , the notation K : X ⇒ Y denotes a set-valued map
K such that K(x) ⊆ Y for each x ∈ X .

II. PRELIMINARIES AND PROBLEM STATEMENT

In this section, we will review some key ideas regarding
discontinuous state-space dynamical systems with a focus
on Filippov differential inclusions. Then, we will review key
ideas and definitions regarding finite-time stability of time-
varying differential inclusions with respect to Carathéodory
solutions. Finally, we will formulate and formally state the
problem addressed in this paper.

A. Discontinuous Systems; Filippov Differential Inclusions

Recall that a solution to an initial value problem

ẋ(t) = F (t, x(t)) (1a)
x(0) = x0 (1b)

with F : R+ × Rn → Rn is typically guaranteed to exist
and be unique by ensuring that F (·, x) is continuous near
x = x? and F (t, ·) is Lipschitz continuous near t = 0. When
F (t, ·) is not Lipschitz continuous (e.g. due to singularities
or discontinuities), we understand solutions to (1a) in the

sense of Filippov. More precisely, x : [0, τ) → Rn with
0 < τ ≤ ∞ is a Filippov solution to (1) if it is absolutely
continuous, x(0) = x0, and

ẋ(t) ∈ K[F ](t, x(t)) (2)

holds almost everywhere (a.e.) within every compact subin-
terval of [0, τ), where K[F ] denotes the Filippov set-valued
map [27], [31] given by

K[F ](t, x) ,
⋂
δ>0

⋂
µ(S)=0

coF (t, Bδ(x) \ S), (3)

where µ denotes the Lebesgue measure and co the convex
closure (i.e. closure of the convex hull). Furthermore, x(·) :
[0, τ) → Rn is a maximal Filippov solution if it cannot be
extended, i.e. if no Filippov solution exists over an interval
[0, τ ′) with τ ′ > τ .

Assumption 1. F is Lebesgue measurable and locally es-
sentially bounded, i.e. given any (t, x), F is bounded a.e. on
every bounded neighborhood of (t, x).

Under Assumption 1, at least one Filippov solution to (1)
must exist [27], [31]. Furthermore, the Filippov set-valued
map (3) can be computed as

K[F ](t, x) = co

{
lim
k→∞

F (t, xk) : NF ∪ S 63 xk → x

}
(4)

for some set NF ⊂ Rn of measure zero and any other
set S ⊂ Rn of measure zero, and where co denotes the
convex hull. In particular, if F (t, ·) is continuous at a
fixed point x, then K[F ](t, x) = {F (t, x)}. For instance,
for the gradient flow, we have K[−∇f ](t, x) = {−∇f(x)}
for every x ∈ Rn, provided that f is continuously dif-
ferentiable. Furthermore, if f is only Lipschitz continuous,
then K[−∇f ](t, x) = −∂f(x), where ∂f denotes Clarke’s
generalized gradient [28].

B. Finite-Time Stability for Differential Inclusions

Consider a general differential inclusion [29]

ẋ(t) ∈ K(t, x(t)) (5a)
x(0) = x0 (5b)

where K : R+ × Rn ⇒ Rn is an arbitrary set-valued map.

Assumption 2. K : R+ × Rn ⇒ Rn is an upper semi-
continuous set-valued map, with nonempty, compact, and
convex values.

For instance, in [30] the authors proved that, under As-
sumption 1, K = K[F ] satisfies Assumption 2.

We say that x : [0, τ) → Rn with 0 < τ ≤ ∞ is a
Carathéodory solution to (5) if x(·) is absolutely continuous
on any closed subinterval of [0, τ), (5a) is satisfied a.e.
within every compact subinterval of [0, τ), and x(0) = x0.

Proposition 1. Under Assumption 2, at least one
Carathéodory solution to (5) must exist. In particular, under
Assumption 1, at least one Filippov solution to (1) must exist.



We say that x : [0, τ)→ Rn is a maximal Carathéodory
solution of (5) if it cannot be extended, i.e. if no solution
exists over an interval [0, τ ′) with τ ′ > τ . In particular,
(maximal) Filippov solutions to (1) are nothing but (max-
imal) Carathéodory solutions to the Filippov differential
inclusion (2) with initial condition x(0) = x0.

Furthermore, we say that x? ∈ Rn is an equilibrium of (5)
if x(t) ≡ x? over (0,∞) is a Carathéodory solution to (5).
In other words, if 0 ∈ K(t, x?) holds a.e. in t ≥ 0. We
say that (5) is (strongly) Lyapunov stable at x? ∈ Rn if,
for every ε > 0, there exists δ > 0 such that, for every
Carathéodory solution x(·) of (5), we have ‖x0 − x?‖ <
δ =⇒ ‖x(t) − x?‖ < ε for every t ≥ 0 in the interval
where x(·) is defined. Furthermore, we say that (5) is (locally
and strongly) asymptotically stable at x? ∈ Rn if it is
Lyapunov stable at x? and there exists some δ > 0 such that
every maximal Carathéodory solution x(·) to (5) is defined
over [0,∞) and, if ‖x0 − x?‖ < δ then x(t) → x? as
t → ∞. Finally, we say that (5) is (locally and strongly)
finite-time stable at x? ∈ Rn if it is asymptotically stable
at x? and there exist some δ > 0 and positive definite
function (w.r.t. x?) T : Bδ(x

?)→ R+ (called the settling
time) such that, for every Carathéodory solution x(·) of (5)
with x0 ∈ Bδ(x?) \ {x?}, we have x(t) ∈ Bδ(x?)\{x?} for
every t ∈ [0, T (x0)) and x(t)→ x? as t→ T (x0)

C. Problem Statement

Consider some time-varying objective cost function
f : R+×Rn → R that we wish to minimize. In particular, let
x?(t) ∈ Rn be a local minimum of f(t, ·) that is unknown to
us but under the assumption that x?(·) is sufficiently smooth.
In continuous-time optimization, we typically proceed by
designing a nonlinear state-space dynamical system

ẋ = F (t, x) (6)

for which F (t, x) can be computed without knowledge of
x? and with limited knowledge or access to f (e.g. using
only current and local information on f , up to second order).
Traditionally, the system (6) is often implicitly or explicitly
designed so as to make

ė = Ferror(t, e), (7)

with
Ferror(t, e) , F (t, x

?(t) + e)− ẋ?(t), (8)

asymptotically stable at the origin. Naturally, e(t) , x(t)−
x?(t) simply amounts to a tracking error such that sys-
tems‘(6) and (7) are equivalent.

Substantial work has been done for this purpose, with
much of it focused in optimizing the asymptotic convergence
rate for x(t) → x? as t → ∞ and its translation into a
discretized scheme suitable for modern digital computing.
In this work, however, we seek continuous-time dynamical
systems that are possibly discontinuous or non-Lipschitz
(and thus based on differential inclusions as opposed to
exclusively ODEs), for which (7) is finite-time stable at the
origin. Furthermore, we seek design systems using only up

to second-order information on f , and in such a way that
the finite-time settling time can be prescribed, or at least
controlled to some degree with the aforementioned limited
information.

Our approach to achieve this objective1 is largely based
on exploiting the Lyapunov-like differential inequality

Ė(t) ≤ −c E(t)α, a.e. t ≥ 0, (9)

with constants c > 0 and α < 1, for absolutely continuous
functions E(·) such that E(0) > 0. Indeed, under the
aforementioned conditions, E(t) will reach E(t) = 0 in finite
time t = t? ≤ E(0)1−α

c(1−α) < ∞, with this upper-bound being
an equality whenever (9) is an equality as well (see e.g.
Lemma 1 in [24]).

First, we must propose a sufficiently smooth candidate
Lyapunov function V = V (t, e), which must be (locally)
positive definite. In other words, (t, x) 7→ V (t, x−x?(t)) can
potentially serve as a convenient surrogate for the objective
function f . Candidate Lyapunov functions include

V (t, x−x?(t)) = ‖x−x?(t)‖2 ⇐⇒ V (t, e) = ‖e‖2, (10)

V (t, x− x?(t)) = f(t, x)− f(t, x?(t)) (11a)
⇐⇒ V (t, e) = f(t, x?(t) + e)− f(t, x?(t)), (11b)

and

V (t, x− x?(t)) = ‖∇f(t, x)‖2 (12a)

⇐⇒ V (t, e) = ‖∇f(t, x?(t) + e)‖2 (12b)

with (11b) requiring x?(t) to be a strict local minimum of
f(t, ·) for each t ≥ 0, and (12b) requiring x?(t) to be an
isolated stationary point of f(t, ·) for each t ≥ 0 (e.g. if
f(t, ·) is strongly convex near x?(t)). Then, the objective
is to design a (possibly discontinuous) function F that can
be computed without explicit knowledge of x?(·), and using
only up to second-order information on f such that, for every
Filippov solution x(·) of (6), the inequality (9) is satisfied
for the energy function E(t) , V (t, x(t) − x?(t)). More
precisely, we seek F such that (7) is finite-time stable at the
origin.

We now summarize the problem statement.

Problem 1. Given a sufficiently smooth time-varying cost
function f : R+ × Rn → R with a sufficiently regular local
time-varying minimizer x?(·), solve the following tasks:

1) Design a sufficiently smooth2 candidate Lyapunov
function V (t, e) such that (t, x) 7→ V (t, x − x?(t))
is surrogate to f near (t, x?(t));

2) Design a (possibly discontinuous) system3 (6) such that
F (t, x) can be computed using only the information

1Other approaches to establish finite-time stability for discontinuous
systems based on the notion of homogeneity have been presented, e.g.,
in [33] and references therein.

2At least locally Lipschitz continuous and regular, but continuous differ-
entiability suffices.

3Right-hand side (RHS) defined at least a.e., Lebesgue measurable, and
locally essentially bounded.



available on f and such that (8) is finite-time stable
at the origin.

By following this strategy, we will therefore achieve (lo-
cal) finite-time convergence. Furthermore, if V (0, x0−x?(0))
computed or upper bounded, then F can be readily tuned to
achieve finite-time convergence under a prescribed range for
the settling time, or with exact prescribed settling time if
V (0, x0 − x?(0)) can be explicitly computed and (9) holds
exactly for E(t) , V (t, x(t) − x?(t)) and any Filippov
solution x(·).

III. MAIN RESULTS

In this section, we start by establishing a Lyapunov-based
sufficient condition for the finite-time stability of general
time-varying differential inclusions. Then, given a time-
varying cost function, we construct a family of second-order
flows such that the system associated with the tracking error
with respect to the time-varying local minimum is finite-time
stable at the origin.

A. A Sufficient Lyapunov Condition for Finite-Time Stability
of Differential Inclusions

We will now construct a Lyapunov-based criterion adapted
from the literature of finite-time stability of Lipschitz contin-
uous systems into general differential inclusions. This results
is based on Lemma 1 in [24], which can be adapted to include
absolutely continuous solutions and non-positive exponents.
We refer also to (Proposition 5, [32]) for a similar result for
the case of time-invariant systems.

Theorem 1. Let K : R+ × Rn ⇒ Rn be a set-valued map
satisfying Assumption 2 and V : R+×D → R a continuously
differentiable function such that V (t, ·) is positive definite
for every t ≥ 0, where D ⊂ Rn is an open and positively
invariant neighborhood of the origin. Let

V̇ (t, x) ,

{
∂V

∂t
(t, x) +∇V (t, x) · v : v ∈ K(t, x)

}
(13)

for t ≥ 0 and x ∈ D, where ∇V (t, x) denotes the gradient
of V (t, x) w.r.t x. If there exist constants c > 0 and α < 1
such that

max V̇ (t, x) ≤ −c V (t, x)α (14)

a.e. in t ≥ 0 and x ∈ D, then (5) is finite-time stable at the
origin with settling time upper bounded by

T (x0) ≤
V (0, x0)

1−α

c(1− α)
(15)

for each x0 ∈ D. Furthermore, if V̇ (t, x) is a singleton a.e.
in t ≥ 0 and x ∈ D, and (14) is an exact equality, then so
is (15).

Proof. Lyapunov stability follows from [30, 3§15 – Theo-
rem 1] for time-varying differential inclusions, which also
tells us. that the origin is an equilibrium. Now, given
an arbitrary Carathéodory solution x(·) of (5), note that
E(t) , V (t, x(t)) is absolutely continuous due to V being

continuously differentiable. Therefore, since d
dtV (t, x(t)) =

Ė(t) ∈ V̇ (t, x(t)) [29, Lemma 1], we note from (14) that

d

dt
V (t, x(t)) ≤ −cV (t, x(t))α, (16)

a.e. in t ≥ 0. The rest of the proof follows by integrating
and setting x(T (x0)) = 0. �

B. Proposed Family of Finite-Time Converging Flows

We are ready to propose some optimization flows with
finite-time convergence guarantees. The first family of flows
is in the form of Newton-like discontinuous flows with
pre-defined finite settling time T > 0.

First, let us state a smoothness assumption on the cost
function and time-varying minimizer of interest.

Assumption 3. f : R+ × Rn → R is twice continuously
differentiable, and there exist some m > 0 and some con-
tinuously differentiable x?(·) such that x?(t) is a stationary
point of f(t, ·) and f(t, ·) is m-strongly convex near x?(t),
for each t ≥ 0.

We are now ready to state our proposed family of
continuous-time optimization algorithms, and thus our main
result.

Theorem 2. Let T > 0, α ∈ [1/2, 1), and r ∈ R. Under
Assumption 3, any maximal Filippov solution x(·) of

ẋ = −w(t, x;x0)
[∇2f(t, x)]r∇f(t, x)

∇f(t, x)>[∇2f(t, x)]r+1∇f(t, x)
, (17)

with

w(t, x;x0) ,
‖∇f(0, x0)‖2(1−α)

2(1− α)T
‖∇f(t, x)‖2α

+∇f(t, x)> ∂∇f
∂t

(t, x) (18)

and x(0) = x0 sufficiently close to x?(0) will converge in
finite time to x?, with an exact settling time of T (x0) = T .

Proof. Consider the system (7), where F (t, x) denotes the
RHS of (17). Clearly, given any Filippov solution e(·) to (7),
then x(t) , e(t) + x?(t) is likewise a Filippov solution
to (17). The strategy that follows now, is to stablish finite-
time stability of (7) by leveraging Theorem 1.

Let D be an open and positively invariant set (w.r.t. (17))
that contains {x?(t) : t ≥ 0}, over which x?(t) is the only
stationary point of f(t, ·) and f(t, ·) is m-strongly convex,
for each t ≥ 0 and x ∈ D. Let D′ = {x−x?(0) : x ∈ D} and
V : R+ ×D′ → R be given by V (t, e) , ‖∇f(t, x?(t) +
e)‖2. Clearly, D′ is positively invariant w.r.t. to (7), and V
is continuously differentiable and positive definite.

Let us now check that F , and subsequently Ferror, both
satisfy Assumption 1. Indeed, notice that F (t, x) is contin-
uous everywhere in R+ × D except for x = x?(t), where
it is possibly undefined. Therefore, F is measurable. On the
other hand, given (t, x) ∈ R+ ×D such that x 6= x?(t), we



have

‖F (t, x)‖ = |w(t, x;x0)|‖[∇
2f(t, x)]r∇f(t, x)‖

∇f(t, x)>[∇2f(t, x)]r+1∇f(t, x)
(19a)

≤ |w(t, x;x0)|λmax[∇2f(t, x)]r‖∇f(t, x)‖
λmin[∇2f(t, x)]r+1‖∇f(t, x)‖2

(19b)

=

(
|w(t, x;x0)|
‖∇f(t, x)‖

)
λmax[∇2f(t, x)]r

λmin[∇2f(t, x)]r+1
, (19c)

with

|w(t, x;x0)|
‖∇f(t, x)‖

≤ ‖∇f(0, x0)‖
2(1−α)

2(1− α)T
‖∇f(t, x)‖2α−1

+

∥∥∥∥∂∇f∂t (t, x)

∥∥∥∥ . (20)

Now, since f is twice continuously differentiable and
α ≥ 1/2 ⇐⇒ 2α− 1 ≥ 0, it follows that the RHS of (20)
is continuous. Furthermore, since f(t, ·) is m-strongly con-
vex, and thus λmin[∇2f(t, x)] ≥ m > 0 in D, then the
RHS of (19c) is continuous as well. Putting everything
together, we see that ‖F‖ is upper bounded by a continuous
function, and thus F must be locally essentially bounded.
Therefore, Assumption 1 is indeed satisfied for F , and thus
Ferror as well.

Proceeding, we now fix some arbitrary t ≥ 0 and e =
x− x?(t) ∈ D′ \ {0}. We thus have

∂V

∂t
(t, e) = 2∇f(t, x)>

[
∂∇f
∂t

(t, x) +∇2f(t, x)ẋ?(t)

]
;

(21)

∇V (t, e) = 2∇2f(t, x)∇f(t, x); (22)

K(t, e) , K[Ferror](t, e) = {F (t, x)− ẋ?(t)}. (23)

Therefore,

V̇ (t, e) =

{
∂V

∂t
(t, e) +∇V (t, e) · v : v ∈ K(t, e)

}
(24)

is a singleton satisfying

max V̇ (t, e) = 2∇f(t, x)>
[
∂∇f
∂t

(t, x) +∇2f(t, x)ẋ?(t)

]
+ 2∇f(t, x)>∇2f(t, x)(F (t, x)− ẋ?(t))

(25a)

= 2∇f(t, x)>
[
∂∇f
∂t

(t, x) +∇2f(t, x)F (t, x)

]
(25b)

= 2∇f(t, x)> ∂∇f
∂t

(t, x)− 2w(t, x;x0) (25c)

=

(
‖∇f(0, x0)‖2(1−α)

(1− α)T

)
︸ ︷︷ ︸

,c(x0)

‖∇f(t, x)‖2α︸ ︷︷ ︸
=V (t,e)α

, (25d)

with c(x0) > 0 independent of (t, e). The result follows by
invoking Theorem 1. �

Remark 1 (Convergence Domain). The convergence of
Filippov solutions x(·) of (17) in finite time holds true for
any x0 in the domain D constructed in the previous proof.

Remark 2 (Range of α). In Theorem 2, we selected the
exponent parameter α ∈ [1/2, 1), thus discarding α < 1/2,
in order to ensure F to be locally essentially bounded and
thus ensure that Filippov solutions to our proposed family
of flows exist. Also notice that for α ∈ (1/2, 1), traditional
solutions exist since F is continuous for that range of α.
However, F (t, ·) remains non-Lipschitz and thus uniqueness
of solutions is not immediately guaranteed. For α = 1/2,
however, only Filippov solutions appear to be meaningful.

Remark 3 (Practical Stability). In a practical implementa-
tion, if we want to keep all the remaining range of α, i.e.,
α < 0.5, we could simply incorporate a regularization term
in the flow (17), as

ẋ = − w(t, x;x0)[∇2f(t, x)]r∇f(t, x)
δ +∇f(t, x)>[∇2f(t, x)]r+1∇f(t, x)

, (26)

where δ > 0 is a small constant. From a theoretical con-
vergence perspective, this implementation ‘fix’ will simply
change the finite-time convergence, to a finite-time practical
convergence, i.e., given any arbitrarily small ε > 0, we can
choose δ > 0 sufficiently small for the tracking error to reach
an ε-neighborhood of zero, and thus ‘practically’ vanish.
In practical terms, such a regularized flow is more suitable
for numerical solvers, so more work will be conducted into
studying, from a numerical optimization perspective, fast
discretization schemes for (26).

IV. NUMERICAL EXAMPLES

We will now test our proposed flows on a simple time-
varying cost function – a convex quadratic cost function that
to track a decaying sinuisoid. More precisely, let us consider
the time-varying cost function

f(t, x) , (x− x?(t))2, (27)

with x?(t) , 10 sin
(

4t
1+0.1t2

)
, which together satisfy As-

sumption 3.
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Fig. 1: Trajectories of the proposed flow (17) with parameters
(α, r) = (1/2,−1) for (27), with time-varying minimum
x?(·). Different initial approximations and pre-defined set-
tling times are illustrated.

As we can see in Figure 1, our proposed method is able to
naturally deal with time-varying cost functions. Furthermore,
we can see that the tracking error reaches zero exactly at
the pre-defined time T > 0, regardless of the initial value
x0 ∈ R, since f(t, ·) is strongly convex everywhere, for every
t ≥ 0.



V. CONCLUSION AND FUTURE WORK

We have introduced a new family of discontinuous second-
order flows for continuous-time optimization. The main
characteristic of the proposed flows is their finite-time
convergence guarantees, with an arbitrary pre-defined (by
the user) convergence time. To analyze these discontinuous
flows, we first extended an exiting Lyapunov-based inequal-
ity condition for finite-time stability in the case of smooth
dynamics to the case of non-smooth dynamics modeled by
time-varying differential inclusions. We then derived and
established finite-time stability (and thus convergence) for
the proposed family of continuous-time optimization algo-
rithms. Finally, we conducted numerical experiments on a
time-varying quadratic cost function that tracks a decaying
sinusoid.

While the obtained results are encouraging, there are
several unanswered questions, which we will target in our
future work. First, while we have used commonly available
numerical solvers in our (small-scale) numerical experi-
ments, it is evidently clear that traditional ODE solvers do
not appear to translate into competitive iterative optimization
algorithms. More work will be done in this discretization
research direction. Furthermore, we also seek to adapt our
methods to be based on first-order information on the cost
function, as well as to a allow for linear and nonlinear
constraints, and to develop distributed and decentralized
variants. Lastly, many real-life problems that require a time-
varying optimization framework, such as in motion planning
or formation control in robotics, do not allow direct access
to gradients, Hessian matrices, or time-derivatives of the
gradient. Instead, these are typically estimated based on
measurements (e.g. of the cost function) that often occur
in discrete time and carry noisy perturbations. Therefore,
future work will also be dedicated to the robustification
of our proposed flows, including zeroth-order (gradient-
free) schemes, for example, based on continuous-time finite-
difference schemes, or on an extremum-seeking formulation
of the present flows.
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